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ABSTRACT
The Vertica Analytic Database is a powerful tool for high perfor-
mance, large scale SQL analytics. Historically, Vertica has managed
direct-attached disk for performance and reliability, at a cost of
product complexity and scalability. Eon mode is a new architecture
for Vertica that places the data on a reliable shared storage, match-
ing the original architecture’s performance on existing workloads
and supporting new workloads. While the design reuses Vertica’s
optimizer and execution engine, the metadata, storage, and fault
tolerance mechanisms are re-architected to enable and take advan-
tage of shared storage. A sharding mechanism distributes load over
the nodes while retaining the capability of running node-local table
joins. Running on Amazon EC2 compute and S3 storage, Eon mode
demonstrates good performance, superior scalability, and robust
operational behavior. With these improvements, Vertica delivers
on the promise of cloud economics, consuming only the compute
and storage resources needed, while supporting efficient elasticity.
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1 INTRODUCTION
The Vertica database has historically been deployed on-premises
with direct attached disk for maximal bandwidth to achieve high
query performance. Vertica’s simple install and software-only ap-
proach has supported cloud deployment as far back as 2009 for
Amazon’s cloud. As reliable distributed shared storage becomes
prevalent and cloud technologies enable consumption-based re-
source usage, Vertica must adapt to a model that supports the cus-
tomers of the future. Vertica is not the only database making this
pivot: many new and existing databases make the jump to become
cloud databases, instead of merely database that run in the cloud.
Existing databases often lack the core architecture that matches
the cloud, while new query engines lack performance to effectively
compete with Vertica.

The huge data volumes produced by modern enterprises require
a distributed system comprised of many individual nodes to achieve
sufficient performance. With the advent of the cheap shared stor-
age systems that provide near infinite durable and highly available
storage, a database employing shared storage as its backing store
can address an enterprise domain worth of data, while shedding
much responsibility for durability [17]. High performance queries
on top of a durable shared storage at an appropriate price point is
a key business need. Relational databases are expected to support
joins which relate data items in one table to another table. Data-
base joins in a distributed system are dramatically more efficient
with pre-placement of the data. However, strict pre-placement of
data may limit elasticity, another key property. The resource costs
of an elastic distributed database follow consumption, which is a
significant consideration in the cloud.

Vertica’s new Eon mode integrates a sharding mechanism into
Vertica’s existing architecture to achieve both elasticity and query
performance. The system is configured with a number of segment
shards, where each segment is responsible for a region of a hash
space. Each data record’s key is hashed and the record is associated
with the segment that owns that region of the hash space. Data load
splits the data according to the segments and writes the component
pieces to a shared storage. A many-to-many mapping from nodes
to segment shards indicates which nodes can serve which segments.
To complete the picture (See Figure 1), each node maintains a cache
of recently used data, where the relatively static mapping of nodes
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Figure 1: Eon Architecture

to segments ensures that each node’s cache keeps a reasonably
static subset of the data.

Vertica’s existing architecture, referred to as "Enterprise mode"
hereafter, provides the base on which Eonmode is built. We contrast
the new Eon mode with Enterprise to show our design changes
and relate achievements to available behavior. The sharding model
supports improvements to Vertica’s scalability and operational be-
havior. Adding additional nodes provides more nodes on which
to run queries, improving throughput. When nodes go down and
recover, they need only fetch an updated copy of the metadata for
the shards to which they subscribe and optionally warm their cache
from a peer. Many operations in Vertica which were challenging in
Enterprise mode with a node down are simple in Eon mode because
shards are never down.

In this paper, we present an overview of Vertica to establish con-
text in Section 2, introduce a sharding mechanism for metadata and
data in Section 3, and discuss query execution in Section 4.We detail
interaction with shared storage in Section 5, articulate advantages
in operational behavior in Section 6, comment on implementation
in Section 7, and demonstrate performance in Section 8. Finally,
we relate Eon mode to existing work in Section 9 and conclude in
Section 10.

2 VERTICA OVERVIEW
The core Vertica architecture has been presented before [11], but an
overview is provided here for context. Vertica is a column oriented
[1, 16] relational SQL database for analytics built on a distributed
shared-nothing commodity node platform. Vertica supports the
standard SQL declarative query language along with its own propri-
etary extensions. Vertica’s extensions are designed for cases where
easily querying timeseries and log style data in SQL was overly
cumbersome or impossible. A machine learning package supports
high-performance in-database machine learning at scale. Users sub-
mit SQL queries using an interactive vsql command prompt or via
standard JDBC, ODBC, ADO .NET, or Python drivers. Vertica also
supports an SDK [18] with hooks for users to extend various parts
of the execution engine and bulk load process.

2.1 Physical Design
Vertica supports a variety of mechanisms for improving query
performance through good physical design. Vertica physically or-
ganizes table data into projections, which are sorted, distributed
subsets of the attributes of a table. Any number of projections with
different sort orders, distributions, and subsets of the table columns
are allowed. Because Vertica is a column store and has been opti-
mized for performance, it is not required to have one projection
for each predicate present in the query workload. In practice, most
customers have one to four projections per table. Vertica has a Data-
base Designer utility that uses the schema, some sample data, and
queries from the workload to automatically determine an optimized
set of projections.

Each projection has a specific sort order on which the data is
totally sorted as shown in Figure 2. Projections may be thought of
as a restricted form of materialized view [2, 15]. They differ from
standard materialized views because they are the only physical
data structure in Vertica. Projections with appropriate sort order
serve in lieu of traditional indexes. Sorted data usually results in
better compression and thus better I/O performance. Vertica’s ex-
ecution engine can operate directly on encoded data, effectively
compressing CPU cycles as well.

In addition to vanilla projections, Vertica supports Live Aggre-
gate Projections which maintain pre-computed partial aggregate
expressions but impose restrictions on how the base table can be
updated. Live aggregates can be used to dramatically speed up
query performance for a variety of aggregation, top-K, and dis-
tinct operations. Live aggregate projections can even be built with
user-defined transform functions supplied by the user via the SDK.

