WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

CS 839: Design the Next-Generation Database
Lecture 19: RDMA for OLAP

Xiangyao Yu
3/31/2020

Discussion Highlights

SmartNIC vs. SmartSSD
« Different application scenarios: one for storage, one for network
« SATAvs. PCle?
« SmartNICs used for reducing CPU overhead; SmartSSD used for reducing data movement
« SmartNIC seems more popular among hardware vendors
« Computation in SmartNIC is stronger than SmartSSD

Database operators pushed to SmartNIC
« Common: encryption, caching
« OLTP: filtering, aggregation, locking, indexing
« OLAP: filtering, project, aggregation, compression

Benefits of putting smartness into the NIC
» Packet processing, latency reduction
« Effect of SmartSSD is limited due to caching; caching does not apply in SmartNIC
« Isolate security checks from CPU
» Collect run time statistics such as network usage and latencies
* Reduces burden on PCle

Today’s Paper

Distributed Join Algorithms on Thousands of Cores

Claude Barthels, Ingo Mdllert, Timo Schneider, Gustavo Alonso, Torsten Hoefler
Systems Group, Department of Computer Science, ETH Zurich
{firstname.lastname}@inf.ethz.ch

ABSTRACT

Traditional database operators such as joins are relevant not
only in the context of database engines but also as a build-
ing block in many computational and machine learning algo-
rithms. With the advent of big data, there is an increasing
demand for efficient join algorithms that can scale with the
input data size and the available hardware resources.

In this paper, we explore the implementation of distributed
join algorithms in systems with several thousand cores con-
nected by a low-latency network as used in high performance
computing systems or data centers. We compare radix hash
inin to sort-merge inin aleorithms and disenss their imnle-

VLDB 2017

This paper addresses the challenges of running state-of-
the-art, distributed radix hash and sort-merge join algo-
rithms at scales usually reserved to massively parallel sci-
entific applications or large map-reduce batch jobs. In the
experimental evaluation, we provide a performance analy-
sis of the distributed joins running on 4,096 processor cores
with up to 4.8 terabytes of input data. We explore how
join algorithms behave when high-bandwidth, low-latency
networks are used and specialized communication libraries
replace hand-tuned code. These two points are crucial to un-
derstand the evolution of distributed joins and to facilitate
the portability of the implementation to future systems.

Bandwidth and Latency

100000
o 10 Gbit
Ethernet po SSD
10000
g 1000 '/ RDMA Network (HDR 4x links)
%)
§ NVDIMM Ny
3 100 ,
Remote DRAM o LLC cache
Local DRAM
10
L1 cache
’
1 10 100 1000 10000

Bandwidth (GB/s)

Algorithm Designs

Shared RDMA & Distributed
Memory SmartNIC System

Concurrency Shared lock table ?7?? Partitioned lock

Control table

Fault Tolerance Shared log ?77? Two-phase commit

Join Radix join 27?7 Bloom-filter +
semi-join

Message Passing

TTTR

Shared memory Message Passing

Message Passing Interface (MPI)

A7 NP

Standard library interface for writing parallel programs in high-
performance computing (HPC)

« Hardware independent interface

« Can leverage performance of underlying hardware

MP| One-Sided Operations

Memory Window: memory that is accessible by other processes
through RMA operations

Multicore CPU Multicore CPU
RMA

Memory Memory

Window

MP| One-Sided Operations

MPI_Win_create: exposes local memory to RMA operation by other
processes.

 Collective operation
» Creates window obiject

MPI_Win_free: deallocates window object
MPI_Put: moves data from local memory to remote memory
MPI_Get: retrieves data from remote memory into local memory

MPI_Win_lock and MPI_Win_unlock to protect RMA operations on a
specific window

Radix Hash Join

Partitioned hash join achieves the best performance when each

partition of the inner relation fits in cache

= A large number of partitions

Partitioning

PO

P1

Pk

— Performance suffers when the # partitions > # TLB entries or # of

cachelines in the cache

Radix Join: Partition through multiple passes

10

Radix Hash Join

........

rtnseme | aohh ddib
JITTITT I ### éééé
ouuEssE | ooo 5

15t pass of partitioning

11

Radix Hash Join

| Process 1

| Process 2

Inner Relation (Part 2)

..................

MPI Put

Data shuffle

ST

i

i 1
Outer Relation (Part 1) i Outer Relation (Part 2)

Radix Hash Join

Following passes of
partitioning

13

Radix Hash Join

...........

