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Announcements

Upcoming deadlines:
* Proposal due: Mar. 10

Fill this Google sheet for course project information
* hitps://docs.google.com/spreadsheets/d/1W70bfjLgiDChm49GqrLg49x6r4B

28-f-PBpQPHX01Mk/edit?usp=sharing



https://docs.google.com/spreadsheets/d/1W7ObfjLqjDChm49GqrLg49x6r4B28-f-PBpQPHX01Mk/edit?usp=sharing

Discussion Highlights

Prof. Stronebraker’s comment
« Agree with the comment; future is unpredictable
* Not entirely true
» Recent several papers: looking for problems using new hardware as a solution

Fast |IO/Network affect smart memory/storage?

» Closes internal/external bandwidth gap => less gain from smart SSD
» Cost and energy

Supporting complex operators
« Join: Small table fits in Smart SSD memory; computation simple enough
» Breakdown the complex operators
* Not wise to push join entirely
* Push some simple group-by
« Data partitioning in Smart SSD



Bloom Join

Table 1
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filter as a predicate

Construct a bloom filter

based on the join key

Table 2

i Scan using the bloom



Today’s Paper

NEAR-DATA PROCESSING: INSIGHTS
FROM A MICRO-46 WORKSHOP

Rajeev Balasubramonian
University of Utah

Jichuan Chang
Google

Troy Manning
Micron

Jaime H. Moreno
|BM Thomas J. Watson
Research Center
Richard Murphy
Micron

Ravi Nair

[BM Thomas J. Watson
Research Center

Steven Swanson
University of California,
San Diego

AFTER A DECADE-LONG DORMANCY, INTEREST IN NEAR-DATA PROCESSING (NDP) HAS

SPIKED. A WORKSHOP ON NDP WAS ORGANIZED AT MICRO-46 AND WAS WELL

ATTENDED. GIVEN THE INTEREST, THE ORGANIZERS AND KEYNOTE SPEAKERS HAVE

ATTEMPTED TO CAPTURE THE KEY INSIGHTS FROM THE WORKSHOP FOR WIDER

DISSEMINATION. THIS ARTICLE DESCRIBES WHY NDP IS COMPELLING TODAY AND

IDENTIFIES UPCOMING CHALLENGES IN REALIZING ITS POTENTIAL

® o oo oo Processing in Iugc-suk systems
is shifting from the

system. NDP socks o minimize daa move-
ment by g at the most

centric model successfully used for many -lu.-
ades into one that is more data centric. This
transition is driven by the cvolving nature of
computing, which is no longer dominated by
the excaution of arithmetic and logic calcula-
tions but instead by the handling of large
daa volume and the cost of moving data o

P PPTOP

location in the hncm::hy considering the
location of the data and the information that
needs to be extracted from that data. Thus,
in NDP, computation can be performed right
at the data’s home, cither in caches, main
memory, of persistent storage. This is in con-
trast to the movement of data toward a CPU

| lent of where it resides, as is done

the locations where computations are per-
formed. The computing-centric model where
dara lives on disk, or even tape, and moves as
needed to a central computing engine across
a decp storage hicrarchy is sufficient when
computational aspects dominate data move-
ment aspects. In contrast, in the data-centric
model, dara lives in different storage levels
within the hicrarchy, with processing engines

ding the data and ing on such

uzdluana]ly Examples of NDP already exist
in systems that execute compurations close o
the disk, filtering or preprocessing the data
streaming from the disks so that 2 minimal
number of items are transferred for process-
ing at other parts of the system. Conceptu-
ally, the same pn'ncipl.c can be applied at
other levels of a system'’s memory and storage
hicrarchy by placing comg

data without moving it across the system.
The trend toward big data is leading to

changes in the computing paradigm, and in

particular to the notion of moving computa-

tion to data, in what we call the near-data

processing (NDP) approach. Data movement

impacts pcrﬁmmnzc. power cfficiency, and

three fi ib

close to where dara is located, andlcﬂ:rucnu
ing applications to exploit the resulting dis-
tributed computing infrastructure.