At the table level, Vertica supports partitioning the data hori-
zontally, usually by time. Partitioning the data allows for quick file
pruning operation when query predicates align with the partition-
ing expression. For example, partitioning a table by day stores the
data such that any given file will contain data from only one day;
queries with a predicate on the recent week like event_timestamp
> now() - interval ’7 days’ can easily exclude files from older
days. Vertica prunes files by tracking minimum and maximum val-
ues of columns in each storage and using expression analysis to
determine if a predicate could ever be true for the given minimum
and maximum. Lastly, Vertica supports a mechanism called Flat-
tened Tables that performs arbitrary denormalization using joins at
load time. Flattened tables also provide a refresh mechanism for up-
dating the denormalized table columns when the joined dimension
table changes.

2.2 Cluster Data Distribution
Vertica has a distributed storage system that assigns tuples to spe-
cific computation nodes. We call this inter-node (splitting tuples
among nodes) horizontal partitioning segmentation to distinguish
it from intra-node (segregating tuples within nodes) partitioning.
Segmentation is specified for each projection, which can be (and
most often is) different from the sort order. Projection segmenta-
tion provides a deterministic mapping of tuple value to node and
thus enables many important optimizations. For example, Vertica
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Node 1
sale_id customer date price

1 Grace 02/01/18 50

2 Ada 03/21/18 40

3 Barbara 03/11/18 30

4 Ada 02/01/18 20

5 Shafi 04/01/18 10
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customer, price
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Figure 2: Relationship between tables and projections. The
sales tables has 2 projections: (1) An all-columns projection,
sorted by date, segmented by HASH (sale_id) and (2) Another
projection containing only (cust ,price) attributes, sorted by
cust , segmented by HASH (cust).

uses segmentation to perform fully local distributed joins and effi-
cient distributed aggregations, which is particularly effective for
the computation of high-cardinality distinct aggregates

Projections can either be replicated or segmented on the cluster
nodes. As the name implies, a replicated projection stores a copy of
each tuple on every projection node. Segmented projections store
each tuple on exactly one specific projection node. The node on
which the tuple is stored is determined by a segmentation clause in
the projection definition: CREATE PROJECTION ... SEGMENTED BY
HASH(<columns>)where <columns> is an arbitrary list of columns
from the projection. A set of one or more columns with high cardi-
nality and relatively even value distribution performs well. Contigu-
ous regions of the hash space are mapped to nodes in the cluster;
any tuple whose columns hash to a region will be stored and read
from that node. To support fault tolerance, a second "buddy" projec-
tion is created that shares the same segmentation expression, but
each hash space region is mapped to a different node. Typically, the
nodes are conceptually arranged in a logical ring, which is rotated
to determine the layout of the buddy, resulting in a layout where
adjacent nodes in the ring serve as replicas. When a node in the
base projection is down, the optimizer will source the missing data
from the appropriate node in the buddy projection.

2.3 Storage
Vertica has a Read Optimized Store (ROS) and a Write Optimized
Store (WOS). Data in the ROS is physically stored in multiple ROS
containers on a standard file system. Each ROS container logically
contains some number of complete tuples sorted by the projec-
tion’s sort order, stored per column. Vertica is a true column store –
column data may be independently retrieved as the storage is phys-
ically separate. Vertica writes actual column data, followed by a
footer with a position index. The position index maps tuple offset in
the container to a block in the file, along with block metadata such
as minimum value and maximum value to accelerate the execution
engine. If the column data is small, Vertica concatenates multiple
column files together to reduce the overall file count. Complete
tuples are reconstructed by fetching values with the same position

from each column file within a ROS container. Once written, ROS
files are never modified.

The WOS’s primary purpose is to buffer in memory small data
inserts, deletes and updates so that writes to physical structures
contain a sufficient numbers of rows to amortize the cost of the
writing. Data is not encoded or compressed when it is in the WOS
but it is segmented according to the projection’s segmentation
expression. Committed data can reside in the WOS; Vertica uses the
replication mechanism of buddy projections to handle single node
failures and a more complex transaction rollback mechanism to
revert to a consistent snapshot in the face of a catastrophic failure
of all nodes.

The Tuple Mover is a service that performs compactions of the
storage called moveout and mergeout. The tuple mover runs in-
dependently on each node as each node’s storage and memory
situation may vary. Moveout is the operation that converts WOS
to ROS, sorting the data and writing it to disk from the in-memory
WOS. Mergeout is the operation that compacts ROS containers by
merging two or more containers to make a single new container.
The input containers are dropped at the end of the mergeout trans-
action. Mergeout uses an exponentially tiered strata algorithm to
select ROS containers to merge so as to only merge each tuple a
small fixed number of times. Mergeout may run more aggressively
to keep the ROS container count down to constrain metadata size
and avoid expensive large fan-in merge operations in the execution
engine.

Deletes and updates are implemented with a tombstone-like
mechanism called a delete vector that stores the positions of tuples
that have been deleted. Delete vectors are additional storage objects
created when tuples are deleted and stored using the same format
as regular columns. An update is modeled as a delete followed by an
insert. Deleted data is purged during mergeout and the number of
deleted records of a storage is a factor in its selection for mergeout.

2.4 Catalog Architecture
The Vertica catalog stores and provides access to the metadata of the
database. Other databases typically use their own table structures
and B-trees for their metadata maintenance. However, Vertica uses
a custom mechanism due to its table structures being optimized
for billions of rows. In-memory, the catalog uses a multi-version
concurrency control mechanism, exposing consistent snapshots to
database read operations and copy-on-write semantics for write op-
erations. Transaction commit results in transaction logs appended
to a redo log. Transaction logs contain only metadata as the data
files are written prior to commit. Transaction logs are broken into
multiple files but totally ordered with an incrementing version
counter. When the total transaction log size exceeds a threshold,
the catalog writes out a checkpoint which reflects the current state
of all objects at the time the checkpoint was written. The checkpoint
is labeled with the version counter, ensuring that the checkpoint
can be ordered relative to the transaction logs. Vertica retains two
checkpoints, any prior checkpoints and transaction logs can be
deleted. At startup time, the catalog reads the most recent valid
checkpoint, then applies any subsequent transaction logs to arrive
at the most up to date catalog state.
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3 SHARDING
Eon mode introduces a sharding mechanism for metadata manage-
ment in a distributed system with shared storage.

3.1 Shards and Subscriptions
The catalog is divided into global objects (like tables and users)
which are in every node’s catalog, and storage objects each of which
only a subset of the nodes will serve. In Enterprise, the storage
objects are persisted in a node-specific catalog that is managed
independently for each node. Each node independently loads and
compacts data so the storage container organization will not match
between nodes, even for the buddy projections used for replication.
Since each node has private disk, synchronization between nodes
about storage is unnecessary. However, in Eon mode, the data is
written to a shared storage and is potentially accessible by any
node.

