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ABSTRACT
Much like on-premises systems, the natural choice for run-
ning database analytics workloads in the cloud is to provision
a cluster of nodes to run a database instance. However, an-
alytics workloads are often bursty or low volume, leaving
clusters idle much of the time, meaning customers pay for
compute resources even when unused. The ability of cloud
function services, such as AWS Lambda or Azure Functions,
to run small, fine granularity tasks make them appear to
be a natural choice for query processing in such settings.
But implementing an analytics system on cloud functions
comes with its own set of challenges. These include manag-
ing hundreds of tiny stateless resource-constrained workers,
handling stragglers, and shuffling data through opaque cloud
services. In this paper we present Starling, a query execution
engine built on cloud function services that employs number
of techniques to mitigate these challenges, providing inter-
active query latency at a lower total cost than provisioned
systems with low-to-moderate utilization. In particular, on a
1TB TPC-H dataset in cloud storage, Starling is less expen-
sive than the best provisioned systems for workloads when
queries arrive 1 minute apart or more. Starling also has lower
latency than competing systems reading from cloud object
stores and can scale to larger datasets.

1 INTRODUCTION
Modern organizations are increasingly turning to cloud pro-
viders to run their data services, including their database
analytics workloads, as witnessed by the proliferation of
cloud database analytics products, such as Amazon Redshift
and Microsoft Azure SQL Data Warehouse. These cloud sys-
tems avoid the up-front cost of on premises solutions, and
allow users to be significantly more elastic. However, these
systems still typically require users to provision a cluster of
compute nodes of a particular size to run queries. Unfortu-
nately, because many analytics workloads are unpredictable
and ad-hoc, provisioning is difficult, and often results in over-
provisioning, where resources are underutilized much of the
time. Although some cloud services provide “elastic” features

that allow compute nodes to be added or removed dynami-
cally, this scaling often takes minutes, making it impractical
on a per query basis. Further, many cloud database systems
require data to be explicitly loaded into proprietary formats.
For workloads that touch data a limited number of times,
such as one-off queries or ETL queries, loading data results
in an increase in query latency. Furthermore, cloud storage
tends to be an order of magnitude cheaper than other storage
services. As a result, several systems, including Presto [24]
and Athena [1], are purpose built for executing queries di-
rectly on cloud storage. Other systems like Redshift [7] have
special mechanisms for reading from cloud storage.
In contrast to current offerings, an ideal system would

avoid pre-provisioning servers to process or store their data,
charge users query-by-query, and be performance competi-
tive. It would also not require users to load data and let users
tune to their cost and performance needs on a query-by-
query basis. Although achieving all of these goals perfectly
and simultaneously is not possible, so called “serverless”
cloud function services, like AWS Lambda [13] and Azure
Functions [14], offer a tantalizing promise that suggests they
may be able to get close. In particular, these services allow
arbitrary numbers of small tasks to be invoked with very
low startup times (typically a few milliseconds) and offer vir-
tually unlimited parallelism. In addition, users are charged
only for the execution time used, typically at the granularity
of 1 second or less. Using such tasks, one could invoke many
small parallel jobs to scan, join, and aggregate tables in raw
cloud storage using well known techniques from parallel
databases to implement a SQL query processing system.
However, using function services to support ad-hoc an-

alytical workloads comes with its own set of hurdles. First,
workers or functions have limited memory, execution time
limits, and networking restrictions that prevent sending data
directly from one instance to another. In addition, instances
are typically stateless, which is at odds with stateful ana-
lytical queries that need to shuffle or aggregate data. Thus,
in order to support shuffles, function services require other
methods of moving data between instances. Finally, latency
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of individual worker can be unpredictable, leading to strag-
glers taking much longer to run than other workers on data
of similar scale; this is particularly true when workers use
proprietary, closed-source, and otherwise opaque cloud stor-
age services to exchange state, as these services often yield
variable and unpredictable latencies.

To explore the promise of function services for database
analytics, we built Starling, a query execution engine that
runs on serverless platforms. Starling leverages the bene-
fits of cloud services while mitigating the above challenges.
To achieve high resource utilization, Starling maps tasks to
function invocations so users pay for only the compute re-
sources their query actually uses. The number of invocations
can grow and shrink as needed during each query execu-
tion. Starling takes advantage of the on-demand elasticity
of cloud object storage services, such as Amazon S3[9] to
shuffle data. It materializes intermediate results in a format
optimized to reduce cost in the pay-by-request model of
these services while achieving high aggregate throughput.
To mitigate stragglers, Starling uses a tuned model to detect
straggling requests and takes steps to mitigate their impact
on query latency. Finally, Starling provides opportunities to
optimize queries for cost or latency by adjusting the number
of invocations at each stage. The ability to tune queries to
cost or performance is a desirable feature for users who run
ad-hoc workloads.

With these optimizations, Starling achieves query latency
comparable to provisioned systems while decreasing cost for
workloads with moderate query volume.

We begin by exploring the properties of available tools for
analytical workloads, and show that Starling fits a point in
the design space that has so far remained unaddressed.

2 MOTIVATION AND DESIGN
Starling seeks to provide a balance of performance, flexibility,
and low cost-per-query that current systems do not provide
for some important classes of workload. Below we describe
the current landscape of systems and describe the promise
and challenges of cloud functions for query processing. We
follow with a brief description of the architecture of Starling,
and conclude by discussing why we chose Amazon AWS to
for our Starling implementation.

2.1 Landscape of Cloud Analytic Databases
The proliferation of cloud analytic databases has led to a rich
ecosystem of offerings with varying features and pricing
models. Table 1 shows an overview of the design space. The
rows in the table correspond to some of the most popular
analytic databases. The columns are as follows:

• Does not require loading Some systems need to load
data from its original format, e.g. CSV, ORC, Parquet, etc.,

System Does not Pay by Tunable
require loading query performance

Amazon Athena ✓ ✓ ✗

Snowflake ✗ ✓* ✓

Presto ✓ ✗ ✓

Amazon Redshift ✗ ✗ ✓

Redshift Spectrum ✓ ✗ ✓

Google BigQuery ✓ ✓ ✗

Azure SQL DW ✓ ✗ ✓

Starling ✓ ✓ ✓

Table 1: Comparison of cloud analytics databases

to an internal format that permits executing queries with
high performance. This loading step is a barrier to users
who want to run ad-hoc queries on raw files in cheap cloud
object storage. With the rise of enterprise data lakes, having
analytic data stored in raw formats in inexpensive cloud
object stores is increasingly the norm. While many systems
have methods of reading data from external sources like
cloud storage, this is typically a tacked-on option that results
in significant performance degradation compared to data
stored on local disks in native formats.

