
Xiangyao Yu
2/25/2020

CS 839: Design the Next-Generation Database
Lecture 11: NVM2

1



Announcements

2

Upcoming deadlines:
• Form groups: Feb. 27
• Proposal due: Mar. 10

Fill this Google sheet for course project information
• https://docs.google.com/spreadsheets/d/1W7ObfjLqjDChm49GqrLg49x6r4B

28-f-PBpQPHX01Mk/edit?usp=sharing

https://docs.google.com/spreadsheets/d/1W7ObfjLqjDChm49GqrLg49x6r4B28-f-PBpQPHX01Mk/edit?usp=sharing


Project Proposal

3

Use VLDB 2020 format
• https://vldb2020.org/formatting-guidelines.html

The proposal is 1-page containing the following
• Project name
• Author list
• Abstract (1-2 paragraphs about your idea)
• Introduction (Why is the problem interesting; what’s your contribution)
• Methodology (how do you plan to approach the problem)
• Task-list (Who works on what tasks of the project)
• Timeline (List of milestones and when you plan to achieve them)

Submit proposal by March 3 to https://wisc-cs839-ngdb20.hotcrp.com

https://vldb2020.org/formatting-guidelines.html
https://wisc-cs839-ngdb20.hotcrp.com/


Discussion Highlights

4

How does memory-mode affect the design? 
• Will be faster when data fits in DRAM
• Need to take care of logging 
• Memory mode can ease programming
• Just use existing main-memory DB without change

Advantage of app-direct mode over memory mode
• Directly manage replacement policy
• Larger aggregated memory space
• Logging can potentially be simplified
• Allows hot/cold data separation 

How would you design NVM-DB differently? 
• Better recovery structures that use NVM
• Minimize writes to NVM
• Use memory-mode or the dual-mode
• Replace SSD with NVM (cost?)
• Build LSM-tree based storage system 



Today’s Paper

5VLDB 2016



Today’s Agenda
Intel Optane fault tolerance features 

Database logging

Write-behind logging

6



NVM Fault Tolerance
CLFLUSH

• Flushes a single cache line out of cache (invalidate). Multiple CLFLUSH instructions 
execute one by one without concurrency. 

CLFLUSHOPT
• Similar to CLFLUSH but multiple CLFLUSHOPT instructions can execute in parallel.

CLWB
• Cache line write back: Similar to CLFLUSHOPT but the cacheline can stay valid (in 

shared state) in the cache. 

SFENCE
• Store fence. Ensure all previous stores are persistent once the instruction completes. 

7



Asynchronous DRAM Refresh (ADR)

• Stores reaching the memory controller 
(MC) are guaranteed to be persistent

• Reducing latency of persistent store

8

CPU

NVM

On-chip 
cache

Memory 
Controller



Database Logging

9



Recap: Write Ahead Logging (Lecture 2)

Begin

Initially
checking = 1000

Write
(Checking = 

900)
Commit

CRASH

Recovery Read
(Checking = 900)

Logging

T1 T2 T3 T4 T5Log
(on disk)

…

10

Log to persistent storage before commit



Logging in Disk-Based Databases
System must recover to a valid 
state no matter when crash occurs 

11

Processor

Disk
DRAM

Page



Logging in Disk-Based Databases
System must recover to a valid 
state no matter when crash occurs 
How does a processor update a page?

12

Processor

Disk
DRAM

Page



Logging in Disk-Based Databases
System must recover to a valid 
state no matter when crash occurs 
How does a processor update a page?

What if the page is evicted to disk and 
the system crashes? 
• The transaction may not have 

committed but the dirty page cannot be 
rolled back

13

Processor

Disk
DRAM

Page



Logging in Disk-Based Databases
System must recover to a valid 
state no matter when crash occurs 
How does a processor update a page?

What if the page is evicted to disk and 
the system crashes? 
• The transaction may not have 

committed but the dirty page cannot be 
rolled back

Design decision:
Steal vs. no steal

14

Processor

Disk
DRAM

Page



Steal vs. No Steal
No steal: dirty pages stay in DRAM
• Processor can directly update a page
• Main memory database

15

Processor

Disk
DRAM

Page



Steal vs. No Steal
No steal: dirty pages stay in DRAM
• Processor can directly update a page
• Main memory database

Steal: dirty pages may overwrite pages 
on disk
• Must flush UNDO log (before-image) to 

disk before writing to the page

16

Processor

Disk
DRAM

Page

UNDO



Logging in Disk-Based Databases

17

Processor

Disk
DRAM

Page

System must recover to a valid 
state no matter when crash occurs 
How does a processor commit a 
transaction? 



