WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

CS 839: Design the Next-Generation Database
Lecture 11: NVM2

Xiangyao Yu
2/25/2020

Announcements

Upcoming deadlines:
* Form groups: Feb. 27
* Proposal due: Mar. 10

Fill this Google sheet for course project information

* hitps://docs.google.com/spreadsheets/d/1W70bfjLgiDChm49GqrLg49x6r4B
28-f-PBpQPHX01Mk/edit?usp=sharing

https://docs.google.com/spreadsheets/d/1W7ObfjLqjDChm49GqrLg49x6r4B28-f-PBpQPHX01Mk/edit?usp=sharing

Project Proposal

Use VLDB 2020 format
* https://vldb2020.org/formatting-guidelines.html

The proposal is 1-page containing the following
* Project name
 Author list
« Abstract (1-2 paragraphs about your idea)
* Introduction (Why is the problem interesting; what’s your contribution)
« Methodology (how do you plan to approach the problem)
« Task-list (Who works on what tasks of the project)
« Timeline (List of milestones and when you plan to achieve them)

Submit proposal by March 3 to https://wisc-cs839-ngdb20.hotcrp.com

https://vldb2020.org/formatting-guidelines.html
https://wisc-cs839-ngdb20.hotcrp.com/

Discussion Highlights

How does memory-mode affect the design?
« Will be faster when data fits in DRAM
* Need to take care of logging
« Memory mode can ease programming
 Just use existing main-memory DB without change

Advantage of app-direct mode over memory mode
 Directly manage replacement policy
 Larger aggregated memory space
» Logging can potentially be simplified
 Allows hot/cold data separation

How would you design NVM-DB differently?
 Better recovery structures that use NVM
* Minimize writes to NVM

« Use memory-mode or the dual-mode
* Replace SSD with NVM (cost?)

 Build LSM-tree based storage system

Today’s Paper

Write-Behind Logging

Joy Arulraj
Carnegie Mellon University

jarulraj@cs.cmu.edu

ABSTRACT

The design of the logging and recovery components of database
management systems (DBMSs) has always been influenced by the
difference in the performance characteristics of volatile (DRAM)
and non-volatile storage devices (HDD/SSDs). The key assumption
has been that non-volatile storage is much slower than DRAM and
only supports block-oriented read/writes. But the arrival of new non-
volatile memory (NVM) storage that is almost as fast as DRAM with
fine-grained read/writes invalidates these previous design choices.
This paper explores the changes that are required in a DBMS to

VLDB 2016

Matthew Perron
Carnegie Mellon University

mperron@cmu.edu

Andrew Pavlo
Carnegie Mellon University

pavlio@cs.cmu.edu

random write latency. During transaction processing, if the DBMS
were to overwrite the contents of the database before committing
the transaction, then it must perform random writes to the database
at multiple locations on disk. It works around this constraint by
flushing the transaction’s changes to a separate log on disk with only
sequential writes on the critical path of the transaction. This method
is referred to as write-ahead logging (WAL).

But emerging non-volatile memory (NVM) technologies are poised
to upend these assumptions. NVM storage devices support low la-
tency reads and writes similar to DRAM, but with persistent writes

NN~ A Lat] Fahas il

Today’s Agenda

Intel Optane fault tolerance features
Database logging

Write-behind logging

NVM Fault Tolerance

CLFLUSH

* Flushes a single cache line out of cache (invalidate). Multiple CLFLUSH instructions
execute one by one without concurrency.

CLFLUSHOPT
« Similar to CLFLUSH but multiple CLFLUSHOPT instructions can execute in parallel.

CLWB

« Cache line write back: Similar to CLFLUSHOPT but the cacheline can stay valid (in
shared state) in the cache.

SFENCE
« Store fence. Ensure all previous stores are persistent once the instruction completes.

v

Asynchronous DRAM Refresh (ADR)

CPU

On-chip
cache

]

Memory
Controller

NVM

 Stores reaching the memory controller
(MC) are guaranteed to be persistent

* Reducing latency of persistent store

Database Logging

Recap: Write Ahead Logging (Lecture 2)

Log to persistent storage before commit

Initially

checking = 1000

Read
(Checking = 900)

_ Write : _
Begin || (checking= || Logging || Commit Recovery
900)
J/ CRASH
log | T | T2 [T3| T4 T5

(on disk)

10

Logging in Disk-Based Databases

Processor

—
\

(2

Disk

Page

DRAM

System must recover to a valid
state no matter when crash occurs

11

Logging in Disk-Based Databases

Processor

—
\

T3

Disk

Page

DRAM

System must recover to a valid
state no matter when crash occurs

How does a processor update a page?