• Pay per Query Provisioned systems start a cluster that
sits in the cloud waiting for queries to process. Whether
the system is idle or not, the cloud vendor charges for the
underlying virtual machines (plus some fixed cost for the
data analytics service). An alternative, in a pay-per-query
model, users are only charged based on the queries they
run. Such a model can be dramatically cheaper if queries are
issued sporadically or unpredictably. We evaluate specifically
when pay-per-query is more cost-efficient than Starling in
our experiments. While Snowflake does not have a pay-per-
query model per se (hence the asterisk in the table), it allows
users to automatically shut down clusters during periods of
inactivity, and resume processing when new queries arrive,
saving users money when query volumes are low.

• Tunable Performance In cloud settings, both the re-
sponse time and cost of executing a query depends on the
amount of resources that are provisioned. When systems
permit scaling resources to tune performance and cost in
response to data volumes, then we say these systems are
elastic. When systems are inelastic or do not allow tuning,
queries may fail to execute or take longer than users re-
quire. The range of elasticity varies between systems varies.
While Redshift configurations may take minutes to add new
nodes, Snowflake allows users to start “virtual warehouses”
of varying size with latency of a few seconds.
Starling is a system for analytic users who run a low to

moderate query volumes on data in cloud object storage. It
i) does not require loading; ii) charges only for the queries
that are executed; and iii) permits users to trade off cost and
performance, and adjust parallelism on a per-query basis.
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Figure 1: Query Execution in Starling. Opaque cloud components in blue, Starling components in yellow
None of the existing cloud systems offer all three options,

as shown in Table 1. Cloud functions are the building block
that allows us to achieve these objectives.

2.2 Cloud Functions
Cloud functions services, also known as Functions as a Ser-
vice (FaaS) allow users to run applications without managing
or provisioning servers. Users upload application code or
executables to the service. In response to events or direct
user invocation, the function service provisions an execu-
tion environment and runs the user-provided code. For our
purposes, the key advantage of cloud functions are i) they
can read directly from cloud storage, ii) they have a very low
startup time and are billed on a per-invocation basis and iii)
many of them can be invoked in parallel. These properties
translate directly to the desired features in Starling (no load-
ing, pay-per-query, and tunable parallelism/performance.)
Unfortunately, despite their high-level appeal, analytical

workloads are not a natural fit for cloud functions for several
reasons. First, an analytic query can run for hours, but cloud
function execution is limited to a few minutes. Moreover,
cloud functions execute in resource-constrained containers;
e.g., 1 core per function and at most 3 GB RAM is typical of
current implementations. Second, analytic queries require
shuffling data to compute joins, but cloud functions do not
allow communication between invocations to enforce isola-
tion and security policies. Although these limitations have
been identified as show-stoppers before [20], in this paper
we develop mechanisms to work around these shortcom-
ings and deliver a performance and price-competitive data
analytics system built on cloud functions.

2.3 Starling Architecture
Starling is a query execution engine. Users submit planned
queries to the system and receive back query results. Fig-
ure 1 shows Starling’s architecture. As seen in the figure,
users submit queries to a small Coordinator that compiles
the query and uploads it to a cloud function service. The co-
ordinator then schedules the tasks by invokes them through
the function service. The function service is responsible for

provisioning execution environments for Workers that per-
form the task of query execution. Workers read base table
data from inexpensive cloud object storage services. Because
functions are stateless they exchange state through a com-
munication medium, e.g., shared storage. When all tasks
complete the worker reads the result from the function com-
munication medium and returns it to the user.
Starling’s design requires a few properties of underlying

cloud services. First, Starling needs to launch hundreds of
function invocations at once and in parallel from cold start.
Second, Starling relies on relatively inexpensive and high
throughput methods of exchanging data between tasks, such
as object storage services. Its performance depends on in-
dividual parallel workers being able to each achieve high
throughput despite other workers executing concurrently.

Next, we describe the division of work between the Coor-
dinator and Workers in more detail.
Coordinator. The coordinator compiles queries, uploads
the executable to the cloud function services, and manages
the execution of the query. It can run on a small virtual ma-
chine. Starling has no query optimizer, so the coordinator
takes planned queries as input, and compiles the query into
an executable that can execute any task of the query plan.
We describe this process in Section 4. It uploads the exe-
cutable to the function services, packaged with necessary
supporting files. Starling then schedules tasks to execute the
query end-to-end, assigning tasks to workers and monitor-
ing their completion. Decomposing queries into tasks, and
determining which tasks to run when is the job of Starling’s
scheduler.
Workers. Each worker runs a single cloud function invoca-
tion to execute part of a query. A worker is invoked with
parameters indicating the task to be executed. These pa-
rameters are the only communication from the coordinator
during the lifetime of the worker. Because function invo-
cations cannot communicate directly, they must use some
communication medium, such as shared storage, to exchange
data. The worker reads inputs from either base table storage
or the communication medium, processes them and writes
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its output to the communication medium. For operations
like parallel joins or aggregations that need to shuffle data,
workers that produce intermediate output write individual
partitions. Consuming workers read these partitions. A de-
tailed description of how Starling manages this data is given
in Section 3, while details of how workers execute queries
efficiently are given in Section 4. After the function writes
its outputs, the worker exits. The function service notifies
the coordinator that the worker has completed, and query
execution continues.

2.4 Choosing a Cloud Function Service
Google Cloud Functions [19], Azure Functions [14], and
AWS Lambda [13], each provides a function service. Star-
ling’s architecture can be implemented in any of these plat-
forms, however, certain platforms offer features that aremore
amenable to the kind of workloads Starling is designed to
support. In particular, Google Cloud Functions and Azure
functions have restrictions on the languages that can be used,
or the rate at which functions can be invoked, or both, that
will impact parallel query processing performance, while
AWS Lambda does not have such restrictions.

For these reasons we chose to build Starling on AWS
Lambda. This restricted us to usingAWS services to exchange
intermediate data. In the next section we discuss why we
chose S3 [9], AWS’s cloud object storage offering, for both
base table storage and as the communication medium.

3 MANAGING DATA IN STARLING
Storage is an important component of any data management
system. Starling provides interactive query performance on
raw data stored in cloud object storage. Starling does not
manage base table data, but must interact with it efficiently,
as we describe below in Section 3.1. Because cloud functions
are stateless, Starling must also manage intermediate state
during query execution; we describe this process in detail in
Section 3.2.

3.1 Base Table Storage
Starling executes queries over data sitting in S3. Starling’s
design is agnostic to base table formats, but common choices
are CSV, ORC, and Parquet. Starling requires only that rows
of a specified schema can be parsed from the source objects
in S3; however, for the best performance base table data
should be stored as objects of a few hundred MB.

Open source columnar formats like ORC [12] help Starling
to achieve good performance as they allow reading a subset
of columns rather than the whole row. This helps workers in
Starling save time by skipping columns that are not needed.
ORC also includes indexes and basic statistics that allow
users to skip portions of the input increasing performance.

D
ictionary

Encodings

Partition 0 O
ffset

Partition 1 O
ffset

Partition 2 O
ffset

...
Partition n O

ffset

Partition 0 D
ata

Partition 1 D
ata

Partition 2 D
ata

...

