
Xiangyao Yu
10/6/2020

CS 764: Topics in Database Management Systems
Lecture 9: Isolation

1



Today’s Paper: Isolation

SIGMOD Record, 1995 2



Agenda

3

ANSI isolation levels 
Cursor stability and snapshot isolation 
Discussions



Recap: Degree of Consistency

4

Degree 3: Serializability (assuming no phantom effect)
– Two-phase with respective to both reads and writes 

Degree 2: Read Committed
– Two-phase with respect to writes 
– Short read locks 

Degree 1: Read Uncommitted
– Two-phase with respect to writes 
– No read locks (may observe dirty data)

Degree 0: 
– Short write locks
– No read locks



ANSI Isolation Levels

ANSI SQL-92 defines four isolation levels by phenomena
The original definitions were ambiguous

This lecture focuses on the “correct” definitions

5

Degree 3

Degree 2
Degree 1



Notation
w1[x]: transaction 1 writes record x

r2[y]: transaction 2 reads record y

w1[P] (r1[P]): transaction 1 writes (reads) records that satisfy 
predicate P

c1: commit of transaction 1

a1: abort of transaction 1
6



Locking-Based Definition 
Well-formed: lock (on tuple or predicate) before reading/writing records 
Long locks: hold the lock until transaction commits or aborts

7



Locking-Based Definition 
Well-formed: lock (on tuple or predicate) before reading/writing records 
Long locks: hold the lock until transaction commits or aborts

8

Phenomenon P3: Phantom
r1[P]…w2[y in P]… (c1 or a1) and (c2 or a2) any order) 

– Anomalous behavior: multiple r[P]’s return different results
P3 is allowed in repeatable read but forbidden in serializable



Locking-Based Definition 
Well-formed: lock (on tuple or predicate) before reading/writing records 
Long locks: hold the lock until transaction commits or aborts

9

Phenomenon P2: Fuzzy Read
r1[x]…w2[x]… (c1 or a1) and (c2 or a2) any order) 

– Anomalous behavior: multiple r[x]’s return different results
P2 is allowed in read committed but forbidden in repeatable read



Locking-Based Definition 
Well-formed: lock (on tuple or predicate) before reading/writing records 
Long locks: hold the lock until transaction commits or aborts

10

Phenomenon P1: Dirty Read
w1[x]…r2[x]… (c1 or a1) and (c2 or a2) any order) 

– Anomalous behavior: transaction reads data that was never committed
P1 is allowed in read uncommitted but forbidden in read committed



Locking-Based Definition 
Well-formed: lock (on tuple or predicate) before reading/writing records 
Long locks: hold the lock until transaction commits or aborts

11

Phenomenon P0: Dirty Write
w1[x]…w2[x]… (c1 or a1) and (c2 or a2) any order) 

– Anomalous behavior: when transaction 1 rolls back x, unclear what value to roll back to
P0 is forbidden in all ANSI isolation levels

Degree 0 none required Well-formed Writes
Short duration Write locks



Equivalent Definitions

12



Discussion
Why define isolation levels? Why not serializability?

Why define isolation levels in this particular way? 

13



Hierarchy of Isolation Levels
Isolation level L1 is weaker than isolation level L2, denoted L1 << L2, 
if all non-serializable histories that obey the criteria of L2 also satisfy 
L1 and there is at least one non-serializable history that can occur at 
level L1 but not at level L2. 

Read Uncommitted 
<< Read Committed

<< Repeatable Read
<< Serializability

14



Cursor Stability

Cursor: can be viewed as a pointer to one row in a set of rows. The cursor 
can only reference one row at a time, but can move to other rows of the 
result set as needed

Phenomenon P4: Lost Update
r1[x]…w2[x]…w1[x]…c1

– Anomalous behavior: transaction 2’s update is overwritten by transaction 1
15



Snapshot Isolation

All reads see a snapshot of data as of the time the transaction 
started (t1)

A transaction can commit if records in write set are not modified by 
other transactions between t1 and t2

At commit time, apply all writes with timestamp t2

16

t1 t2

Start-Timestamp Commit-Timestamp



Hierarchy of Isolation Levels

17

Again, why define isolation levels in this 
particular way? 