Logging in Disk-Based Databases

18

Processor

Disk
DRAM

Page

System must recover to a valid 
state no matter when crash occurs 
How does a processor commit a 
transaction? 

What if the system crashes before the 
page is evicted to disk? 
• The transaction may have committed 

but the page is lost



Logging in Disk-Based Databases

19

Processor

Disk
DRAM

Page

System must recover to a valid 
state no matter when crash occurs 
How does a processor commit a 
transaction? 

What if the system crashes before the 
page is evicted to disk? 
• The transaction may have committed 

but the page is lost

Design decision:
Force vs. no force



Force vs. No Force

20

Processor

Disk
DRAMPage

Force: All modified pages written back 
to disk before commit 
• Can commit transaction after all pages 

are forced to disk



Force vs. No Force

21

Processor

Disk
DRAM

Page

Force: All modified pages written back 
to disk before commit 
• Can commit transaction after all pages 

are forced to disk

No Force: Modified pages may stay in 
main memory
• Flush REDO log (after-image) to disk 

before committing the transaction

REDO



Steal/No-Steal, Force/No-Force

22

Steal No Steal

Force UNDO only No REDO nor UNDO

No Force REDO and UNDO 
logging (ARIES)

REDO only

[1] Philip Bernstein, Vassos Hadzilacos, Nathan Goodman, Concurrency Control and Recovery in Database Systems, 1987



Steal/No-Steal, Force/No-Force

23

Steal No Steal

Force UNDO only No REDO nor UNDO

No Force REDO and UNDO 
logging (ARIES)

REDO only

[1] Philip Bernstein, Vassos Hadzilacos, Nathan Goodman, Concurrency Control and Recovery in Database Systems, 1987

Disk-based DB



Steal/No-Steal, Force/No-Force

24

Steal No Steal

Force UNDO only No REDO nor UNDO

No Force REDO and UNDO 
logging (ARIES)

REDO only

[1] Philip Bernstein, Vassos Hadzilacos, Nathan Goodman, Concurrency Control and Recovery in Database Systems, 1987

Disk-based DB Main memory DB



Steal/No-Steal, Force/No-Force

25

Steal No Steal

Force UNDO only No REDO nor UNDO

No Force REDO and UNDO 
logging (ARIES)

REDO only

[1] Philip Bernstein, Vassos Hadzilacos, Nathan Goodman, Concurrency Control and Recovery in Database Systems, 1987

Disk-based DB Main memory DB

NVM DB



Steal/No-Steal, Force/No-Force

26

Steal No Steal
Force UNDO only No 

REDO/UNDO
No 
Force

REDO and 
UNDO

REDO only

UNDO only:
• Flush UNDO record before each update to database



Steal/No-Steal, Force/No-Force

27

Steal No Steal
Force UNDO only No 

REDO/UNDO
No 
Force

REDO and 
UNDO

REDO only

UNDO only:
• Flush UNDO record before each update to database
• After all updates are forced to persistent storage, flush COMMIT record
• Transaction commits after COMMIT record is persistent 



Steal/No-Steal, Force/No-Force

28

Steal No Steal
Force UNDO only No 

REDO/UNDO
No 
Force

REDO and 
UNDO

REDO only

UNDO only:
• Flush UNDO record before each update to database
• After all updates are forced to persistent storage, flush COMMIT record
• Transaction commits after COMMIT record is persistent 
• UNDO records of a transaction can be ignored after the transaction commits



Steal/No-Steal, Force/No-Force

29

Steal No Steal
Force UNDO only No 

REDO/UNDO
No 
Force

REDO and 
UNDO

REDO only

UNDO only:
• Flush UNDO record before each update to database
• After all updates are forced to persistent storage, flush COMMIT record
• Transaction commits after COMMIT record is persistent 
• UNDO records of a transaction can be ignored after the transaction commits
• Recovery: UNDO uncommitted transactions 