*1-

BB M

LLUNNNLLL

Partition outer relation

Radix Hash Join

MPI Put

Build and probe

15

Radix Hash Join — Performance Model

Compute the histogram
« Determine the size of memory windows
» Assignment of partitions to nodes
« Offsets within memory windows into which each process writes exclusively

16

Radix Hash Join — Performance Model

Multi-pass partitioning

Number of passes d = |logp,, (|R|/cache size)

Fp : partitioning fan-out

1 d—1
. .y . Ta,r — _|_ . R + S
Time of partitoning Tows = -+ -5) - (I +1S)

Pnet — min (Ppa,rt, BWnode)

t

17

Radix Hash Join — Performance Model

Build and Probe

R, IR
p- Pbuild P Pbuild

Build Time Thua = (Fp)? -

Probe Time T,,0pe = (Fp)® - Sl _ 5]

D Pprobe B D Pprobe

18

Radix Hash Join — Performance Model

Trdx — Thist + Tpart + Tbuild + Tprobe
IR +1S]
D - Pscan

+ (oot) (Rl IS)

. IR
P - Pouild
. 18]

19

Sort-Merge Join

Range partitioning

gggggllllgllllggggg
gmggg o g

;“‘Agggﬂé

Sort-Merge Join

i Process 1

Inner Relation (Part 1)

Process 2

Inner Relation (Part 2)

21

Sort-Merge Join

i Process 1 ' ,Process 2
]
l

Inner Relation (Part 1) : : Inner Relation (Part 2)

e R . Range partitioning

Sort individual runs

Sort-Merge Join

i Process 1

Inner Relation (Part 1)

e

Range 1

Process 2

Inner Relation (Part 2)

Range 1

Range partitioning
Sort individual runs

Data shuffle

Merge

23

Sort-Merge Join

i Process 1 ' ,Process 2
]
l

Inner Relation (Part 1) : : Inner Relation (Part 2)

: L Range partitionin
5 Rang‘;l/i;; Rgﬂ/i 9¢ partitioning
gﬂﬂﬂﬂ] g § gl ﬂuﬂﬂ Sort individual runs

sl ﬂﬂﬂﬂ Data shuffle

Merge

Sort-merge outer relation
24

Outer Relatlon (Part 1) - J Outer Relation (Part 2)
L}

Sort-Merge Join

\ Process 1 1 ,Process 2
|]
l

Inner Relation (Part 1) : : Inner Relation (Part 2)

: Lo Range partitionin
; /ﬁ /i ge partitioning
Eﬂﬂuﬂ | a| <] < : i d| 4] a]| « ﬂﬂﬂﬂ Sort individual runs

o] o] a2 ﬂﬂﬂﬂ Data shuffle

Merge

BEBEPRER B

Join

Sort-merge outer relation
25

Sort-Merge Join — Performance Model
Partitioning

R S
T _ |RI+1S]
p'Ppart

26

Sort-Merge Join — Performance Model

Sorting individual runs of length /

Number of runs Np — |R| and Ng — S|

L |RI+IS

i ' Tsor = (IV Ns) -
Sortlng time t (R T S) P - Port D - Psort

27

Sort-Merge Join — Performance Model

Merging multiple runs into a sorted output

Number of iterations dr = [logg, (Nr/p)| and ds = [logp, (Ns/p)]

F'nr - Merge fan-in

LI
p- Pmerge D - Pmerge

I\/Ierge time Tmerge = dRr -

28

Sort-Merge Join — Performance Model

Joining sorted relations

R|+|S]
Tma ch —
teh p'Pscan

29

Sort-Merge Join — Performance Model

Total execution time

Tsm — A part + Tsort + Tmerge + Tmatch
_IR|+1S
D Ppart
L IR+ 1S
p ’ Psort
R| S|
+dg -
p- Pmerge 5 p - Pmerge
R S
. [BI+1s]
p ' Pscan

+ dr-

30

Radix-Hash Join vs. Sort-Merge Join

Radix join

Trdx — Thist + Tpart + Tbuild + Tprobe

_|RI+18]
D Pscan

(1 + d—1
+ p'Pnet p‘Ppart
R
P+ Pouild
S|
p'Pprobe

+

+

) (IR +15))

Sort-merge join
Tsm = part + Tsort + Tmerge + Tmatch

_|R|+18]
p'Ppart
R

L |RI+1S
p'Psort

31

Radix-Hash Join vs. Sort-Merge Join

Radix join

Trdx — Thist + Tpart + Tbuild + Tprobe

_[RI+18]
D- Pscan

(1 + d—1
+ p'Pnet p‘Ppart
R
P+ Pouild
S|
p'Pprobe

+

+

) (IR +15))

Sort-merge join
Tsm = part + Tsort + Tmerge + Tmatch

_|R|+18]
p'Ppart
R

o R +18]
p'Psort

32

Radix-Hash Join vs. Sort-Merge Join

Radix join

Trdx — Thist + Tpart + Tbuild + Tprobe

_[RI+18]
D- Pscan

(1 + d—1
+ p'Pnet p‘Ppart
R
P+ Pouild
S|
p'Pprobe

+

+

) (IR +15))