12

Logging in Disk-Based Databases

Processor

Page

e

T3

Disk

DRAM

System must recover to a valid
state no matter when crash occurs

How does a processor update a page?

What if the page is evicted to disk and
the system crashes?

* The transaction may not have
committed but the dirty page cannot be
rolled back

13

Logging in Disk-Based Databases

Processor

Page

e

T3

Disk

DRAM

System must recover to a valid
state no matter when crash occurs

How does a processor update a page?

What if the page is evicted to disk and
the system crashes?

* The transaction may not have
committed but the dirty page cannot be
rolled back

Design decision:

Steal vs. no steal
14

Steal vs. No Steal

Processor

—
N—

T3

Disk

DRAM

Page

No steal: dirty pages stay in DRAM
* Processor can directly update a page
* Main memory database

15

Steal vs. No Steal

No steal: dirty pages stay in DRAM

* Processor can directly update a page
Processor « Main memory database
‘ ‘ Steal: dirty pages may overwrite pages
= on disk
age{ > DRAM * Must flush UNDO log (before-image) to
disk before writing to the page
Disk

S UNDO

16

Logging in Disk-Based Databases

Processor

—
\

T3

Disk

Page

DRAM

System must recover to a valid
state no matter when crash occurs

How does a processor commit a
transaction?

17

Logging in Disk-Based Databases

Processor

—
\

‘\ ‘ Page
1

Disk

DRAM

System must recover to a valid
state no matter when crash occurs

How does a processor commit a
transaction?

What if the system crashes before the
page Is evicted to disk?

* The transaction may have committed
but the page is lost

18

Logging in Disk-Based Databases

Processor

—
\

‘\ ‘ Page
1

Disk

DRAM

System must recover to a valid
state no matter when crash occurs

How does a processor commit a
transaction?

What if the system crashes before the
page Is evicted to disk?

* The transaction may have committed
but the page is lost

Design decision:

Force vs. no force .

Force vs. No Force

Processor

Page

T3

Disk

DRAM

Force: All modified pages written back
to disk before commit

« Can commit transaction after all pages
are forced to disk

20

Force vs. No Force

Force: All modified pages written back
to disk before commit

Processor - Can commit transaction after all pages
are forced to disk

‘\ ‘ page| No Force: Modified pages may stay in
I main memory

« Flush REDO log (after-image) to disk
Disk before committing the transaction

—
\

~—_ REDO

21

Steal/No-Steal, Force/No-Force

Steal

No Steal

Force UNDO only

No REDO nor UNDO

No Force |REDO and UNDO
logging (ARIES)

REDO only

[1] Philip Bernstein, Vassos Hadzilacos, Nathan Goodman, Concurrency Control and Recovery in Database Systems, 1987

22

Steal/No-Steal, Force/No-Force

logging (ARIES)

Disk-based DB

Steal No Steal
Force UNDO only No REDO nor UNDO
No Force [REDO and UNDO | REDO only

[1] Philip Bernstein, Vassos Hadzilacos, Nathan Goodman, Concurrency Control and Recovery in Database Systems, 1987

23

Steal/No-Steal, Force/No-Force

Steal No Steal

Force UNDO only No REDO nor UNDO

No Force [REDO and UNDO JREDO only
logging (ARIES)

Disk-based DB Main memory DB

[1] Philip Bernstein, Vassos Hadzilacos, Nathan Goodman, Concurrency Control and Recovery in Database Systems, 1987

24

Steal/No-Steal, Force/No-Force

Steal No Steal

Force UNDO only No REDO nor UNDO
NVM DB

No Force [REDO and UNDO JREDO only
logging (ARIES)

Disk-based DB Main memory DB

[1] Philip Bernstein, Vassos Hadzilacos, Nathan Goodman, Concurrency Control and Recovery in Database Systems, 1987

25

Steal/No-Steal, Force/No-Force

Steal No Steal

UNDO only [No
REDO/UNDO

No REDO and |REDO only
Force |UNDO

Force

UNDO only:
* Flush UNDO record before each update to database

Steal/No-Steal, Force/No-Force

Steal No Steal

UNDO only [No
REDO/UNDO

No REDO and |REDO only
Force |UNDO

Force

UNDO only:
* Flush UNDO record before each update to database
« After all updates are forced to persistent storage, flush COMMIT record
 Transaction commits after COMMIT record is persistent

Steal/No-Steal, Force/No-Force

Steal No Steal

UNDO only [No
REDO/UNDO

No REDO and |REDO only
Force |UNDO

Force

UNDO only:
* Flush UNDO record before each update to database
« After all updates are forced to persistent storage, flush COMMIT record
 Transaction commits after COMMIT record is persistent
« UNDO records of a transaction can be ignored after the transaction commits