Sharding is the mechanism in Eon mode that guarantees each
node can track a subset of the overall storage metadata, all nodes see
a consistent view, and the metadata aligns with Vertica’s existing
projection mechanism to ensure comparable performance. Rather
than implicit regions of hash space defined by individual projections,
Eon mode explicitly has segment shards that logically contain any
metadata object referring to storage of tuples that hash to a specific
region (see inner circle of Figure 3). While each projection may
hash different columns, the mapping from hash region to shard is
the same, regardless of projection or table. All storage metadata
for a segmented projection is associated with segment shards. The
number of segment shards is fixed at database creation. Replicated
projections have their storage metadata associated with a replica
shard.

A node that is subscribed to a shard will serve the metadata and
data associated with the shard. Node subscriptions control how
processing is distributed across the cluster and can be created or
removed while the cluster is running. A node usually subscribes to
more than one shard and shards normally have multiple subscribers.
For cluster availability, there must be at least one subscribing node
for each shard. To enable node fault tolerance, there must be more
than one subscriber to each shard.

3.2 Transaction processing
When a transaction commits in Eon mode, any storage metadata
associated with a shard must have been sent to every subscriber of
the shard. Nodes can each create metadata as part of a transaction.
For example, a bulk load could create ROS containers on every
node in the cluster. Vertica eagerly redistributes metadata within
a transaction to better handle node failures that occur prior to
commit. The shard metadata deltas are piggybacked on existing
messages where possible to avoid additional message overhead. At
commit time, the transaction validates the invariant that all nodes
have metadata for all their subscribed shards, confirming that no
additional subscription has "snuck in" to invalidate the transaction.
If the invariant doesn’t hold, the transaction rolls back.

3.3 Subscription Process
Vertica executes a sequence of metadata and data operations to
subscribe a node to a shard. A node indicates it wishes to subscribe
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2147483650

3221225474

0

Node 1

S2S1

Node 2

S2

S3

Node 3

S4 S3

Node 4

S1

S4

Figure 3: 32-bit hash space is segmented into four shards S1,
S2, S3, S4. Each node subscribes to a subset of shards.
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Figure 4: State transitions for a shard subscription. Solid
black arrows denote data and metadata operations, whereas
the other arrows are proactive or reactive organizational
changes.

by creating a subscription in the PENDING state. A subscription
service wakes up, picks a source node that already subscribes to
the shard, and transfers metadata to bring the new subscriber up
to date. The transfer process proceeds in a succession of rounds,
transferring checkpoint and/or transaction logs from source to
destination until the node is caught up. If the missing metadata is
sufficiently small, the service takes a lock that blocks transaction
commit, transfers the remainder logs, marks the subscription to
PASSIVE, and commits. Once in the PASSIVE state, the node can
participate in commits and could be promoted to ACTIVE if all other
subscribers fail. A cache warming service wakes up, picks a source
node that already subscribes to the shard, and warms the cache
through a process described in Section 5.2. Once the cache is warm,
the subscription transitions to the ACTIVE state and begins serving
queries. New subscribers might prefer being available for queries
sooner over avoiding cache misses and thus will move directly from
PASSIVE to ACTIVE, skipping cache warming.

The subscription process also handles node down and recovery.
When a node goes down and recovers, it returns with subscriptions
that are stale. Upon invitation back into the cluster, a transaction is
committed that transitions all of the ACTIVE subscriptions for the re-
covering node to PENDING, effectively forcing a re-subscription. The
re-subscription process proceeds similarly to subscription, except
the metadata transfer and cache warm steps can be incremental.
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Upon completion, the recovered node’s subscriptions are once again
ACTIVE and the node will begin to serve queries.

When a node unsubscribes from a shard, it also follows a col-
lection of steps. First, the subscription transitions to REMOVING to
declare the intent to remove the subscription. However, the sub-
scription cannot be dropped until sufficient other subscribers exist
to ensure the shard remains fault tolerant. For example, in scenario
where only one node subscribes to a shard, moving a subscription
between two nodes will require subscription to occur before the
existing subscription can be dropped. While in the REMOVING state,
the node continues to serve queries. Once a sufficient number of
other subscribers exist in the ACTIVE state, the node drops the rele-
vant metadata for the shard, purges the associated data from the
cache, and drops the subscription.

The rebalance mechanism initiates subscription and unsubscrip-
tion, which then follow the processes described above and illus-
trated in Figure 4. Rebalance is run automatically when the cluster
grows or shrinks, but can be also run manually when other config-
uration changes.

3.4 Cluster Invariants
For an Eon mode cluster to be viable, at least one node must have
an ACTIVE subscription for each shard. Furthermore, each ACTIVE
subscriber must have an identical view of the shard and all nodes
must have an identical view of the global catalog objects. For sim-
plicity, the catalog maintains a global catalog version number which
increments with each transaction commit. To form a cluster, Ver-
tica needs a quorum of nodes, all the shards to be represented by
nodes with subscriptions that were ACTIVE when the nodes went
down, and the contributory nodes to have same (highest) global
catalog version. Nodes whose version is behind will be repaired
after the cluster forms with the re-subscription process described
above. If the cluster cannot agree on a highest version between
nodes with the appropriate subscriptions, a truncation mechanism
discards transactions, rewinding until a consistent version can be
established on the cluster. If sufficient nodes fail such that the
constraints are violated during cluster operation, the cluster will
shutdown automatically to avoid divergence or wrong answers.

3.5 Revive
Durability guarantees in Eon are stronger than a traditional Vertica
deployment, leveraging shared storage as a durable but slow persis-
tence layer for both data and metadata. While all data is uploaded to
shared storage before commit, metadata is persisted asynchronously
to avoid sacrificing commit performance. Each node writes trans-
action logs to local storage, then independently uploads them to
shared storage on a regular, configurable interval. During a normal
shutdown, any remaining logs are uploaded to ensure shared stor-
age has a complete record. Process termination results in reading
the local transaction logs and no loss of transactions. Individual
instance loss results in rebuilding metadata from a peer and no
loss of transactions. Catastrophic loss of many instances requires
constructing a consistent version from the uploaded logs, where
each node may or may not have uploaded logs for a particular
transaction. The operation that starts a cluster from shared storage
is called revive. Paired with the catalog upload or sync operation,

Revive has the following objectives: discard as few transactions as
practical, restore to a consistent snapshot for which all the data
and metadata files are present, and ensure the version sequence of
the catalog is consistent even through revive operations that lose
transactions.