Sort-merge join
Tsm = part + Tsort + Tmerge + Tmatch

_|R|+18]
p'Ppart
R

o R +18]
p'Psort

33

Radix-Hash Join vs. Sort-Merge Join

Radix join

Trdx — Thist + Tpart + Tbuild + Tprobe

_[RI+18]
D- Pscan

(1 + d—1
+ p'Pnet p‘Ppart
R
P+ Pouild
S|
p'Pprobe

+

+

) (IR +15))

Sort-merge join
Tsm — A part + Tsort + Tmerge + Tmatch

_|R|+18]
p'Ppart
R

o IR +18]
p'Psort

34

Radix-Hash Join vs. Sort-Merge Join

Radix join

Trdx — Thist + Tpart + Tbuild + Tprobe

_[RI+18]
D Pscan

(1 + d—1
+ p'Pnet p‘Ppart
R
P+ Pouild
S|
p'Pprobe

+

+

) (IR +15))

Sort-merge join
Tsm — A part + Tsort + Tmerge + Tmatch

_|R|+18]
p'Ppart
R S

o IR +18]
p'Psort

35

Performance Evaluation

36

Baseline Experiments

12000

10000

8000

6000

S
o
o
o

throughput [10”6 input tuples/sec]

2000

o O
/O - ’
~-~ |Extrapolated performance
o
, Radlx hash join on rack-scale system (InfiniBand)
W|thout data compression
256 512 1024
number of cores

37

Scale-Out Experiments

50000

« Compression improves
performance

40000

30000 Radix hash join (M P|)
with data compression

« Radix join outperforms
sort-merge join

20000 Sort-merge join (MPI)

with data compression

throughput [10”6 input tuples/sec]

10000

0
128 512 1024 2048 4096
number of cores

38

Radix Join Execution Time Breakdown

[histogram [network partitioning =3 build / probe 0 198 cores I 512 cores N 2048 cores
8 [T window allocation ~ [0 local partitioning T imbalance 0 956 cores BZT 1024 cores BN 4096 cores
1.8
7 16 []
6 14
iy —
S s S
[&]
3 b
9, = 1.0
[+ @ .
E4 €
= | = N
S N S 08
3 3 jmem : \/ N E] d -
5 \ £ 067 N 4
7_ —
2
sl A -
N / N
! 0.2 4
' = = F N LYY il
| I
/ /I 0.0 N /\ 2 - /
128 cores 256 cores 512 cores 1024 cores 2048 cores 4096 cores partitioning PUT operations FLUSH operations wait time
(a) Total join execution (b) Network partitioning pass

Time of Histogram computation and window allocation largely remains constant

39

Radix Join Execution Time Breakdown

[histogram [network partitioning =3 build / probe 0 198 cores I 512 cores N 2048 cores
8 [T window allocation ~ [0 local partitioning T imbalance 0 956 cores BZT 1024 cores BN 4096 cores
1.8
7 16 []
6 14
» —_
= DR S 12
g5 S
[&]
3 >
> <10
[+4] — — © .
E4 E
ot — =]]
S % \ S 08 7]
- e roo
— S— 7— —
2
sl A -
N / N
L 02 4
' I [N zl?
| I
0 / / 0.0 D /\ 2 N /
128 cores 256 cores 512 cores 1024 cores 2048 cores 4096 cores partitioning PUT operations FLUSH operations wait time
(a) Total join execution (b) Network partitioning pass

Time of local partitioning and build/probe remain constant

40

Radix Join Execution Time Breakdown

[histogram [network partitioning =3 build / probe 0 198 cores I 512 cores N 2048 cores
[T window allocation ~ [0 local partitioning T imbalance) 956 cores 200 1024 cores I 4096 cores

~
oy
(=>]

|

[=2]
o=
i

w
-
N

=
o

o
®

N
|

execution time [seconds]
F =Y
execution time [seconds]

!
/]
]1
NN

AN
AN
A

(=]
N
N

] N
% T_

N
N 4 { M—Hf
0 | | [1 L N AN / N /

128 cores 256 cores 512 cores 1024 cores 2048 cores 4096 cores partitioning PUT operations FLUSH operations wait time

o
o

(a) Total join execution (b) Network partitioning pass

Time of network partitioning increases at more than 1024 cores

41

Radix Join Execution Time Breakdown

[histogram [network partitioning =3 build / probe 7 128 cores B 512 cores N 2048 cores
[T window allocation ~ [0 local partitioning T imbalance 0 956 cores BZT 1024 cores BN 4096 cores

~
oy
(=>]

[=2]
o=
i

w
-
N

g
o

/]

E
|

execution time [seconds]
F =Y
execution time [seconds]