Partition n D
ata

Figure 2: Starling Partitioned S3 Object Format. Meta-
data in orange, partitioned data in green
Therefore, in our evaluation in Section 6 we use raw data
stored in ORC.

3.2 Managing Intermediate State
As cloud functions are stateless and have no method of com-
municating directly, Starling relies on AWS services to shuffle
data. A medium for exchanging data between function invo-
cations should have low cost, high throughput, low latency,
and scale transparently. We considered several options for
exchanging intermediate state before choosing Amazon’s
cloud object storage service, S3. Using virtual machines or a
streaming system like Amazon Kinesis [6] both require users
to provision capacity ahead of time and thus are not a suitable
choice. We also considered using Queue services like Ama-
zon SQS [10], but these limit message sizes (to 256KB in the
cases of SQS) and, in the case of SQS require encoding data as
text, making it cumbersome and computationally costly for
large shuffles. NoSQL services like DynamoDB [3] have very
low latency but unacceptably high cost for large shuffles.
While S3 has relatively high latency compared to some of
these alternatives, this can be mitigated as we describe in
Section 3.3. We describe the most important properties of S3
for Starling below.

S3 Properties: S3 [9] is an AWS’s object storage service.
Users write binary objects of arbitrary size to the service
into “buckets” with a named “key”. S3 is a write-once system,
meaning that no appends or updates to objects are allowed,
only replacement. Users can scale read and write throughput
by ensuring keys are spread across “prefixes”, defined as the
first few characters in the key [15]. Users interact with the
service through a REST interface. Reads from S3 can fetch
the entire object or a range of bytes. S3 charges users by
the amount of data stored at a rate $0.23 per GB per month,
and a cost of $0.0004 per thousand GET requests of any
size, and $0.005 per thousand PUTs (prices as of July 2019).
Unlike standard file systems, S3 does not guarantee read-
after-write consistency, which, in some cases complicates
query processing as we describe in Section 3.3.1. S3 provides
atomic reads and writes, ensuring that readers never see data
from two separate writes in the same read.

Sharing intermediates: Starling uses S3 to pass interme-
diate data between function invocations. Workers write their
outputs as a single object in S3 with a predetermined key. Be-
cause the object is written at a known location, readers can
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Figure 3: Effective throughput of a single function in-
vocation with increasing parallel 256KB reads
poll the object key until the object appears. For query pro-
cessing, S3 has the additional advantage of being persistent,
meaning workers can begin sending data before destina-
tion workers have started executing. This saves a significant
amount of execution time in AWS Lambda.

Using S3, one to many communication is both inexpensive
and straightforward. Producer tasks write an object to S3,
making it visible to all readers that need it. All-to-all com-
munication, as in a shuffle, is more difficult to achieve at low
cost. As recent work has demonstrated, writing an object per
partition for large shuffle incurs unacceptably high cost [25].
Starling ameliorates this problem by writing a single parti-
tioned file to S3 and having consumer tasks read only the
relevant portion of each object output by the producers. We
describe this process in more detail in Section 4.2.
Producer tasks in Starling each write a single object to

S3 containing all partitions, to avoid excessive write costs.
Figure 2 shows the format of these partitioned files. Each
file contains metadata containing the end location of each
partition in the object. To decrease the latency of reading and
writing objects to S3, Starling encodes low cardinality string
columns using dictionary encoding [28]. The dictionary en-
coding is included at the beginning of the file. Metadata is
followed by the partitioned data. Optionally, partitions may
be compressed with general-purpose compression.
To read the intermediate file, consumers make one read

to fetch metadata at the head of the object, then make a
subsequent read to fetch the needed partition. This allows
consumers to read any partition with two reads. In addition,
this format also allows consumers to easily fetch adjacent
partition data with the same number of GET requests as a
single partition. We use this to support multi-stage shuffles
as discussed in Section 4.2

3.3 Mitigating High Storage Latency
While S3 has very high aggregate throughput, it has much
higher latency than other shuffling options. A 256KB read has
median latency of 14ms. If workers perform single-threaded
blocking reads to the S3, they may sit idle while waiting for
responses, increasing query latency and thus increasing in-
vocation runtime costs. In order to mitigate this latency each

task performs several reads in parallel from S3. Fortunately,
most tasks in Starling must perform many reads, making this
trivial to parallelize. Columnar formats like ORC are broken
into column segments, and in joins, tasks must make many
reads to fetch partition data from objects written by input
tasks. Parallelizing reads helps keep tasks busy, spending less
time idle and more time on query processing. Figure 3 shows
the total throughput of a function invocation reading many
256KB reads. As we increase the number of parallel reads
that the invocation performs, we achieve higher effective
throughput until 16 parallel reads, after which adding more
parallel reads does not improve latency.

3.3.1 Mitigating Object Visibility Latency. As noted above
S3 does not guarantee read-after-write consistency in some
cases. As a result, an object recently written to S3 may not
become visible to tasks in a subsequent stage for several sec-
onds or more. Although this is infrequent, because a shuffle
is an all-to-all communication, any delay in object visibility
slows down all reading workers and can have detrimental
impact on query latency. Furthermore, tasks reading the
object continue to incur delays waiting for it to become read-
able. Starling mitigates this risk by writing the same object
to two different keys in S3. We call this optimization “dou-
blewrite”. Consumers attempt to read the first key, and if it is
not available, try the second one. This strategy makes query
performance more predictable by reducing the risk that a
single visibility issue slows down all consumers.

4 QUERY EXECUTION
The goal of Starling’s query execution engine is to achieve
interactive performance at low cost. To run queries on AWS
Lambda, Starling’s coordinator uses a single JSON file de-
scribing a physical query plan as input. The plan contains
dependencies between stages, as well as the number of tasks
within each stage. The coordinator monitors task comple-
tion and starts new stages once dependencies are completed.
More details follow in Sections 4.3 and 4.4. The coordinator
generates C++ source code for the query, and compiles it
into a single executable that is then packaged with necessary
dependencies, compressed in an archive and uploaded to
AWS Lambda. Each task’s input and output object names are
determined before each stage begins execution. Each task
executes as much of the query as possible without communi-
cating with other workers. For instance, Starling’s workers
may perform multiple joins if tables are partitioned on the
same key. The coordinator then invokes query tasks until
query completion. Below we describe how relational opera-
tors are implemented, how shuffles are performed, and how
tasks are scheduled to balance performance and cost.