Rather than burden the revive operation with the responsibility
of selecting the transactions to discard, a running cluster regularly
updates the truncation version to reflect the durability point. Each
node maintains a sync interval that reflects the range of versions to
which it could successfully revive based on uploaded checkpoints
and transaction logs. An elected leader writes down a consensus
truncation version that is the set cover of the metadata with respect
to each shard as shown in Figure 5. The truncation version is the
minimum across shards of the upper bound of sync interval for
each subscribing node. The consensus version serves as a “high
watermark“ for all cluster metadata - a version consistent with
respect to all shards, to which the cluster can be revived. Nodes
upload transactions to increase the upper bound of the sync in-
terval and delete stale checkpoints to increase the lower bound
of the sync interval. Deleting checkpoints and transaction logs
after the truncation version is not allowed. Once the truncation
version is computed, it is persisted to a file in shared storage called
cluster_info.json. In addition to the truncation version, the file
also contains a timestamp, node and database information, a lease
time, and an incarnation id.

Revive occurs in several stages. First, the nodes are commissioned
with empty local storage. All nodes then read the cluster_info.json
file from shared storage, and extract the truncation version and
lease time. If the lease time has not yet expired, revive aborts since
it is likely that another cluster is already running on the shared
storage location. Next, all nodes individually download their the
catalog from shared storage. Each node reads its catalog, truncates
all commits subsequent to the truncation version, and writes a new
checkpoint. Finally, the cluster starts at the new version.

The revive mechanism is augmented with an incarnation id to
ensure the revive operation avoids duplication in the version space.
For example, after truncation the cluster can commit a version
with the same version number as prior to truncation but with
different contents. The incarnation id is a 128 bit UUID [12] which
changes each time the cluster is revived. Metadata files uploaded to
shared storage are qualified with the incarnation id, ensuring that
each revived cluster writes to a distinct location. When sufficient
metadata has been uploaded from the newly revived cluster, a
version of the cluster_info.json file is uploaded with the new
incarnation id of the cluster. A subsequent revive reads the file to
determine which incarnation it is reviving from, effectively making
the write of the cluster_info.json the commit point for revive.

Cluster formation reuses the revive mechanism when the cluster
crashes mid commit and some nodes restart with different catalog
versions. The cluster former notices the discrepancy based on invite
messages and instructs the cluster to perform a truncation operation
to the best catalog version. The cluster follows the same mechanism
as revive, moving to a new incarnation id, and eventually uploading
a new cluster_info.json file.
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Figure 5: Computing the truncation version of a 4 node, 4
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truncation version is 5.

4 QUERY EXECUTION
Vertica uses a slightly different process to plan queries in Eon mode
to incorporate the sharding mechanism and remote storage. Instead
of using a fixed segmentation distribution of the hash space to
each node, Eon mode uses the sharding mechanism to dynamically
select a covering set of subscriptions over the shard space to serve
a query. When the Vertica optimizer selects a projection, the layout
for the projection is determined by the participating subscriptions
for the session as described in Section 4.1. Eon runs Vertica’s cost-
based distributed optimizer, generating query plans equivalent to
Enterprise mode. Only nodes that the session selects to serve a shard
participate in query execution. When an executor node receives
a query plan, it attaches storage for the shards the session has
instructed for it to serve. Storage containers are partitioned by
shard: each contains rowswhose hash values map to a single shard’s
hash range.

By segmenting the data by key value, operations such as join and
group-by that need all records with a particular key find them on
the same node. For example, a query that joins table T1 on column
“a” with T2 on column “b” can be executed without a reshuffle if
T1 is segmented by column “a” and T2 by column “b”. Identical
values will be hashed to same value, stored in the same shard, and
served by the same node. Similarly if T1 is segmented by column
“a”, a query that groups by column “a” does not need a reshuffle to
compute the value of each “a” group. For predictable queries, such
as those run by dashboarding applications, proper segmentation
choices for each table can result in fast query performance that
avoids network bottlenecks.

4.1 Participating Subscription Selection
We model the shard to node allocation problem as a graph flow
problem by carefully constructing a graph that reflects the con-
figuration of the database (shown in Figure 6). The graph has a
source vertex which has an edge to each shard vertex. Each shard
vertex has an edge to a node vertex if the node can serve that shard.
Finally, each node vertex has an edge to the sink vertex. In this way,
the graph encodes the constraints for which mappings are possible.
A max flow on the graph will route flow over the shard to node
edges, where the used edges indicate the mapping the process has
selected for the query.

A balanced distribution of shards to nodes is obtained through
adjusting the capacity of the edges in the graph. The edges from
source to shard all have capacity 1 as the solution must involve

...

...

→

→

→

⎣ ⎦

Figure 6: Graph expressing constraints whose max-flow de-
scribes an assignment of subscribing nodes to shards.

all shards. This establishes the desired max flow as the number of
shards. Edges between shard and node vertices also have capacity 1,
consuming all flow from a shard vertex. Edges from node vertices
to the sink vertex begin with capacitymax( SN , 1). By assigning the
same outflow to each node vertex, a max flow will push flow evenly
over the shard to node edges, resulting in a balanced distribution.
The graph construction includes some randomization to induce the
max flow to load balance across potential assignments of nodes to
shards.

The graph can be very asymmetric if the node to shard edges
are unbalanced, leading to a max flow that is less than the number
of shards, and resulting in an incomplete assignment of shards
to nodes. For example, in a shard equals nodes (S = N ) database,
if only one node serves every shard, the outflow from each node
vertex will be 1, and the graph will assign only one shard mapping
when run, leaving S − 1 shards unassigned. We address this issue
by running successive rounds of max flow, leaving the existing
flow intact while incrementally increasing the capacity of the node
vertex to sink edges. When the flow finally reaches the number of
shards, all the shards have been assigned with minimal skew.

Additionally, we can prioritize some nodes over others by in-
crementally adding the edges from node vertices to the sink. The
graph starts with edges only from priority nodes to the sink. If
max flow does not successfully deliver all potential flow to the
sink, add the next set of edges from lower priority node vertices
to the sink and re-run the max flow algorithm. For example, the
starting graph includes only nodes on the same physical rack, en-
couraging an assignment that avoids sending network data across
bandwidth-constrained links.