At the MICRO-46 conference, a work-
shop was held to bring together experts from
academia and industry, who presented recent
advances in the development of large systems

ploying NDP principles (www.cs.utah.
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ABSTRACT

The rapid growth of “big-data” intensified the problem
of data movement when processing data analytics: Large
amounts of data need to move through the memory up to
the CPU before any computation takes place. To tackle
this untl) pmhlem Processing-in-Memory (PIM) inverts
t itional data ing by pushing ion to
memory with an impact on performance and energy effi-
ciency. In this paper, we present an experimental study
on processing database SIMD operators in PIM compared
to current x86 processor (i.e., using AVX512 instructions).
We discuss the execution time gap between those architec-
tures. However, this is the first experimental study, in the
database community, to discuss the trade-offs of execution
time and energy mnuumpllnn bctwccn PIM and x86 in the

main query lized, w d, and
pipelined. We also dmnmn the results of a hybrid query
heduling when interl the ion of the SIMD op-

erators between PIM and x86 processing hardware. In our
results, the hybrid query plan reduced the execution time
by 45%. It also drastically reduced energy consumption by
more than 2x compared to hardware-specific query plans.
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1. INTRODUCTION

Applications based on data analysis need to move large
amounts of data between memory and processing units to
look for patterns. Computers have relied on this traditional
computing-centric execution since the introduction of the
Von Neumann model. In this model, however, data move-
ment severely affects performance and energy consumption.
Recent studies show that data movement accounts for al-
most 63% of the total energy consumption and imposes high
latencies [6, 36).
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Traditional query execution systems have been operating
only on computing-centric models [11]. The materialization
query execution system generates lots of intermediate data
that move along the memory hierarchy to process the opera-
tors of a query plan. The vectorized query execution system
tries to exploit the caching mechanism and the CPU process-
ing with a high interpretation overhead. The pipelined query
execution system uses the Just-In-Time (JIT) compilation
to fuse operators of the same pipeline into a monoelithic code
fragment. Although the authors of [28] call JIT as dala-
centric il the query jon is still
centric by moving data to the CPU with many adaptations
to make better use of the memory caches. In this paper, we
study the data-centric execution model to tackle the data
movement problem in query execution systems with logical
units integrated closer to the data (inside memory devices),
which is called Processing-in-Memory (PIM) [25,34,45).

Database engi have been evaluating PIM approach

with processing comp 1 in ic disks [1,
12,26), RAM |[38], and more recently in flash disks [10,13,46].
However, i have not been adopting those

approaches for three main reasons: 1) Limitations of the
hardware technology; 2) The continuous growth in CPU per-
formance complied to the Moore’s Law and Dennard scaling;
3) The lack of a general pmgrunmmg mterfm that leads
to low ab ion level when b 4 errors.

Now, modern PIM hardware integrate traditional DRAM
dies and logic cells in the same chip area with the Through-
Silicon Via (TSV), forming a 3D-stacked memory with a
high degree of parallelism. Therefore, modern PIM can
leverage current memory protocols to handle hardware er-
rors. Current GPUs already embed the emerging 3D-stacked
memaries, such as the Hybrid Memory Cube (HMC) [23] and
the High Bandwidth Memory (HBM) [30]. However, there
has not been any in-depth study of query processing on PIM
with Single Instruction Multiple Data (SIMD) support.