Matthew Perron, Raul Castro Fernandez, David DeWitt, and Samuel Madden

Producers

Partitioned
Objects

 λ 

Consumers

12

 λ 

12 12 12 12 12 12 123

 λ 

3 3 3 3 3 3 34

 λ 

4 4 4 4 4 4 4

 λ 

 λ  λ  λ  λ  λ  λ  λ 

(a) Standard Shuffle

Producers

Partitioned
Objects

 λ 

Combiners

1

Combined
Objects

 λ 

Consumers

2 12 12 12 12 12 12 123 3 3 3 3

 λ 

3 3 34 4 4 4 4 4 4 4

 λ  λ 

1 2

 λ 

1 2

 λ 

3 4

 λ 

3 4

 λ 

 λ  λ  λ  λ  λ  λ  λ 

(b) Multistage Shuffle

Figure 4: Starling shuffling strategies, function execu-
tions in blue, S3 Objects in shades of red showing par-
titions. Lines are reads and arrows are writes
4.1 Relational Operator Implementation
After reading data from S3, workers in Starling execute
using data-centric operations, where operators are imple-
mented as a series of nested loops, rather than a pull-based
approach. Query compilation allows for type specialization
and achieves very good performance for analytics use cases
systems [22]. Essentially each task contains a set of nested
loops each performing necessary relational operations. This
pipelining of operations within workers contributes to Star-
ling’s low query latency. The tasks write the materialized
output of its operations as a single object to S3.
Below we describe how relational operators are imple-

mented in Starling.
Base Table Scans. While Starling does not manage base
table data directly, it still must be able to scan data from base
tables quickly. It does this by reading portions of input files
in parallel. If there is a projection, Starling reads only the
necessary columns from the base table, if possible given the
file format (e.g., in ORC or Parquet).
Joins. Starling supports both broadcast joins and partitioned
hash joins. In the case of broadcast joins, each input task for
the inner relation writes a single object to S3. On the outer
relation, tasks read all data from inner relation and their own
subset of the outer relation to perform the join.

Partitioned hash joins require a shuffle. Tasks scan both
relations and partition their data on the join key and write
partitioned files as described in Section 3.2. If possible, this
partitioning is pipelined in a single task with other opera-
tions. Afterwards, a set of join tasks is started to perform the
join. These join tasks create a hash table for their partition
of one relation and then scan the other relation, probing into
the hash table. As shuffling efficiently is critical for perform-
ing partitioned joins, we describe in detail how shuffles are
performed in Section 4.2.
Aggregation. Starling performs aggregation in two steps.
Tasks that perform the final operation before aggregation
each generate a set of partial aggregates and output an object
to S3. To complete the query, a final task reduces these partial
aggregates into a final aggregate. When necessary, Starling
first performs a shuffle, partitioning on the group by key
before generating partial aggregates.

4.2 Shuffling
As we describe in Section 3.2, Starling uses a partitioned
intermediate format allowing tasks performing a shuffle to
only read relevant partitions from input files. In a standard
shuffle, each consumer must read from every output, an all-
to-all communication. Since the workers in Starling are small,
this results in each task reading a large number of small ob-
jects from the storage service. In addition to impacting query
latency, having so many reads may incur an unacceptably
high cost since object storage services charge by request. For
example, with 512 producer tasks and 128 consumer tasks,
the S3 cost for this shuffle is only 5.7 cents at current S3
pricing, but for a larger shuffle of 5120 producers and 1280
consumers, the cost increases to more than $5.
To address this issue, we implement two strategies for

partitioned hash joins. First, for small joins we implement a
standard shuffle as described above where every consumer
reads output from every producer task. A diagram of this
strategy is shown in Figure 4a. The number of reads is 2sr
where s is the number of producer tasks and r is the number
of consumer tasks.
Since request costs become unacceptably high for joins

with many input tasks, we trade off compute time for object
storage request costs by implementing a multi-stage shuf-
fle. We introduce a stage of combining tasks between the
producers and consumers. Each task in the combining stage
reads a contiguous subset of partitions from a subset of input
objects and produces a single combined output, with the
same partitioned file format. Because these combining tasks
read contiguous partitions they still perform only two reads
per input. Finally, the consumer tasks read outputs written
by relevant combiners. Because each combining task reads
a subset of partitions, read outputs need only read a subset
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of the outputs of these combining tasks. A diagram of this
approach is shown in Figure 4b. The number of S3 reads in
a multistage shuffle is 2(s/p + r/f ) where p is the fraction
of partitions each combiner reads and f is the fraction of
files each combiner reads. The number of combining tasks is
1/(p f ). Figure 4b shows a multi stage shuffle with p = 1/2
and f = 1/2, where each combining task reads half of the
partitions from half of the input files. With 5120 and 1280
consumer tasks and p = 1/20 and f = 1/64, the S3 read
cost is just $0.073 compared to more than $5 with a stan-
dard shuffle. The additional write cost of these combiners is
negligible. Each of the 1280 combiners makes two additional
writes, costing an additional $0.00128.

In a multistage shuffle, we can create any number of com-
bining tasks, but we typically choose the same number of
combining tasks as receiving tasks.

4.3 Assigning Tasks to Workers
The primary way that cost and performance is managed
in Starling is by controlling the number of tasks per stage.
Typically having more tasks per stage results in lower la-
tency but higher cost because of the overhead of exchanging
intermediate state between workers. However, this is a deli-
cate balancing act. With too many workers these overheads
may overwhelm any potential performance gains. But with
too few tasks, resource constrained workers may run out of
memory. The space in between these two extremes allows
users of Starling to trade off cost and performance by tuning
the number of workers per stage.
For large queries, we sometimes need to execute more

tasks than the maximum available parallel function invoca-
tions, as Amazon imposes a limit on the total tasks that can
be executed at once. In July 2019 the limit on parallel AWS
Lambda function invocations is 1,000. This can be increased
by contacting Amazon. For our experiment we set maximum
number of parallel invocations to 5,000. The coordinator sets
a maximum limit on the number of parallel tasks per stage,
Once the limit is reached, Starling waits for a task to finish
before scheduling a new task, until all stages are complete.
Because Starling does not currently have a query opti-

mizer, we expose user-configured parameters necessary to
tune for cost and performance, including the shuffling strat-
egy and the number of tasks per stage.

4.4 Pipelining
Instead of waiting for all tasks in a stage to be complete be-
fore starting consuming stages, a strategy for decreasing the
latency of queries is to start consuming stages when a large
fraction of producer inputs are available. This allows work-
ers to start reading the available inputs and decreases overall
query latency, by mitigating the impact of some stragglers.

Figure 5: Completion time CDF for 256KB Reads to S3
from AWS Lambda. Comparing read straggler mitiga-
tion on and off
However, this comes with additional risks and costs. If a task
in the producer stage straggles during a standard shuffle, it
causes all reading tasks to sit idle, significantly increasing
the cost of executing this stage. Thus, turning on pipelining
typically results in lower query latencies, but comes with
additional cost. Users who desire the least expensive query
execution possible should disable pipelining. One way to
reducing this cost is by eliminating as many stragglers as
possible mitigation techniques.