4.2 Elastic Throughput Scaling
Duplicating responsibility for each segment across multiple nodes
improves query throughput. By running each query on the subset
of the nodes, adding additional nodes results in more concurrent
queries on the system as a whole. A simple case is where there are
twice as many nodes as segments, effectively producing two clus-
ters which can run queries independently. Even with non-integral
multiples of the segment count of nodes, linear scale-out can be
achieved when each node can concurrently run queries equal to
the number of shards. For a database with S shards, N nodes, and
E execution slots per node, a running query requires S of the total
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N ∗ E slots. If S < E, then adding individual nodes will result in
linear scale-out performance, otherwise batches of nodes will be
required and performance improvement will look more like a step
function. A proper load balancing mechanism is necessary to dis-
tribute the workload over the cluster. See Section 8 for performance
results that demonstrate scalability.

4.3 Subcluster Workload Isolation
The subscription mechanism can be employed to run workloads
on specific subsets of the cluster nodes. The administrator can des-
ignate a collection of nodes as a subcluster and the subscription
rebalance mechanism will ensure that every shard has a node sub-
scriber in the subcluster. When a client connects to a node in the
subcluster, nodes in the subcluster are prioritized by the partici-
pating nodes algorithm, resulting in queries that execute on just
those nodes. The workload does not escape to include any node
from the rest of the cluster unless there have been sufficient node
failures within the subcluster to require outside assistance to serve
queries. Strong node-based workload isolation improves support
for multi-tenancy and can be used to insulate query from data load
or finely-tuned reporting from ad-hoc queries.

4.4 Crunch Scaling
While Elastic Throughput Scaling is effective at increasing through-
put, it does not improve the running time of an individual query.
Workloads can contain a mix of short requests and longer requests
that would benefit from additional computational power. The sim-
plest mechanism is to run with more shards than nodes; elastically
adding nodes will spread the shards out across more nodes and dis-
tribute query processing workload. When the node count exceeds
the shard count, a new mechanism is required. Changing the shard
count requires splitting a segment shard, an expensive operation
since all the data must be split and rewritten. Instead, two or more
nodes can collectively serve a segment shard for the same query
by applying a new hash segmentation predicate to each row as it is
read to determine which node will process the row. By applying
selective predicates first, the hashing burden can be reduced, but in
the worst case each node reads the entire data-set for the shard.

Alternatively, the containers can be physically split between
the nodes resulting in good I/O performance at the cost of skew
vulnerability and loss of the segmentation property. Each node
sharing a segment scans a distinct subset of the ROS containers, or
regions within a container. If the query has a selective predicate, a
lucky node could quickly filter all the rows from the container(s)
assigned to it, leaving another node with all the work. The scenario
is more likely when a node has part of the sorted container and
the query containers a predicate on the sort column(s). A work-
stealing mechanism would mitigate the scenario. Additionally, the
data is no longer segmented such that a node has all the rows whose
segmentation columns match. Local joins and aggregates are no
longer possible, the data must be shuffled within the nodes sharing
a shard. With container split, each row is read once across the
cluster, but the processing overhead is higher. Choosing between
hash filter and container split depends on the query, making it a
likely candidate for using Vertica’s cost-based optimizer.

4.5 Data Load and Data Definition operations
Data modification operations such as INSERT, UPDATE, DELETE,
MERGE run according to the selected mapping of nodes to shards.
The planwill execute on the participating nodes, which compute the
output data files or delete vectors for each shard. An executor which
is responsible for multiple shards locally splits the output data into
separate streams for each shard, resulting in storage containers that
contain data for exactly one shard. Vertica never modifies existing
files, instead creating new files for data or for delete marks. The
files are first written to the local disk, then uploaded to shared
storage. Replicated projections use just a single participating node
as the writer. The metadata for the new files is generated on the
participating nodes and then distributed to other subscribing nodes.
The commit point for the statement occurs when upload to the
shared storage completes. For a committed transaction all the data
has been successfully uploaded to shared storage; failure of the
nodes involved cannot result in missing files on the shared storage.
Other modification operations such as bulk load, move partition,
or mergeout follow a similar pattern.

While planning these operations or at commit point, if the ses-
sion sees concurrent subscription changes so that a participating
node is no longer subscribed to the shard it wrote the data into, the
transaction is rolled back to ensure correctness.

5 STORAGE
Eon mode relies on a shared storage to persist data and metadata
across a cluster, and certain properties are required of such shared
storage:

(1) Durable - once a write has succeeded, failures in the storage
subsystem are highly unlikely to result in data loss.

(2) Available - reads and writes are highly likely to succeed,
even in the presence of failures in the storage subsystem.

(3) Globally addressable - any data can be read from any com-
pute node using the same path.

(4) Elastic - capacity increases on demand, to a size limited by
purchasing power.

Additionally, shared storage has different properties than local
storage:

(1) Latency of read and write access to shared storage is higher
than local storage

(2) Remote - compute tasks cannot be scheduled co-resident
with data (e.g., S3 or SAN)

(3) Accessing shared storage carries a cost - either in consump-
tion of a limited shared resource or in actual dollars.

(4) Shared storage may lack POSIX features (e.g., file rename or
append)

5.1 Data Layout
In Enterprise mode, the Vertica database writes data to a direct
attached disk that is not shared with other nodes. Each node writes
files in a separate namespace, thus ensuring no filename collisions
between nodes. Vertica employs a two tier directory structure to
avoid overloading the filesystem with too many files in a directory.
The same mechanism is used for column data and delete vectors. A
simple naming mechanism like using the metadata object identifier
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    Node instance id
------ 120 bits ------

    
 -- 8 bits --

Version     Local id
---- 64 bits ----

Figure 7: Storage Identifier Format used to construct globally
unique filenames for Vertica storage

(OID) would be sufficient to uniquely name a file so the execution
engine can open it given metadata information. However, opera-
tions like backup and restore, replication between clusters, or node
recovery benefit from containers whose names are globally unique.
Without a globally unique name for a given object, repeated copies
between clusters, potentially bidirectional, would require keeping
persistent mappings and incur significantly increased complexity.