In this experimental paper, we detail the implementation
of five major query operators into a simulator of PIM hard-
ware: selection, projection, aggregation, sorting, and join
(hash join, sort-merge join, and nested loop join). In par-
ticular, we present a new SIMD sorting algorithm that re-
quires fewer memory instructions compared to the state of
the art [21]. For each operator, we gauge the latency and en-
ergy spend to process TPC-H and Zipf distribution datasets.
We evaluate the high levels of parallelism and data access
when using AVX512 extensions from x86 processors, com-
pared to modern PIM architectures with SIMD support on
registers of 256-bytes wide. To the best of our knowledge,
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Process-in-Memory (PIM) in Late 1990’s

[1] P.Kogge,“A Short History of PIM at Notre Dame,” July
1999

[2] C.E. Kozyrakis et al., “Scalable Processors in the
Billion Transistor Era: IRAM,” Computer, 1997

[3] T.L. Sterling and H.P. Zima, “Gilgamesh: A
Multithreaded Processor-in-Memory Architecture for
Petaflops Computing”, Supercomputing, 2002

[4] J. Draper et al., “The Architecture of the DIVA
Processing-in-Memory Chip” Supercomputing, 2002
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Reasons of PIM Failure in 2000s

Incompatibility of DRAM and CPU processes
 DRAM is designed with a costly logic process
* Logic designed with a process optimized for DRAM

PIM requires a new programming model



Top 10 reasons for a revitalized NDP 2.0

1. Necessity. Increasing overheads of computing-centric architectures

* Moving computation close to data reduces data movement and cache
hierarchy overhead;

* Rebalance of computing-to-memory ratios;
 Specializing computation for the data transformation

2. Technology. 3D and 2.5D die-stacking technologies are mature
 Eliminating previous disadvantages of merged logic and memory fabrication
* The close proximity of computation => high bandwidth with low energy



Top 10 reasons for a revitalized NDP 2.0

3. Software. Distributed software frameworks (e.g., MapReduce)
« Smooth learning curve of programming NDP hardware
« Handle data layout, naming, scheduling, and fault tolerance

4. Interface. Impossible with DDR but memory interface will change
* Mobile DRAM is replacing desktop/server DRAM

* New interfaces such as HMC already includes preliminary NDP support

5. Hierarchy. New nonvolatile memories (NVMs) that combine memory-
like performance with storage-like capacity enable a flattened
memory/storage hierarchy and self-contained NDP computing elements.

In essence, this flattened hierarchy eliminates the bottleneck of getting
data on and off the NDP memory

10



Top 10 reasons for a revitalized NDP 2.0

6. Balance. Communication between NDP may be the new bottleneck
* New system-on- a-chip (SoC) and die-stacking technologies
* New opportunities for NDP-customized interconnect designs

7. Heterogeneity. NDP involves heterogeneity for specialization

8. Capacity. NVM in NDP has large device capacities and lower cost

« Early NDP designs were limited by small device capacities that forced too
much fine-grained parallelism and inter device data movement

11



Top 10 reasons for a revitalized NDP 2.0

9. Anchor workloads. Big-data appliances
« For example, IBM’s Netezza and Oracle’s Exadata

10. Ecosystem. Prototypes, tools, and
« Software programming models: OpenMP4.0, OpenCL, and MapReduce
« Hardware prototypes: Adapteva, Micron, Vinray, and Samsung

12



Challenges of NDP

» Packaging and thermal constraints
« Communication interfaces

» Synchronization mechanisms

» Optimizing processing cores

* Programming model

« Security

13
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computing, which is no longer dominated by
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location in the hncm::hy considering the
location of the data and the information that
needs to be extracted from that data. Thus,
in NDP, computation can be performed right
at the data’s home, cither in caches, main
memory, of persistent storage. This is in con-
trast to the movement of data toward a CPU

| lent of where it resides, as is done

the locations where computations are per-
formed. The computing-centric model where
dara lives on disk, or even tape, and moves as
needed to a central computing engine across
a decp storage hicrarchy is sufficient when
computational aspects dominate data move-
ment aspects. In contrast, in the data-centric
model, dara lives in different storage levels
within the hicrarchy, with processing engines

uzdluana]ly Examples of NDP already exist
in systems that execute compurations close o
the disk, filtering or preprocessing the data
streaming from the disks so that 2 minimal
number of items are transferred for process-
ing at other parts of the system. Conceptu-
ally, the same pn'ncipl.c can be applied at
other levels of a system'’s memory and storage

ding the data and operating on such

data without moving it across the system.
The trend toward big data is leading to
changes in the computing paradigm, and in
particular to the notion of moving computa-
tion to data, in what we call the near-data
processing (NDP) approach. Data movement

impacts pcrﬁmmnzc. power cﬁiakemy and

hicrarchy by placing comg

close to where dara is located, andlcﬂ:rucnu
ing applications to exploit the resulting dis-
tributed computing infrastructure.