28

Steal/No-Steal, Force/No-Force

Steal No Steal

UNDO only [No
REDO/UNDO

No REDO and |REDO only
Force |UNDO

Force

UNDO only:

* Flush UNDO record before each update to database

« After all updates are forced to persistent storage, flush COMMIT record
 Transaction commits after COMMIT record is persistent

« UNDO records of a transaction can be ignored after the transaction commits

« Recovery: UNDO uncommitted transactions
29

Steal/No-Steal, Force/No-Force

Steal No Steal All of a transaction’s updates recorded

Force |UNDO only |No in persistent storage in a single atomic
REDO/UNDO operation

No REDO and |REDO only
Force |UNDO

30

Steal/No-Steal, Force/No-Force

Steal No Steal All of a transaction’s updates recorded

Force |UNDO only |No in persistent storage in a single atomic
REDO/UNDO operation

No REDO and |REDO only
Force |UNDO

Shadow version algorithm (No UNDO, no REDO):

« Maintain two copies of directories (D° and D) that point to the location of records,
use a master bit M to indicate the master copy

. Tqa“?saction writes all updates to unused location in persistent storage and update
D -

* Atomically M = 1-M
« Update D''M

31

Multi-Version Database

Steal No Steal All of a transaction’s updates recorded

Force |UNDO only |No in persistent storage in a single atomic
REDO/UNDO operation

No REDO and |REDO only
Force |UNDO

~or an MVCC database, each update writes to a new version (with a
transaction-specific version ID), which naturally achieves no steal

Now need a mechanism to make new versions of a transaction visible
using a single atomic operation

32

Atomic Visibility

Record A
Fecord A Updates from
ts=5 ts=10 Transaction T
Record B Record B
Record B Record B
ts=6 ts=10
ts=7 ts=10
TS=10

Atomically flush commit timestamp to log --> transaction commit

Atomic Visibility

Record A
Fecord A Updates from
ts=5 ts=10 Transaction T
Record B Record B
Record B Record B
ts=6 ts=10
ts=7 ts=10
TS=10

Atomically flush commit timestamp to log --> transaction commit

Downside: during recovery, difficult to decide what records have
committed 34

Write-Behind Logging

Record B

ts=6

» Group commit TS=(c,, cg)

Updates from a group

Record A Record A
ts=5 ts=10 of transactions
Record B
Record B
Record B et
ts=7 ts=10
8, TS=(10, 20)

* All transactions before ¢, have committed except listed outliers
* No transactions after ¢4 could have started
* During recovery, ignore versions between c, and ¢y and outliers

35

PERFORMANCE

. Write-Ahead Logging .Write-Behind Logging

$1.3x
quI l I

Hard Disk Solid State Non-Volatile
Drive Drive Memory

10,000

Throughput

(txn/sec) 100

Slide from https://www.cc.gatech.edu/~jarulraj/talks/2016.wbl.pdf 36

33

https://www.cc.gatech.edu/~jarulraj/talks/2016.wbl.pdf

32

APPLICATION AVAILABILITY

. Write-Ahead Logging .Write-Behind Logging

10,000

Recovery 100
Time]1000x
(SeC) 1 [[E— [E—

Hard Disk Solid State Non-Volatile
Drive Drive Memory

Slide from https://www.cc.gatech.edu/~jarulraj/talks/2016.wbl.pdf 37

https://www.cc.gatech.edu/~jarulraj/talks/2016.wbl.pdf

Summary

NVM: new device in the storage hierarchy

« Byte-addressable
* Non-volatile

Taking advantage of both byte-addressability and non-volatility to
improve performance of fault tolerance

 Force + steal ---> UNDO only
* Force + MVCC ---> No UNDO, No REDO

38

NVM — Q/A

Physical vs. logical logging?
256 GB of DRAM (AWS u-24tb1.metal has 24 TB main memory)

Torn writes: Only part of a multi-sector update are written successfully
to disk

Value-based vs. operational logging?

WBL in the three-tier BM architecture
39

Group Discussion

Distributed databases today require high availability (i.e., data
replication) and recovery from a different machine; what does this

mean for NVM-based fault tolerance?

What are the advantages of REDO only, UNDO only, and write-
behind logging with respective to each other?

How does WBL work in the three-tier architecture from last lecture?

40

Before Next Lecture

Submit discussion summary to https://wisc-cs839-ngdb20.hotcrp.com
* Deadline: Wednesday 11:59pm

Submit review for

 Joins in a Heterogeneous Memory Hierarchy: Exploiting High-Bandwidth
Memory

* [optional] Fundamental Latency Trade-offs in Architecting DRAM Caches

41

https://wisc-cs839-ngdb20.hotcrp.com/