Vertica adopts an approach that uses a globally unique storage
identifier (SID) to identify files. The SID is a combination of the node
instance id (120 bit random number generated when the Vertica
process starts) and the local id (64 bit catalog OID associated with
the storage object when it is created) as shown in Figure 7. The
node instance identifier is strongly random (from /dev/random)
and provides the core uniqueness property, whereas the OID com-
ponent is a simple counter. Each node can create SIDs without
communicating with the other nodes. Tying the node instance id to
the lifetime of the Vertica process ensures that for a cluster whose
catalog and data are cloned, each of the two subsequent clusters
will still generate SIDs that are unique from each other.

In Eon mode, globally unique SIDs ensures that all nodes can
write files into a single shared storage namespace without fear of
collision. Vertica writes files to a flat namespace without subdi-
viding them by node or table. Storage objects are not owned by
any particular node since many nodes can subscribe to a single
shard. Storage objects are also not owned by a single table, because
operations like copy_table and swap_partition can result in ref-
erences to the same storage in multiple tables. Determining when
a file can be deleted is a complex operation and is discussed in
Section 6.5.

Eon mode does not support theWOS; all modification operations
are required to persist to disk. With the WOS, data could be lost if
nodes crash. Asymmetric memory consumption can cause a node
to spill to disk where a peer did not, creating opportunity for node
storage to diverge. Most Vertica users do not derive significant
benefit from the WOS, but pay a significant penalty in complexity
and recovery mechanism. If the existing ROS mechanism is insuffi-
cient to real-world low latency write use cases, a new mechanism
different from the WOS will be required.

5.2 Cache
Running every query directly against the data in shared storage
would result in poor performance and subject the shared storage to
heavy load. Vertica Eon mode introduces a cache to avoid reading
from the shared storage for frequently used data (See Figure 1).

The cache is a disk cache for caching entire data files from the
shared storage. Vertica never modifies storage files once they are
written, so the cache only needs to handle add and drop, and never
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Figure 8: Data LoadWorkflow. Files are cached by peers and
persisted to shared storage prior to commit.

invalidate. The cache eviction policy is a simple least-recently-used
(LRU) mechanism, assuming that past access is a good predictor of
future need. LRU has been shown to be an effective page replace-
ment algorithm [7]. Users can express shaping policies like "don’t
use the cache for this query" or eventually policies like "cache re-
cent partitions of table T" or "never cache table T2." Shaping policies
support mixed workloads, for example ensuring that large batch
historical queries do not evict items important to serving low la-
tency dashboard queries. Similarly while loading archive data, write
though the cache can be turned off for the same reasons. If needed,
the cache can be cleared completely.

The cache is write-through since newly added files are likely
to be referenced by queries. At load time files are written to the
cache, uploaded to the shared storage and sent to all the nodes
that subscribe to the shard in which the data is being loaded. This
mechanism of sending data to peers at load time results in much
better node down performance since the cache of the peers who
take over for the down node is already warm. The file compaction
mechanism (mergeout) puts its output files into the cache and also
uploads them to the shared storage.

When a node subscribes to a shard, it warms up its cache to
resemble the cache of its peer. The node attempts to select a peer
from the same subcluster, if any, to ensure the cache matches the
workload the node will experience. The subscriber supplies the peer
with a capacity target and the peer supplies a list of most-recently-
used files that fit within the budget. The subscriber can then either
fetch the files from shared storage or from the peer itself. Given a
reasonable cache size, peer to peer cache warming provides a very
similar looking cache on the new node and helps in mitigating any
performance hiccups.

5.3 Filesystem Access
Vertica filesystem access by the execution engine is done via an
API that provides the abstraction to access filesystems with differ-
ent internal implementations. The API is dubbed the user-defined
filesystem (UDFS) API, despite not being currently released to users.
Vertica currently supports three filesystems: POSIX, HDFS, and
AWS S3 [4]. In theory, any one of these filesystems can serve as a
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storage for table data, temp data, or metadata. It is the subject of
future work to open this API and let users build their own UDFS
implementation to run Eon mode on the shared storage of their
choice.

Given Eon mode’s focus on the cloud, S3 is a practical choice that
meets the desired properties for shared storage. S3 is an object store
with several key semantic differences from a POSIX linux filesys-
tem. Objects do not support the full range of POSIX operations
(e.g. rename, append). Directories do not exist and path globbing
functions differently. Operations that would rarely fail in a real
filesystem do fail occasionally on S3. S3 also exposes a different
consistency model from a regular filesystem. S3 requires different
tuning to achieve good performance. Finally, integration with S3’s
security model is critical for a secure deployment.

S3 objects are immutable: appending x to an object y is not
possible. In those cases, an entirely new object must be created
with contents of y and x , which may be costly if the original object
is large. While Vertica works on a similar principle of immutable
files, the load process itself sometimes opens and closes the files.
By staging the files first to the cache, Vertica can work on a more
functional filesystem and upload the final artifacts. The load process
has been improved and relies less on rename and append, so writes
are cheaper when a cache is not present.

Vertica observes broader failures with S3 than with local filesys-
tems. Any filesystem access can (and will) fail. For instance, a write
operation could fail because S3 credentials were not set up properly
or the permissions changed mid-operation. Sometimes S3 generates
internal errors outside of user control. A properly balanced retry
loop is required when errors happen or the S3 system throttles ac-
cess. Users expect their queries to be cancelable, so Vertica cannot
hang waiting for S3 to respond.

Another caveat with reading and writing objects to S3 is con-
sistency guarantees that can vary based on use case. For instance,
in some cases, one might want to check if a file exists on S3, and
create it only if it does not. S3 provides read-after-write consistency
for writes to new objects, however, if one checks the existence of
a file with a HEAD request before writing, the read-after-write
then becomes eventually consistent. Vertica requires strong consis-
tency. To avoid observing eventual consistency issues, Vertica does
not check object existence with HEAD requests, and instead uses

the "list" API with an object prefix. Overwriting S3 objects is also
eventually consistent, but as mentioned above, since Vertica never
modifies written objects, the scenario never arises.

Achieving good performance with S3 requires larger request
sizes than local disk to better amortize the cost of accessing the
service. The directory fan out tree used for storing files requires a
hash-based prefix scheme instead of the simpler prefix scheme to
avoid hotspotting a single S3 server to read or write recent data.
Finally, requests cost money, so minimizing the request amount
results in a lower cost to operate.

Vertica pursues a secure by default model, using IAM authenti-
cation to avoid storing keys in the database, communicating with
S3 over HTTPS, and supporting for bucket encryption.