At the MICRO-46 conference, a work-
shop was held to bring together experts from
academia and industry, who presented recent
advances in the development of large systems
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ABSTRACT

The rapid growth of “big-data” intensified the problem
of data movement when processing data analytics: Large
amounts of data need to move through the memory up to
the CPU before any computation takes place. To tackle
this costly ,.mhu-m Processing-in-Memory (PIM) inverts
t itional data ing by pushing ion to
memory with an impact on performance and energy effi-
ciency. In this paper, we present an experimental study
on processing database SIMD operators in PIM compared
to current x86 processor (i.e., using AVX512 instructions).
We discuss the execution time gap between those architec-
tures. However, this is the first experimental study, in the
database community, to discuss the trade-offs of execution
time and energy mnuumpllnn bctwccn PIM and x86 in the
main query lized, w ized, and
pipelined. We also dlnnmn the results of a hybrid query
heduling when interly the ion of the SIMD op-
erators between PIM and x86 processing hardware. In our
results, the hybrid query plan reduced the execution time
by 45%. It also drastically reduced energy consumption by
maore than 2x compared to hardware-specific query plans.
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1. INTRODUCTION

Applications based on data analysis need to move large
amounts of data between memory and processing units to
look for patterns. Computers have relied on this traditional
computing-centric execution since the introduction of the
Von Neumann model. In this model, however, data move-
ment severely affects performance and energy consumption.
Recent studies show that data movement accounts for al-
most 63% of the total energy consumption and imposes high
latencies [6, 36).
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Traditional query execution systems have been operating
only on computing-centric models [11]. The materialization
query execution system generates lots of intermediate data
that move along the memory hierarchy to process the opera-
tors of a query plan. The vectorized query execution system
tries to exploit the caching mechanism and the CPU process-
ing with a high interpretation overhead. The pipelined query
execution system uses the Just-In-Time (JIT) compilation
to fuse operators of the same pipeline into a monoelithic code
fragment. Although the authors of [28] call JIT as dala-
centric il the query jon is still
centric by moving data to the CPU with many adaptations
to make better use of the memory caches. In this paper, we
study the data-centric execution model to tackle the data
movement problem in query execution systems with logical
units integrated closer to the data (inside memory devices),
which is called Processing-in-Memory (PIM) [25,34,45).

Database engi have been evaluating PIM approach
with processing comp 1 in ic disks [1,
12,26), RAM |[38], and more recently in flash disks [10,13,46].
However, i have not been adopting those
approaches for three main reasons: 1) Limitations of the
hardware technology; 2) The continuous growth in CPU per-
formance complied to the Moore’s Law and Dennard scaling;
3) The lack of a general pmgrunmmg mterfm that leads
to low ab ion level when b 4 errors.

Now, modern PIM hardware integrate traditional DRAM
dies and logic cells in the same chip area with the Through-
Silicon Via (TSV), forming a 3D-stacked memory with a
high degree of parallelism. Therefore, modern PIM can
leverage current memory protocols to handle hardware er-
rors. Current GPUs already embed the emerging 3D-stacked
memaries, such as the Hybrid Memory Cube (HMC) [23] and
the High Bandwidth Memory (HBM) [30]. However, there
has not been any in-depth study of query processing on PIM
with Single Instruction Multiple Data (SIMD) support.