Steal/No-Steal, Force/No-Force

30

Steal No Steal
Force UNDO only No 

REDO/UNDO
No 
Force

REDO and 
UNDO

REDO only

All of a transaction’s updates recorded 
in persistent storage in a single atomic 
operation



Steal/No-Steal, Force/No-Force

31

Steal No Steal
Force UNDO only No 

REDO/UNDO
No 
Force

REDO and 
UNDO

REDO only

Shadow version algorithm (No UNDO, no REDO):
• Maintain two copies of directories (D0 and D1) that point to the location of records, 

use a master bit M to indicate the master copy
• Transaction writes all updates to unused location in persistent storage and update 

D1-M

• Atomically M = 1-M
• Update D1-M

All of a transaction’s updates recorded 
in persistent storage in a single atomic 
operation



Multi-Version Database

32

Steal No Steal
Force UNDO only No 

REDO/UNDO
No 
Force

REDO and 
UNDO

REDO only

For an MVCC database, each update writes to a new version (with a 
transaction-specific version ID), which naturally achieves no steal 

Now need a mechanism to make new versions of a transaction visible 
using a single atomic operation

All of a transaction’s updates recorded 
in persistent storage in a single atomic 
operation



Atomic Visibility 

33

Atomically flush commit timestamp to log --> transaction commit

ts=5

ts=6
ts=7

Record A

Record B
Record B

ts=10

ts=10
ts=10

Record A

Record B
Record B

Updates from 
Transaction T

TS=10



Atomic Visibility 

34

Atomically flush commit timestamp to log --> transaction commit
Downside: during recovery, difficult to decide what records have 
committed

ts=5

ts=6
ts=7

Record A

Record B
Record B

ts=10

ts=10
ts=10

Record A

Record B
Record B

Updates from 
Transaction T

TS=10



Write-Behind Logging

35

• Group commit TS=(cp, cd)
• All transactions before cp have committed except listed outliers
• No transactions after cd could have started
• During recovery, ignore versions between cp and cd and outliers

ts=5

ts=6
ts=7

Record A

Record B
Record B

ts=10

ts=10
ts=10

Record A

Record B
Record B

Updates from a group 
of transactions

8, TS=(10, 20)



Evaluations
33

PERFORMANCE
33

Write-Behind LoggingWrite-Ahead Logging

Throughput
(txn/sec)

1

100

10,000

Hard Disk 
Drive

Solid State 
Drive

Non-Volatile 
Memory

10x

1.3x

36Slide from https://www.cc.gatech.edu/~jarulraj/talks/2016.wbl.pdf

https://www.cc.gatech.edu/~jarulraj/talks/2016.wbl.pdf


Evaluations
32

APPLICATION AVAILABILITY
32

1

100

10,000

Hard Disk 
Drive

Solid State 
Drive

Non-Volatile 
Memory

Write-Behind LoggingWrite-Ahead Logging

Recovery 
Time
(sec)

1000x

Slide from https://www.cc.gatech.edu/~jarulraj/talks/2016.wbl.pdf 37

https://www.cc.gatech.edu/~jarulraj/talks/2016.wbl.pdf


Summary
NVM: new device in the storage hierarchy
• Byte-addressable
• Non-volatile

Taking advantage of both byte-addressability and non-volatility to 
improve performance of fault tolerance 
• Force + steal ---> UNDO only
• Force + MVCC ---> No UNDO, No REDO

38



NVM – Q/A 
Physical vs. logical logging?

256 GB of DRAM (AWS u-24tb1.metal has 24 TB main memory)

Torn writes: Only part of a multi-sector update are written successfully 
to disk

Value-based vs. operational logging? 

WBL in the three-tier BM architecture
39



Group Discussion
Distributed databases today require high availability (i.e., data
replication) and recovery from a different machine; what does this 
mean for NVM-based fault tolerance? 

What are the advantages of REDO only, UNDO only, and write-
behind logging with respective to each other? 

How does WBL work in the three-tier architecture from last lecture?

40



Before Next Lecture
Submit discussion summary to https://wisc-cs839-ngdb20.hotcrp.com
• Deadline: Wednesday 11:59pm

Submit review for
• Joins in a Heterogeneous Memory Hierarchy: Exploiting High-Bandwidth 

Memory
• [optional] Fundamental Latency Trade-offs in Architecting DRAM Caches

41

https://wisc-cs839-ngdb20.hotcrp.com/