6 OPERATIONAL BEHAVIOR
Eon mode exhibits better operational behavior than Enterprise
mode, with improvements in most core components of database
operation.

6.1 Node Down and Recovery
Duplicating responsibility for each shard across multiple nodes
improves availability. When a node fails, other nodes can immedi-
ately serve any segments it was responsible for without needing
a repair operation. The subscription assignment mechanism en-
sures that each shard has at least two subscribers, an analog of
Enterprise’s K-safety mechanism. Unlike Enterprise which relies
on a "buddy projection" mechanism, the global query plan does
not change when a node is down, merely a different node serves
the underlying data. See Section 8 for performance results that
demonstrate improved node down performance.

When a node rejoins the cluster, it must re-subscribe to the shards
it previously was subscribed to. Re-subscription is less resource
intensive than subscription: the node can fetch incremental shard
metadata and warming a lukewarm cache requires transferring
fewer files. Failure to resubscribe is a critical failure that probably
indicates some issue with the host; the node goes down to ensure
visibility to the administrator. When re-subscription is complete,
the node is once again a full participant in query processing and
client activity. By contrast, Enterprise requires that each table and
projection be repaired with an operation that involves table locks
on every table in the database. Since the storage layout is not iden-
tical between Enterprise node serving as replicas, the data must
be logically transferred. In Eon mode, nodes perform a byte-based
file copy to warm up the cache of the resubscribing node, instead
of an executed query plan in Enterprise. Worst case recovery per-
formance is proportional to the size of the cache in Eon, whereas
Enterprise recovery is proportional to the entire data-set stored on
an Enterprise node.

6.2 Compaction with the Tuple Mover
Vertica Eon mode uses the tuple mover from Enterprise mode with
some modifications. It does not run moveout operation as write-
optimized-storage (WOS) is disabled in this mode. However, the
mergeout operation is still required to maintain performance as the
number of ROS containers grows over time. In Enterprise mode,
each node runs mergeout independently and replicated data will be
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redundantly merged by multiple nodes. In Eon mode, a subscriber is
deemed themergeout coordinator for a shard and selects the content
of mergeout jobs. A single coordinator is selected to ensure that
conflicting mergeout jobs are not executed concurrently. Should
the mergeout coordinator for a shard fail, the cluster runs a transac-
tion to select a new coordinator, taking care to keep the workload
balanced. The mergeout coordinator can run the mergeout jobs
itself, with the job commit informing the other subscribers of the
result of the mergeout operation. Alternatively, the coordinator can
farm out the jobs to the other subscribers, effectively scaling the
mergeout bandwidth with cluster size. The coordinators can also
be assigned to specific subcluster, allowing compaction work to be
isolated from other workload.

6.3 Schema Evolution
Adding columns to a table in Vertica is a complex operation that
is exasperated in Eon mode. Table metadata changes are typically
single shot transactions that take a heavyweight metadata lock for
consistency and compensate by completing quickly. Add column
breaks this mold because it needs to spend time to create lots of
data files to fill in the column values for all the pre-existing ROS
containers. In Enterprise mode, add column created the files and
incomplete storage metadata upfront, prior to modifying the table.
Then the operation took the metadata lock, modified the table, and
attached the storage metadata to the table during commit. In Eon
mode, storage metadata changes cannot occur during commit, thus
necessitating a design change.

Eon mode uses optimistic concurrency control [10] to specu-
latively modify the table metadata upfront. The subsequent file
generation operation can generate complete storage metadata at-
tached to the table because the new column already exists. During
commit, each object in the transaction’s writeset is validated to
ensure no concurrent modifications have occurred. Only the final
validation step happens while holding the metadata lock, resulting
in minimal lock hold times and improved concurrency. Eon’s new
add column operation has been backported to Enterprise mode due
to its superior qualities.

6.4 Elasticity
The node-to-segment mapping can be rapidly adjusted because
all of the data is stored in the shared storage, not directly on the
nodes themselves. Nodes can easily be added to the system by
adjusting the mapping to allocate a subset of the segments to the
new node, potentially removing responsibility for such from some
pre-existing nodes. Queries can immediately use the new nodes as
no expensive redistribution mechanism over all records is required.
Filling a cold cache takes work proportional to the active working
set, not the entire dataset that could conceivably be served by the
node. Removing a node is as simple as ensuring any shard served
by the node be removed is also served by another node.

6.5 Deleting Files
Since files are never modified, the key decision is when to delete
a file. The goal is to never delete a file that is still in use but to
eventually delete all files that are no longer needed. In Enterprise
mode, Vertica maintains a reference count of every file, considering

the file for deletion when the count hits zero. The counter tracks
both catalog references such as storage containers in a table as
well as query references from running queries. In Enterprise mode,
each file is owned by a single node, so each node is responsible
for deleting its own files. In Eon mode, files are not owned by a
specific node and hence local reference counting is insufficient.
An accurate cluster-wide reference counter would be expensive
to maintain due to large numbers of files and frequency of churn.
Since shared storage is typically cheap, Eon mode can afford less
expensive algorithms that are less efficient at reclamation. Eon
mode employs an augmented reference counting mechanism for
online cleanup and a global enumeration mechanism as a fallback.
A node may only delete a file when it is subscribed to the shard
containing the storage and a quorum of nodes are present.

When the reference count hits zero, an Eon mode database might
need to retain the file for two reasons. The first reason is that the
query reference count of the file might be non-zero on another
node in the cluster, since not all queries run on all nodes. The
file can be removed from the node’s cache immediately when the
local reference count hits zero. Rather than maintain a global query
reference count, each node gossips the minimum catalog version
of its running queries, taking care to ensure the reported value
is monotonically increasing. When the cluster’s minimum query
version exceeds the version at which the catalog reference count
hit zero, the node knows that no query on the cluster references
the file and it may be safely deleted. Alternatively, a constant time
delay on file delete is a simple mechanism that prevents issues if
queries run in less time than the delay.

The second reason a file may need to be preserved past zero ref-
erence count is that the catalog transaction containing the storage
drop may not have been persisted to shared storage yet. Recall that
transaction commit writes to local disk with subsequent asynchro-
nous upload to shared storage, so a loss of all the node local disk
can undo a transaction. Files can be deleted when the truncation
version passes the drop version.