5 STRAGGLERS
Starling relies on S3 for both reading base table data as well
as for exchanging intermediate state between function invo-
cations. As stages must wait for their inputs to be available
before doing the computational work of query processing,
stragglers in any of these requests can have significant im-
pact on query latency. Unfortunately, S3 requests often suffer
from poor tail latency, with a small fraction of reads and
writes taking much longer to complete. Thus, straggler miti-
gation is critical in making Starling performance competitive
with provisioned systems. One of the chief challenges of miti-
gating stragglers is that these services are outside the control
of Starling, are closed source, and have opaque operation.
Therefore, we base our optimizations on the power of two
choices. [23], a well known theoretical framework for using
randomization and duplicate tasks to improve performance
in unpredictable distributed systems, which systems like
MapReduce and Spark also employ to good effect.

5.1 Read Straggler Mitigation
A single query in Starling may perform hundreds of thou-
sands of S3 GET requests. Some of these requests experience
significant delays, as we show in Figure 5. We mitigate these
stragglers by observing how long a request takes compared to
its expected completion time. Workers detect when a request
is taking longer than expected, and open a new connection to
S3 and retry the request.Workers use a simple model to deter-
mine when queries should arrive based on observed latency
and throughput of S3 requests as well as the throughput
of AWS Lambda Invocations. Starling’s model for expected
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query response time is given by: r = l + (b/tc), where r is the
expected response time, b is the number of bytes requested,
and c is the number of concurrent readers. The tunable pa-
rameters of the model l and t , correspond to latency and
throughput of AWS Lambda invocations reading from S3.
We measure these as 15ms and 150MBps respectively.

If S3 fails to respond to a request within a fixed factor of
the expected time, Starling sends a duplicate request, accepts
whichever response returns first, and closes the other con-
nection. While we do not have insight into the design of S3
and thus cannot determine the source of these stragglers,
we find that this strategy mitigates most read stragglers and
significantly improves query latency.

To show this, we evaluate Starling’s read mitigation strat-
egy using a microbenchmark, performing thousands of reads
to S3 from Lambda. In Figure 5 we show a CDF of the request
time for a set of 256KB reads with and without read straggler
mitigation (RSM) enabled. While the straggler mitigation
mechanism is not perfect and sometimes request takes as
long as 2.5 seconds, the long tail of requests seen without
this mitigation is cut short, helping queries to run faster. At
the 99.99th percentile, latency is more than a second without
RSM and .25 seconds with RSM.
Although duplicate requests result in an additional ex-

pense, this pays off in saved function invocation time. An
additional read request needs to save just 8 milliseconds of
invocation time to pay for itself. While the read straggler
mitigation mechanism is only triggered in 0.3% of cases (160
times for 52,000 reads), in this experiment the mitigation
saves nearly 95 seconds of compute time at an additional
read cost the equivalent of only 1.3 seconds, making read
straggler mitigation a cost saving measure in addition to a
latency reducing strategy.

5.2 Write Straggler Mitigation
While most queries perform several orders of magnitude
fewer writes to S3 than reads, usually two per function invo-
cation, write requests tend to be much larger, up to several
hundred MB. Median latency for these large write requests
may be several seconds. Write stragglers must be handled
differently. While read requests are small and their responses
are large, the inverse is true for writes. Furthermore, we ob-
served that most stragglers on write are not due to slow data
transmission rates to S3, but in the S3 service processing
requests and sending responses. That is, write requests are
sent to the S3 service quickly, but replies from S3 may be
delayed for unknown reasons. By using a strategy similar to
RSM, Starling may react slowly to cases where data is written
to S3 quickly but S3 is sluggish in its response. Therefore,
we use an additional model to predict response times for
writes once the request has completed sending. The expected

response time is the same as the RSM model but requires a
different set of parameters since the internal throughput of
the S3 service is much higher than the throughput from a
single function invocation. When either of these models for
response time indicate that a straggler has occurred a second
write request is started on a new connection.

We determine how well the write straggler mitigation
(WSM) mechanism works by running another microbench-
mark. Figure 6 shows the result of running many 100MB
writes to S3 and measuring the response time. We compare
the response times without write straggler mitigation, with
only a single timeout (the same as read straggler mitigation)
and with the full write straggler mitigation including a sec-
ond timeout set after the client finishes sending its request.
Without write straggler mitigation, the longest writes take
more than 20 seconds. While the single timeout, reduces
these worst performing reads to about 18 seconds, the full
write straggler mitigation brings the tail latency down to
about ten seconds. As writes are much less frequent than
reads in Starling, this long tail is encountered much less fre-
quently. At the 99th percentile writes take almost 9 seconds
without WSM, 5 seconds with only one timeout, and 3.8
seconds with full write straggler mitigation.

To pay for itself, each additional write would need to save
102 milliseconds of compute time. In this experiment, the
full write straggler mitigation is invoked in 31% of writes,
3138 of 10240 writes, costing the equivalent of 314 seconds
of compute, while saving the equivalent of 2100 seconds.
Since all writes have to complete for following stages to

read them, WSM is a critical part of Starling achieving low
latency while also saving compute time.

6 EVALUATION
In our evaluation we seek to answer the following questions
in corresponding sections:
• How does Starling’s operational cost compare to alterna-
tives as query workloads change? (Section 6.2)

• How performant is Starling compared to alternatives? (Sec-
tion 6.3)

• Howwell does Starling scale to larger datasets? (Section 6.4)
• Can Starling support concurrent queries? (Section 6.5)
• How does Starling compare to current cloud interactive
pay-by-query services? (Section 6.6)

• How well does Starling allow users to tune for cost and
performance? (Section 6.7)

• How important are Starling’s performance optimizations
for achieving low query latency? (Section 6.8)

6.1 Experimental Setup
We execute our experiments on a scale factor 1,000 (1TB)
TPC-H [16] dataset for most experiments, and scale factor
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Figure 6: Completion time CDF for 100MB Writes to
S3 from AWS Lambda. Comparing write straggler mit-
igation off, with single timeout only and fully on
10,000 (10TB) for the scaling experiment. Each uncompressed
table is broken into files of size at most 1GB, then encoded
using Apache ORC [12], a standard columnar format. The
ORC files use Snappy compression [27] to compress columns.
The resulting ORC files are uploaded to a single Amazon
S3 [9] bucket. The size before compression is about 1TB
and the size after conversion to ORC is 317GB. This dataset
has no skew. We compare to other systems on a subset of
TPC-H queries: all queries except 11, 21, and 22. We exclude
these queries as Starling is not feature complete, or because
a compared system could not execute it. We do not have
reason to suspect that the addition of these queries would
substantially change our results. For each configuration we
execute each query sequentially, and report the median la-
tency of three executions. We describe each of the systems
and configurations that we compare against below.
Amazon Redshift. Amazon Redshift [7] is a data ware-
house product sold by Amazon Web Services(AWS). Users
provision a cluster with a fixed number of nodes, though
nodes can be added later. Users must first pre-load data be-
fore it can be queried. Redshift offers two large node types:
A “dense compute” node type dc2.8xlarge with 32 threads,
244GB of DRAM and 2.56TB of SSD storage, and a “dense
storage” node type ds2.8xlarge with the same CPU and
memory, but with 16TB of HDD storage. Redshift also al-
lows users to read data from external tables in S3 with a
feature called Spectrum. Instead of performing reads directly
from the user’s cluster, Spectrum spawns short lived workers,
much like AWS Lambda invocations, to filter base table data
from S3 and send it to the cluster to complete the query.
Redshift allows users to divide tables among nodes on a

distribution key and sort on a key by defining these keys in
the schema. Doing so significantly decreases query latency
when tables are distributed on join keys and sorted, as nodes
can perform local merge joins without shuffling data.