Isolation is Complex

18

bal = read(balance) 
If bal > 100

bal = bal – 100
write(balance, bal)
dispense cash

else
reject

Initailly
checking.balance = 1000



bal = read(balance) 
If bal > 100

bal = bal – 100
write(balance, bal)
dispense cash

else
reject

bal = read(balance) 
If bal > 100

bal = bal – 100
write(balance, bal)
dispense cash

else
reject

Isolation is Complex

19

2

Initailly
checking.balance = 1000

1



bal = read(balance) 
If bal > 100

bal = bal – 100
write(balance, bal)
dispense cash

else
reject

bal = read(balance) 
If bal > 100

bal = bal – 100
write(balance, bal)
dispense cash

else
reject

Isolation is Complex

20

2

Initailly
checking.balance = 1000

1

3 4



bal = read(balance) 
If bal > 100

bal = bal – 100
write(balance, bal)
dispense cash

else
reject

bal = read(balance) 
If bal > 100

bal = bal – 100
write(balance, bal)
dispense cash

else
reject

Isolation is Complex

21

2

Initailly
checking.balance = 1000

1

3 4

balance = 900



ACID: Isolation – Why Strong Isolation?

Attackers stole 896 Bitcoins ≈ 46 million US dollars

April 2014

MongoDB & Bitcoin: How NoSQL design flaws brought down 
two exchanges

22



ACID: Isolation – Why Strong Isolation?

Attackers stole 896 Bitcoins ≈ 46 million US dollars

April 2014

MongoDB & Bitcoin: How NoSQL design flaws brought down 
two exchanges

Why you should pick strong consistency, whenever possible

Systems that don't provide strong consistency … 
create a burden for application developers

January 2018

23



ACID: Isolation – Why Strong Isolation?

Attackers stole 896 Bitcoins ≈ 46 million US dollars

April 2014

MongoDB & Bitcoin: How NoSQL design flaws brought down 
two exchanges

24

Q: “What is the biggest mistake in your life as an engineer?”

Not putting distributed transactions in BigTable. 
In retrospect lots of teams wanted that capability and built their own with 
different degrees of success.

March 2016A: (from Jeff Dean)



ACID: Isolation – Why Strong Isolation?

Attackers stole 896 Bitcoins ≈ 46 million US dollars

April 2014

MongoDB & Bitcoin: How NoSQL design flaws brought down 
two exchanges

SQL (before 2000) -> NoSQL (since 2000) -> NewSQL (since 2010s) 25

Q: “What is the biggest mistake in your life as an engineer?”

Not putting distributed transactions in BigTable. 
In retrospect lots of teams wanted that capability and built their own with 
different degrees of success.

March 2016A: (from Jeff Dean)



Revisit Definition
Serializability: A transaction schedule is serializable if its outcome is 
equal to the outcome of its transactions executed serially

Are both definitions above equivalent? 

26



Revisit Definition
Serializability: A transaction schedule is serializable if its outcome is 
equal to the outcome of its transactions executed serially

Are both definitions above equivalent? 
Consider:

– T1: w1[x], r1[y], r1[z]
– T2: w2[x], r2[y], r2[z]
– Legal schedule? w1[x], w2[x], r1[y], r1[z], r2[y], r2[z], c1, c2 

27



Optimize for Hotspots 
T1 T2 T3
Update(A) Wait for A Wait for A

…

Commit

Update(A)

…

Commit

Update(A)

…

Commit

Conventional 2PL

T1 T2 T3
Update(A) Wait for A Wait for A

… Update(A)

Commit … Update(A)

Commit …

Commit

Bamboo [1]

19/24[1] Zhihan Guo, et al. Releasing Locks As Early As You Can: Reducing Contention of Hotspots by Violating Two-Phase Locking, SIGMOD 2021



Optimize for Hotspots 
T1 T2 T3
Update(A) Wait for A Wait for A

…

Commit

Update(A)

…

Commit

Update(A)

…

Commit

Conventional 2PL

T1 T2 T3
Update(A) Wait for A Wait for A

… Update(A)

Commit … Update(A)

Commit …

Commit

Bamboo [1]

19/24[1] Zhihan Guo, et al. Releasing Locks As Early As You Can: Reducing Contention of Hotspots by Violating Two-Phase Locking, SIGMOD 2021

Why not optimize 
performance for serializability 

instead of relaxing it?



Q/A – Isolation

30

Isolation levels in commercial DBMS today? 
– Which are used? Are they all used?

The current ANSI standard? 
Long running transactions in Snapshot Isolation?
Why do we need all these isolation levels?
Ongoing research to discover new phenomenon or isolation levels?



Before Next Lecture
Submit review for

– H. T. Kung, John T. Robinson, On Optimistic Methods for Concurrency 
Control. ACM Transactions on Database Systems, 1981

31

http://pages.cs.wisc.edu/~yxy/cs764-f21/papers/occ.pdf