A file on shared storage can be leaked if the node responsible
for handling it crashes mid-operation. For example, a file can be
leaked if a node crashes after creating the file but before any other
node is informed of the file’s existence. Other scenarios involve
moving subscriptions between nodes with concurrent node crashes.
To clean up leaked files, the nodes aggregate a complete list of
referenced files from all node reference counters, compare with a
list of existing files on the shared storage, and delete any unknown
files. To handle concurrently created files, the operation ignores
storage with a storage id (SID) containing any currently running
node instance id. While expensive, the operation is not common,
as it is manually run when nodes crash.

7 IMPLEMENTATION
Eon mode will ship in a Vertica release in the near future and
has been in public beta since Vertica 9.0 released in October 2017.
Numerous customers have tried the beta and have seen performance
and scalability that led them to try to put it in production prior
to the actual release. The infrastructure cost benefits of separated
storage and compute are significant, making it much more cost
effective to load massive amounts of data into Vertica.
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Implementing Eon mode required rewriting several core com-
ponents of a mature database while meeting the performance and
stability standards associated with the Vertica brand. While many
elements of Vertica’s original design align well with Eon, the pro-
cess was not without its challenges. Prototyping, phased design,
and a robust stress testing framework were all key to a successful
implementation.

8 PERFORMANCE EVALUATION
The promise of Eon mode is to provide solid base-line performance,
scale performance as nodes are added and removed, and demon-
strate good operational behavior. For Vertica Enterprise users, good
base-line performance means performing as well as Enterprise de-
spite running in a shared storage environment. We ran the TPC-H
queries queries against Enterprise and Eon and the results are in
Figure 10. The experiment was run in AWS on 4 c3.2xlarge instances
on TPC-H data loaded at scale factor 200. Enterprise runs in AWS
on Elastic Block Storage (EBS) to ensure that node data persists over
instance loss. Eon runs with the cache on instance storage because
loss of cache data does not result in lack of durability. Eon mode
matches or outperforms Enterprise on most queries. In-cache per-
formance is a reasonable comparison because many deployments
will be sized to fit the working set into the cache on the nodes.
Against non-cached data, performance is significantly impacted,
but response times are still reasonable.

Eon’s Elastic Throughput Scaling optimization provides addi-
tional throughput for short queries when the cluster scales out
as shown in Figure 11a. The experiment was run on c3.2xlarge
instances against an in-cache data set stored on instance storage.
The query is a customer-supplied short query comprised of multi-
ple joins and aggregations that usually runs standalone in about
100 milliseconds. Growing the cluster from a 3 node to a 9 node
cluster while keeping the segment shard count at 3 shows a nearly
linear speedup. Enterprise only supports effectively a 9 node 9 seg-
ment shard cluster and exhibits performance degradation because
the additional compute resources are not worth the overhead of
assembling them.
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Eon demonstrates improved performance on many concurrent
small loads as shown in Figure 11b. In the experiment, each bulk
load or COPY statement loads 50MB of input data. Many tables
being loaded concurrently with a small batch size produces this type
of load; the scenario is typical of an internet of things workload.

A critical operational element is system performancewhen nodes
fail. The sharding mechanism of Eon results in a non-cliff perfor-
mance scale down when a node is killed as shown in Figure 12. The
query is a TPC-H query that typically runs in 6 seconds, containing
multiple aggregations and a group by. A 4 node 3 shard setup shows
smooth performance regression when one node is killed. As in the
earlier experiment, Enterprise only supports effectively shard count
equals node count behavior and thus suffers higher performance
degradation.
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Historically, elasticity on petabyte scale databaseswas approached
with trepidation. Elasticity in Eon mode is a function of cache size
since the majority of the time is spent moving data. A typical cus-
tomer deployment took less than 30 minutes to scale up the cluster
while concurrently running a full workload. Without cache fill, the
process takes minutes. Performance comparisons with Enterprise
are unfair as Enterprise must redistribute the entire data set.

9 RELATEDWORK
Existing data layout mechanisms usually fall into two camps: the
data-value-agnostic and the fixed layout. An agnostic mechanism
is one like round-robin: data records stored together on a node
have no relation to each other, and thus query processing requires
a shuffle for any join or collation operation. A fixed layout can
place related records on the same node to enable efficient query
processing, but is inelastic because adjusting the node set requires
expensive reshuffling of all the stored data.

Amazon RedShift [3] is a shared-nothing cloud database offered
as a service on AWS. Much like Enterprise Vertica, it relies on a
fixed layout and therefore node set adjustments requires expensive
data redistribution. In contrast, the Snowflake Data Warehouse [6]
resembles Eon Mode in that it too decouples storage from compute
and allows for storage scale up and down without data movement.
Snowflake’s Query Optimizer assigns input file sets to worker nodes
using consistent hashing over table file names. Future queries ac-
cessing the same table file will do this on the same worker node.
Vertica’s sharding model supports co-segmented tables, enabling
faster joins by avoiding unnecessary data shuffles.

Another highly scalable cloud system is HBase [13]. Its model
works by distributing tables when they become too large by per-
forming auto-sharding. HBase has regions andmaintains a mapping
between regions and nodes, which is kept in a system table called
META. Clients can go directly to the region server to retrieve the
value of their key. Similarly Mesa [9], which is a highly scalable
analytic data warehousing system that stores critical measurement

data related to Google’s Internet advertising business, shards its
data by table.

10 CONCLUSIONS
Eon mode provides great performance, enables Vertica’s separa-
tion of compute and storage, and supports cloud economics. When
running in-cache, Eon outperforms Enterprise mode, demonstrat-
ing support for Vertica’s existing workloads. Elastic throughput
scaling ensures that Vertica supports scale-out for operational dash-
board queries that provide significant value for many organizations.
Transparent access to non-cached datawith acceptable performance
makes a more massive data lake strategy practical. The operational
benefits of improved fault tolerance and elasticity ensure that orga-
nizations spend more time extracting value and less on database
administration.

With support for shared storage, the idea of two ormore databases
sharing the samemetadata and data files is practical and compelling.
Database sharing will provide strong fault and workload isolation,
align spending with business unit resource consumption, and de-
crease the organizational and monetary cost of exploratory data
science projects. Eon mode provides a solid substrate on which a
sharing solution can be built.

By leveraging the UDFS API, Eon mode can support additional
shared storage products such as Azure Blob storage [5], Google
Cloud storage [8], HDFS [14], Ceph [19], and so on. These storage
solutions are a mix of cloud and on-premises, enabling deployment
of Eon mode anywhere an organization requires. We look forward
to the journey.
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