We compare against four configurations of Redshift read-
ing from local data, and one reading from S3 using Spectrum.
With local data we have two clusters, one with “Dense com-
pute” nodes with local SSDs and one with “Dense Storage”

with 16TB of HDD storage each, abbreviated dc and ds re-
spectively. We also compare two different schemas, one with
distribution keys and sorting keys defined, and one without
where data is equally partitioned among nodes without re-
spect to their join key and sort order. The configurations
on the dense compute cluster with distribution keys we call
redshift-dc-dk and with a without distribution keys we
call redshift-dc-dd. Likewise the dense storage configu-
rations we call redshift-ds-dk and redshift-ds-dd for
distribution keys and default distribution, respectively.
In addition, we compare with a four node dc2.8xlarge

cluster using the Spectrum feature to read all base table from
S3. We call this configuration spectrum.
We report the cost of running Redshift’s nodes using on-

demand pricing [8] for all configurations and add S3 scans
costs for the Spectrum configuration.
Presto. Like Starling, Presto is a SQL execution engine de-
signed to execute on data on “in situ”, on raw storage, rather
than having users load data into specialized formats.We use a
cluster of r4.8xlarge nodes to execute queries query. Each
node has 32 threads and 244GB of DRAM. We used Amazon
EMR [5] 5.24.1 to set up Presto [24] 0.219. Since we could
have set this cluster up ourselves without using EMR we re-
port only the cost of running EC2 [4] virtual machines, and
not the additional cost of Amazon EMR. We enable spilling
to disk and query optimization. Before running queries, we
collect statistics on all tables to provide data for the query
optimizer.
We report performance and cost numbers on both a 5-

node cluster (4 workers and 1 master) and a 17-node cluster,
with 16 workers. We call these configurations presto-4 and
presto-16 respectively.
Amazon Athena. Amazon Athena [1] is a managed query
service based on Presto Version 0.172 [2]. Users define a
schema for data sitting in S3 buckets, then execute queries
against this data without provisioning hardware. Users ex-
ecute queries on Athena with a REST interface, when the
query completes, results are written to an S3 object. For
our results below, we report the run-time of each query as
measured by the Athena Service.

Users are charged for the number of bytes in S3 that their
query scans. Like Starling, Athena has near zero cost when
idle, with the exception of S3 costs for data storage. Unlike
Starling, however, Athena provides users with no control
over the degree of parallelism used in executing queries, and,
as we will show, occasionally is unable to allocate sufficient
resources to execute queries over large data files at all.
Starling.Unless otherwise noted, we configure Starling with
all performance optimizations enabled including doublewrite
(see Section 3.3.1) and pipelining (Section 4.4). Because Star-
ling does not have a query optimizer, we set the number of
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Figure 7: Daily cost of Starling and alternatives
tasks per stage manually as follows. First each input object
is assigned a task. We then choose the number of tasks for
join stages by sweeping over several options. We choose a
configuration that is neither the fastest nor least expensive,
but offers a good tradeoff of cost and performance. For the
scale factor 1,000 dataset we disable multi-stage shuffling,
but enable it for large joins in the scale factor 10,000 ex-
periment. Starling’s query plans use join orders generated
from the Redshift optimizer with the redshift-dc-dd con-
figuration, e.g. without partitioned data. Unless indicated,
configurations are fixed over experiments.

6.2 Cost of Operation
We conduct experiments to demonstrate that at moderate
query rates, Starling is less expensive than alternatives.

We consider the daily cost of running a provisioned cluster
with data stored locally compared to the cost of Starling as
we change the number of queries executed per hour. We use
the geometric mean of queries in the workload to determine
a typical query execution time. Figure 7a compares the daily
cost of running Starling to Redshift configurations with data
pre-loaded and stored locally. The length of the line indicates
the maximum number of queries that each system can exe-
cute back to back. Because the default distribution schema

has lower performance than with a distribution key, but has
the same daily cost, we leave it off the plot for simplicity.
Starling incurs very little cost when queries are not execut-
ing but cost increases as the number of queries increase.
redshift-dc-dk extends off right of the figure to 774, and
redshift-ds-dk extends to 330. All Redshift configurations
with data stored locally have fixed cost no matter how many
queries are executed, hence there is a point where running
Redshift becomes less expensive than running Starling, at
around 60 queries per hour on the 1TB dataset. Because
Redshift has loaded and indexed the data, its most efficient
configuration is able to run queries faster than Starling, as we
will show in Section 6.3. Note that in addition to potentially
incurring significantly higher operation costs, especially for
infrequent queries, this performance requires pre-loading
data and carefully tuning the database.

We next compare against systems that, like Starling, read
data directly from cloud object storage. Figure 7b compares
two Presto clusters of differing size, Redshift Spectrum, read-
ing from S3, and Starling. Each of these systems incurs more
cost as more queries are executed. In the case of Starling this
cost comes from reading base table and intermediate data
from S3, as well as AWS Lambda costs. At about 120 queries
per hour Starling’s cost increases beyond presto-16. How-
ever, as presto-16 is not as performant as Starling, with
more than 153 queries per hour Starling is the only system
able to keep up. No configuration reading base tables from
S3 can execute more than 189 queries per hour back-to-back.
While presto-4 is cost competitive with Starling at about 33
queries per hour, this is its maximum query throughput when
executing queries back-to-back. We discuss query latency in
more detail in the following section.
Cost per Query: Figure 10 compares systems on the cost-
per-query as query inter-arrival time changes. Starling has
a fixed cost-per-query as its only operational costs are the
small coordinator, $8 per day and S3 storage costs. Provi-
sioned systems cost-per-query increases rapidly as the time
in between queries increases.
In summary, Starling is the least expensive system of all

configurations when query volumes are moderate.