In this experimental paper, we detail the implementation
of five major query operators into a simulator of PIM hard-
ware: selection, projection, aggregation, sorting, and join
(hash join, sort-merge join, and nested loop join). In par-
ticular, we present a new SIMD sorting algorithm that re-
quires fewer memory instructions compared to the state of
the art [21]. For each operator, we gauge the latency and en-
ergy spend to process TPC-H and Zipf distribution datasets.
We evaluate the high levels of parallelism and data access
when using AVX512 extensions from x86 processors, com-
pared to modern PIM architectures with SIMD support on
registers of 256-bytes wide. To the best of our knowledge,
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Previous NDP for Databases

Previous NDP-DB: Active disk, Intelligent disk, smart SSD

No commercial adoption of previous work
* Limitations of hardware technology
=> HBM and HMC
« Continuous growth in CPU performance
=> Moore’s law is slowing down

 Lack of general programming interface
=> SIMD

15



PIM-256B Architecture

Query Plan

LOCK PIM
PIM Load 256 bytes // bitmap

3D-Stacked Memory + PIM
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8 DRAM banks per
vault

256B per DRAM bank
rOw accesses

512 parallel requests
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Coherence between
PIM and cache?
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PIM-256B Architecture

Data Set

3D-Stacked Memory + PIM

2568
f_‘ﬁ

1 J

/
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C Language

algebra.select (data[], filter)

for (inti=0;i < size; i++)

bitmap[i] = (data[i] < filter)

PIM-Selection Assembly Like

algebra.select

LOOP:
PIM_LD VO < datali]
PIM+SIMD_CMP VO < VO, VF
PIM_ST VO —>» bitmapli]
JLOOP
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Loop Unrolling

Int X; Int X;

for (x =0; x <100; X++) for(x=0;x<100;x +=5)

{ {

delete(x); delete(x);

} delete(x + 1);
delete(x + 2);
delete(x + 3);
delete(x + 4);




Benefits of PIM Processing (Selection)

~ 0.08 Dataset: L1-64KB Dataset: L2-256KB
S L B AVX512-64B
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“In this paper, we are using only a single thread to execute the
operators on both systems ...”
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Selection
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Selection Evaluation

Dataset: LLC-8MB | Dataset: DRAM-1GB

0 c 0
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0% W 0%
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* PIM is 3x faster than AV X512
* PIM uses 45% less energy than AVX512
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Projection

A/B/CDEF GH I JLMNOPOQ
memory T N Y A A
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(b) Scatter Instruction.
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Projection Evaluation

Dataset: LLC-8MB ]Dataset DRAM-1GB |
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* PIM can be 10x faster than AVX512
* PIM reduces energy consumption by 3x
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Bitonic Merge Sort
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Bitonic Merge Sort
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Bitonic Merge Sort
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SIMD-Based Bitonic Sorting
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Nested Loop Join (NLJ)

Dataset: L2-256KB \ Dataset: LLC-8MB | Dataset: L2-256KB | Dataset: LLC-8MB |

=
(-
Q
=5

100%

c :
o mAVX O ; B AVX
£ PM o 5 I PIM
= 75% £ 75% 3 X
c = £ o
= 7] g Ty
= 0% g 50% " ]
o O '
E‘j 25% 5 25%

()]

0% M| m L

1x 4x 8x : Ix 4x 8x 16x 32x Ix 4x 8x 16x 32x
Loop Unroll Depth Loop Unroll Depth

* AVX outperforms PIM when inner relation fits in cache
* PIM reduces energy by 2x
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Hash Join

Dataset: L1-64KB lDataset L2-256KB | Dataset: LLC-8MB lDataset DRAM- 1GB| 100% ’ Dataset: L1-64KB | Dataset: L2-256KB | Dataset: LLC-8MB .Dataset DRAM-1GB

100% < : : mAVX
© 8 § L . PIM
£ 80% < ' : | g 80% < o 3
= ~ é S : ©: é
E 60% o 8 g 60% : 5
S ; o : 5 <
3 40% 111 > 40% .
@ <) : 5
& 20% | I I T 20%