6.3 Query Latency
While low cost is a benefit, users with ad-hoc query work-
loads also want interactive performance. Figure 9 compares
the geometric mean of the latency of queries in the work-
load. Athena did not complete four of the queries, 2, 8, 9, and
15 reporting either a resource exhausted error, or because
Athena was missing some SQL functionality Therefore we
also include a separate plot of the geometric mean of the
subset of queries Athena completed. A full comparison of
Starling to Athena follows in Section 6.6. These four queries
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Figure 9: Geometric mean of latency on 1TB dataset
are slower than average and thus removing them decreases
the geometric mean for most systems. While Starling is just
over four times slower than redshift-dc-dk, it does not
have the advantage of pre-partitioned base tables nor sorted
data. When compared to a configuration without this ad-
vantage redshift-dc-dd on the same cluster without pre-
sorting or pre-partitioning, Starling’s latency is less than
50% slower than Redshift after loading data into its native
format. Starling does not preclude these optimizations. On
pre-partitioned data Starling achieves a speedup of nearly
2x on Q12 over unpartitioned base tables. Figure 8 contains
a query-by-query comparison. We leave off presto-4 as it
has significantly higher latency than presto-16. For queries
that do simple scans and aggregations like Q1 and Q6, Spec-
trum, which uses stateless workers like Starling for base table
scans, achieves very low latency, even compared to Redshift
configurations with local data. For queries with expensive
joins like Q9 Starling has latency similar to Redshift config-
urations with default distribution (configurations with dd).
This is likely because of extra cost of shuffling data when
base tables are not partitioned on the join key.

For users that require very low query latency and are cost
insensitive, a provisioned system with pre-loaded local data
and tuned schema is still the best choice. But for ad-hoc
analytics on data in cloud object storage, Starling has the
lowest query latency. Against systems with tables pre-loaded,
sorted, and stored locally, it has the lowest cost for query
inter arrival times more than 60 seconds, and against systems
with data stored in S3, Starling is less expensive for times
more than 30 seconds.
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Figure 10: Cost per query (geometricmean of executed
queries) on 1TB dataset as inter arrival times increase.
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Figure 11: Geometric mean of latency on 10TB dataset
6.4 Scalability
In this section we show that Starling scales better than pro-
visioned systems, even though it does not require expensive
reprovisioning step that is required to achieve good perfor-
mance in other systems. We generated a scale factor 10,000
TPC-H dataset(10 TB before compression) and executed a
twelve queries from our query set, chosen for their range in
the size of input data and the number of joins . To scale to
the 10TB dataset, Starling increases the number of workers
performing large joins, and uses multi-stage shuffles to miti-
gate large S3 read costs. We kept the configuration of other
systems the same. We summarize the results in Figure 11. In
this case, each provisioned system has query latency at least
2.7 times larger than Starling. Starling has the lowest latency
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Figure 12: Cost per query (geometricmean of executed
queries) on 10TB TPC-H dataset
of any compared system in 8 of 12 queries. The next fastest
configuration, redshift-ds-dk has lower latency than Star-
ling’s for 1 of the 12 queries. redshift-dc-dk, the best per-
forming config on the 1TB dataset, runs out of disk space
when loading the 10TB dataset because of the additional in-
dices it builds during the data loading stage. Thus, we could
not compare against redshift-dc-dk for this experiment.
Of course, adding more resources to the provisioned sys-
tems for this larger dataset could allow them to execute with
lower latency. This experiment demonstrates the challenges
of provisioning a system for an ad-hoc query workload with
arbitrary amounts of data. For workloads where the size of
data inputs varies widely or is unknown ahead of time, the
rapid elasticity of Starling gives it an advantage over provi-
sioned systems. While provisioned systems would have to
provision additional resources to handle more load, Starling
scales on a query-by-query basis and thus is able to be more
flexible to changes in input data size.
Figure 12 compares the cost per query (which is fixed

for Starling) as query inter arrival time changes. The figure
shows that Starling has the lowest cost per query at any
achievable query rate among all systems that read data di-
rectly from S3. Evenwhen comparing against Redshift, which
pre-loads data, Starling is less expensive when query inter
arrival times are 721 seconds apart or more, and achieves
much higher performance, partly because we did not scale
up our Redshift cluster when we scaled the data set.
To understand what the cost per query would be had

we scaled up Redshift, we assume that it would scale lin-
early with the number of nodes. Under such an assumption,
with a 16-node cluster, its per query latency would simi-
lar to Starling, however, the dollar cost would be 4x larger.
The dashed lines labeled redshift-dc-dd (predicted 16
nodes) and redshift-ds-dk (predicted 16 nodes) in
the figure show the estimated cost-per-query of this config-
uration. Because the 16-node configuration’s cost-per-query
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Figure 13: Starling Q12 Concurrency on TPC-H 1TB
is much higher, Starling is cheaper than Redshift ds-dk when
query interarrival times are 80 seconds or more.

Starling scales to larger datasets without requiring poten-
tially slow reconfiguration of provisioned systems.

6.5 Concurrency
Starling is best suited for workloads with low to moderate
query volumes. However, in cases where users need to run
a burst of queries at once, Starling can scale to multiple
concurrent queries. We show Starling’s ability to scale with
concurrent users by executing the same query, Q12, by mul-
tiple users. We see the results as we increase the number of
concurrent users in Figure 13. The maximum throughput is
limited for two reasons. First, cloud function services have
a limit on the number of concurrent function invocations.
As we approach this limit, throughput will level off. Second,
to support many concurrent queries the coordinator must
invoke more and more functions in parallel using HTTP
requests, straining resources on our low-cost coordinator.
As high concurrency is not the focus of this work, we leave
optimization of the coordinator as future work.

6.6 Pay-per-query Services
Fully managed query services, like Amazon Athena [1], come
closest to realizing the goals of Starling. Users simply submit
queries and charged on a query-by-query basis. Unfortu-
nately, Athena is not a panacea for ad-hoc query workloads.
Of the 12 queries on the 1TB dataset experiment Athena
could not complete two. As seen in Figure 9, for the queries
that were completed by Athena, query latency was more
than 50% longer than with Starling.

Despite these challenges, Athena has cost per query com-
petitive with Starling. Excluding the queries Athena was
unable to execute, Athena has slightly higher cost per query
than Starling at the highest query rates, $0.287 compared
to Starling’s $0.0256. Because Starling has a small cost for
the coordinator and Athena does not, Athena is cheaper at
query rates lower than one query every 350 seconds.

Athena does not scale to larger datasets. Figure 11 shows
that Athena only completed 5 out of 12 queries. On those
completed, query latency was 5 times higher than Starling’s.
Finally, Athena costs more than twice as much per query.
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Figure 14: Cost and latency flexibility for TPC-H Q12
For users who need interactive performance, the inability to
tune for performance in Athena makes it a nonstarter.

6.7 Tunable Performance
Starling allows users to tune queries in order to reduce cost
or increase performance. We demonstrate this feature using
TPC-H Query 12, a select-project-join-aggregate query on
the two largest tables in the dataset. Figure 14 shows that
Starling can increase performance for additional cost. Each
point represents the number of tasks used during the join
stage. The higher the number of tasks, the higher the perfor-
mance and cost. We connect the dots to offer a visual aid. As
we decrease the number of tasks, Starling is dominated by
the cost of execution time in AWS Lambda, but as we increase
the number of tasks, S3 read costs begin to dominate.