L] : ;
0% A 0% ; : :
1x 4x 8x 16x32x 1x 4x 8x 16x32x 1x 4x 8x 16x32x 1x 4x 8x 16x32x 1x 4x 8x 16><32X Ix 4x 8x 16x32x 1x 4x 8x 16x32x 1x 4x 8x 16x32x
Loop Unroll Depth mAVX PIM Loop Unroll Depth

* PIM performs worse than AVX due to excessive random accesses
* PIM reduces energy (from 30% to 3x depending on the dataset size)
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Sort-Merge Join

XIM;64B I’lFﬂA-ZSGBj

g
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S J

61%

Execution Time

Unroll depth = 8x
AV X outperforms PIM

Energy Consumption
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Aggregation — Query 1

SELECT
1 returnflag,
1 linestatus,
sum(l quantity) as sum gty,
sum (1l extendedprice) as sum base price,
sum (1l extendedprice * (1 - 1 discount)) as sum disc price,
sum (1l extendedprice * (1 - 1 discount) * (1 + 1 tax)) as sum charge,
avg (1 quantity) as avg qgty,
avg (1 extendedprice) as avg price,
avg (1l discount) as avg disc, count(*) as count order
FROM
lineitem
WHERE
1 shipdate <= date '1998-12-01' - interval '90' day
GROUP BY . .
1 returnflag, 1 linestatus Aggregatlon with group by
ORDER BY

1 returnflag,

1 linestatus;
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Aggregation — Query 1 Evaluation

—~ W AVX512-64B [ PIM-256B mAVX512-64B  [1PIM-256B
g 16 | - | | c 5E-2 m
E 2
e 12 S _ e
b ? o 3E-2
c 8 | S35
% O 8 2E-2
| >~
g ¢ I I I S 1E-2
3 :
W0 | W OE+0 —
1x 2% 4x 8x  16x 1x 2% 4x 8x 16X
Loop Unroll Depth Loop Unroll Depth

PIM worse than AVX due to random accesses to hash table

Why scatter to hash table?
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Aggregation — PIM vs Smart SSD

0 - SAS SSD
—©@— Smart SSD (NSM)

’g:‘ 16 .4AVXS12‘548 _— P'M‘.25684 250 - (a) Elapsed Time | ~~~9--- Smart SSD (PAX)
GEJ 12 = 200
— c
- 8 8 —./ ’__,—‘
= = 100 -
g ) &------~-""" o
o 4 I I I E 50
)
<
W 0 - |
1x 2X 4x 8x  16x 0.1 10 100

Fraction of tuples that match the predicate (%)

Loop Unroll Depth

Solutions to improve aggregation performance in PIM?
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Aggregation — Query 3

SELECT
| orderkey,
sum(l_extendedprice * (1 - |_discount)) as revenue,
o_orderdate,
o_shippriority
FROM
customer,
orders,
lineitem
WHERE
c_mktsegment = 'BUILDING’
AND c_custkey = o_custkey .
AND | orderkey = o_orderkey JOIﬂ
AND o_orderdate < date '1995-03-15’
AND |_shipdate > date '1995-03-15’
GROUP BY

| _orderkey,

o_orderdate,

o_shippriority
ORDER BY

revenue desc,

o_orderdate
LIMIT 20;

Aggregation with group by
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Aggregation — Query 3 Evaluation

B AVX512-64B LI PIM-256B

B AVX512-64B LI PIM-256B

w 1.2 = 4E-3
= o -
QEJ 0.9 e __ 3E-3
— = U
- n o —
= 0.6 S3S 2E-3 |
— o
= 0O
3 0.3 l > 1E-3 f | l |
m -
3 i i :
Yoo — W OE+0 - -
1x 2X 4x 8X 16x 1x 2X 4x 8x  16x
Loop Unroll Depth Loop Unroll Depth

* Number of entries in hash table: a few hundreds (fit
* AVX outperforms PIM

in L2)
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Pipelined vs. Vectorized

Pipelined Vectorized
| N - -
| )
N N
Op1 Op2 Op3 Op1 \ Op2 / Op3

Intermediate results



Pipelined vs. Vectorized — Evaluation
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Selectivity
TPC-H Query 3, pipelined

Selectivity on ¢ mktsegment
ranges from 0.1% to 100%
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Selectivity

TPC-H Query 3, pipelined
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PIM vs. AVX512

Operator Dataset Performance Processing
Fit in cache? Metrics Architectures

Selection no/yes time/energy PIM
Projection no/yes time/energy PIM

Nested L1/L2 time AVX512
Loop LLC time PIM
yes energy PIM

Join Hash no/yes time AVX512
Join no/yes energy PIM

Sort no/yes time AVX512

Merge yes energy AVX512
no energy PIM

Aggregation no/yes time/energy AVX512
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Hybrid Execution

o
o
o

(o)}
o
o

1N
o
o

200

Execution Time (ms)

o

AVX512
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Hybrid

Energy Consumption
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(o))
-
m
w

1.2E-2

9.0E-3

3.0E-3

0.0E+0

AVX512 PIM Hybrid

Hybrid query plan is 35% faster than PIM and 45% faster than AVX512
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Summary

Operator Dataset Performance Processing
Fit in cache? Metrics Architectures

Selection no/yes time/energy PIM
Projection no/yes time/energy PIM

Nested L1/L2 time AVX512
Loop LLC time PIM
yes energy PIM

Join Hash no/yes time AVX512
Join no/yes energy PIM

Sort no/yes time AVX512

Merge yes energy AVX512
no energy PIM

Aggregation no/yes time/energy AVX512
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HMC Today?

<

Micron Announces Shift in High-Performance Memory Roadmap Strategy
By Andreas Schlapka

Now, as the volume projects that drove HMC success begin to reach maturity, at Micron we
are now turning our attention to the needs of the next generation of high-performance
compute and networking solutions. We continue to leverage our successful Graphics
memory product line (GDDR) beyond the traditional graphics market and for extreme
performance applications, Micron is investing in HBM (High-Bandwidth Memory) development
programs which we recently made public.
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https://www.micron.com/products/graphics-memory

HMC vs. HBM

Density
Bandwidth
10

Package Type
Expansion Capability
Memory Access
Power

Memory Suppliers

Thermal Dissipation
Req.

Ideal target markets

8 GB (4GB)

8 GB (4GB)

256 GB/s

480 GB/s (320 GB/s)

Parallel (1G — 2G), 8 channels,
128b per channel
Si-interposer

SerDes (up to 30G), 4(2) links per
HMC, 16 lanes/link
Discrete (SerDes)

No

Yes, via chaining

DDR
Lower

Packet based
Higher

SK Hynix and Samsung

Only Micron

High (Logic + DRAM in single
2.5D ASIC package)

Lower (discrete ICs)

Graphics, Networking, Less
frequently accessed
memory, Small form-factor

High-performance Computing,
Networking
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PIM - Q/A

Why scatter to hash table in aggregation?
How to make a hardware design popular? (Wide application area and general purpose)
Current state of research

Combine these operators in a full-fledged database?
* IBM Netezza and Oracle Exadata

Concurrency control?
PIM in other memory technologies?

Cost analysis
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Group Discussion

How to improve the performance of group-by aggregation in PIM?

How does smart SSD/memory affect transaction processing?

SRAM

' HBM

DRAM

Looking at the bigger picture, where will PIM
most likely to succeed in the storage hierarchy?

NVM

SSD

HDD

Cloud Storage 46



Before Next Lecture

Submit discussion summary to https://wisc-cs839-ngdb20.hotcrp.com
* Deadline: Friday 11:59pm

Submit review for
* The End of Slow Networks: It's Time for a Redesign
 [Optional] The End of a Myth: Distributed Transaction Can Scale
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