The cost of presto-16 and spectrum represents the cost-
per-query without idle time between queries. As we show in
Section 6.3, the cost per query increases with more idle time.
Even comparing with the strictest assumption of query

arrival times Starling is on the Pareto frontier for this query.
It is less expensive than spectrum and athena for the same
performance. And it can achieve higher performance than
other systems reading from S3.
Compared to provisioned systems, Starling is easier to

tune for cost and performance goals than other systems.

6.8 Performance Optimizations
Without Starling’s various performance optimizations, it can-
not achieve competitive latency with provisioned systems.
In Figure 15, we show Query 12’s latency and cost as we add
optimizations. For this query, we fix the number of join work-
ers to 128 and enable optimizations one-by-one as we move
right on the plot. Throughout the experiment, query cost
remains approximately constant. Query latency, however,
decreases as expected. Without optimizations query execu-
tion time has very high variance and takes about 80 seconds
on average. Parallel reads, described in Section 3.3, have a
big impact on performance, particularly in the join stage as
each worker makes hundreds of small reads. Adding RSM
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Figure 15: Starlingmean latency and cost onQ12 as op-
timizations are incrementally enabled. Error bars are
standard deviation of ten executions
and WSM, described in sections 5.1 and 5.2 respectively, de-
creases variance in query runtimes and brings latency on par
with presto-16 by decreasing variance in individual reads
and writes. Finally, doublewrite, described in Section 3.3.1,
decreases the mean to just 12.8 seconds. This represents an
improvement of six times over the mean runtime without
optimizations, more than 2.4 times with only parallel reads.

7 DISCUSSION: STARLING’S COST TO
CLOUD PROVIDERS

In Section 6 we demonstrated that for many workloads, Star-
ling achieves the performance of a large system with signifi-
cantly lower operational. However, the cost of each system is
subject to the cloud provider’s pricing strategy. For instance,
since Athena is charged by the number of bytes read from
S3, queries requiring extensive compute resources may be
charged less than a trivial query that simply scans more data.
Here we consider the case from the perspective of the cloud
provider by making informed assumptions about the relative
cost of resources. We find that with these assumptions, a sys-
tem architected like Starling may be less resource intensive
than traditional OLAP system architectures.

Amazon Athena [1] is built on Presto [24] version 0.172 [2].
Although our presto-16 configuration uses Presto 0.219,
the latency of most queries on our presto cluster are close
to athena. Because Athena uses limited statistics, we dis-
abled statistics collection to compare query latency of Athena
and presto-16. The geometric mean of all queries that ex-
ecuted on Athena on the 1TB dataset is within 3.5 seconds
of presto-16, and all but 3 queries on Athena have latency
within 4.25 seconds of presto-16. We attribute the remain-
ing discrepancy to differences in hardware, configuration,
and Presto version, but we do not have a way to determine
Athena’s internal configuration.

We established that a Presto cluster of 16 r4.8xlarge has
performance similar to Athena. Thus, we assume that to
execute an Athena query, the user has full use of a cluster of
16 nodes for the duration of the query. With this assumption
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Figure 16: Total compute time in core-seconds
we compare the computational cost of executing queries
on an Athena-like system backed by Presto to Starling to
determine which can achieve lower computation times, and
thus lower cost, for the cloud provider.We compare Starling’s
execution time per core to presto-16. To be conservative,
we assume that each AWS Lambda invocation has 2 vCPUs
of compute. Each r4.8xlarge instance has 32 vCPUs. With
16 nodes, each second using the cluster consumes 512 core-
seconds of compute.
In Figure 16 we compare the core-seconds Starling con-

sumes per query to presto-16. Starling’s join orders are
taken from Redshift, have thus have the benefit of a query op-
timizer, sowe compare the runtime of the optimized presto-16
which has lower query latency than an unoptimized config-
uration. For most queries Starling consumes less compute
for the same query compared to presto-16.
Although there are portions of a query that may be able

to fully utilize a cluster of machines, some stages use only
a subset of cores, or otherwise underutilize the cluster. In
these cases, it may be more efficient for the cloud provider
to provide a service that executes atop a general-purpose
compute service like AWS Lambda rather than having to pro-
vision machines exclusively for query processing workloads
that may end up underutilized.

Without detailed information on cluster architecture, load,
and utilization, available only to cloud providers, it is difficult
to say with certainty that Starling is able to achieve lower
utilization for the cloud provider than a service like Athena.
But using conservative estimates of CPU utilization we be-
lieve that this is likely. Therefore, it may be more efficient
for cloud providers to offer query execution services with
architectures similar to Starling in the future.

8 RELATEDWORK
Starling is related to work in several different areas:
Building stateful services on serverless platforms:Cloud
function services have been used for implementing highly
parallel workloads [17, 18, 21]. PyWren [21], for instance, is
a general-purpose tool for executing Python scripts in the
cloud, but does not demonstrate competitive performance
nor cost for query processing workloads. GG [17] is a frame-
work for simplifying execution of jobs bymanaging tasks and
stragglers on cloud functions but is not specialized for query

processing and thus can not make the same optimizations
that Starling can with detailed knowledge of the workload.
ExCamera [18] is a tool for encoding video at low latency
by exploding the high parallelism and low startup latency of
cloud function services. Sprocket [11] is a system for exploit-
ing parallelism for video processing, but likewise has simple
communication patterns. Unlike many of these workloads,
query processing hasmore complex communication patterns,
and can improve performance by making optimizations spe-
cific to query processing. In particular, parallel query pro-
cessing often requires shuffles to complete joins. While some
work has been done on shuffling data with function ser-
vices [25], it relies on having a set of provisioned virtual
machines to assist and does not execute full SQL queries.
Spark on Lambda [26] was an attempt to run Spark jobs on
AWS Lambda. However, this implementation was restricted
to spark, does not implement straggler mitigation and does
not demonstrate competitive performance.
Cloud Analytical databases: As customer move their an-
alytical workloads to the cloud, a myriad of systems have
appeared to serve these workloads. As we saw in Section
2 2.1, none of the existing systems fulfill the 3 key require-
ments of not pre-loading data, charge by query, and tunable
performance. In particular, Starling is the first analytical
database engine built on top of a serverless platform.

9 CONCLUSION
In this paper we presented Starling, a query execution engine
for data analytics built on cloud function services. Starling
fills a gap in user’s desire for an analytics system that pro-
vides interactive query latency at low cost per query for
ad-hoc workloads while being tunable to performance and
cost objectives. Starling achieves these goals by harnessing
the rapid scaling and fine granularity that cloud function
services provide. Starling overcomes the challenges of man-
aging hundreds of stateless workers that must exchange
data through opaque cloud storage. Starling’s optimizations
make it cost and performance competitive even with pro-
visioned systems, and allow it to easily scale from small to
large datasets and back without making explicit provisioning
decisions.
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