!
/]
]\
NN

)
o
P
AN

i
£

1
o_l_ 7 M z 7 AN / X Y

128 cores 256 cores 512 cores 1024 cores 2048 cores 4096 cores partitioning PUT operations FLUSH operations wait time

o
o
va

(a) Total join execution (b) Network partitioning pass

Time of network partitioning increases at more than 1024 cores

* Partitioning fan-out is increased beyond its optimal setting
« Additional time spent in MPIl_Put and MPI_Flush 42

Radix Join Execution Time Breakdown

[histogram [network partitioning =3 build / probe
8 [T window allocation ~ [0 local partitioning T imbalance
7
—
6
) -
c
o5 ——
[&]
3,
® P
E4
- J— | —
- B K <
3
g3 << N
>
(4]
2
1
| l ' —
| I
. i 7
128 cores 256 cores 512 cores 1024 cores 2048 cores 4096 cores

(a) Total join execution

execution time [seconds]
o o o e —
= > ® o o

o
)

o
o

[128 cores [512 cores

[256 cores 2771 1024 cores

[N 2048 cores
[4096 cores

v
N TV
7_ —
d 7
N / N
%
N /| W }f
N Z N / N Z
partitioning PUT operations FLUSH operations wait time

(b) Network partitioning pass

Time due to load imbalance increases with core count

43

Sort-Merge Join Execution Time Breakdown

execution time [seconds]

[4 partitioning
[CT1 window allocation

[sorting
0 merging

X1 joining
[imbalance

D

N N

/|

\

N
N

A

128 cores

256 cores

512 cores 1024 cores

2048 cores

(a) Total join execution

4096 cores

execution time [seconds]

=
[+-}

=
(=2}

o
FN

=
N

-y
o

o
@

o
o

o
»

o
)

e
o

N

/

[128 cores [512 cores N 2048 cores
] 256 cores 271 1024 cores [4096 cores
N
I\
N
d
/ —
d
4 N
-

B

sorting

PUT operations

(b) Sorting phase

44

Sort-Merge Join Execution Time Breakdown

A partitioning [sorting X1 joining

1 128 cores 1 512 cores N 2048 cores
[T1 window allocation 1 merging = imbalance

[256 cores 2771 1024 cores [4096 cores

=
[+-}

~
-y
[=>]

6 14
z l =
§ 5 [mm l \ g
(&
£ \ 2. 10 /
- .
£ 4 N\ £
= =
S N 5 08 %
—
g 3N g
P g 0.6 R
2 /

|
—

|

|

]
[L
]
?%

128 cores 256 cores 512 cores 1024 cores 2048 cores 4096 cores ' sorting PUT operations wait time

(a) Total join execution (b) Sorting phase

Partitioning fan-out is pushed beyond its optimal configuration

45

Sort-Merge Join Execution Time Breakdown

A partitioning [sorting X1 joining
[T1 window allocation 1 merging = imbalance

1 128 cores 1 512 cores N 2048 cores
[256 cores 2771 1024 cores [4096 cores

=
[+-}

~
-y
[=>]

6 14
by —
= l S 12
S5 I I s
g ¢ S /
E 4 AN IS
pra) e
S < 0.8
% 3 ————— .g /
[+] : P =
< S 06 /
[+4] [+ _—
2 /

|
K
N
N

|

N
||
S

\]

128 cores 256 cores 512 cores 1024 cores 2048 cores 4096 cores sorting PUT operations wait time

e <
o

(a) Total join execution (b) Sorting phase

Within sorting, time of network shuffling increases with core count

46

Sort-Merge Join Execution Time Breakdown

A partitioning [sorting X1 joining

1 128 cores 1 512 cores N 2048 cores
[T1 window allocation 1 merging = imbalance

[256 cores 2771 1024 cores [4096 cores

=
[+-}

~
-y
[=>]

6 14
- B Z 1,
S 5 [T g1

(&
: — & 4
y - 1.0
E 4 E
=] —— =
S S 08
=] — -
) — 3
% < 0.6
[+

/.
a4

N
N\

7

\
?%

128 cores 256 cores 512 cores 1024 cores 2048 cores 4096 cores ' sorting PUT operations wait time

(a) Total join execution (b) Sorting phase

Time of merge and joining stays constant

Time due to load imbalance slightly increases with core count
47

Scale-Up Experiments

25000
16000
o
n
20000 14000
ey)
o 3 4 cores/node
F g 12000 8 cores/npde
= 4 cores/node = 0
] frar}
& 15000 £ 10000
g " g
s 8 cores/node Ll P
S S 8000
=’ 10000)
s S 6000
(=] oD
] b=
2 2
= £ 4000
5000
A 2000
0 0
128 256 512 1024 128 256 512 1024
number of cores number of cores
(a) Radix hash join (b) Sort-merge join

With more cores per machine, considerably more time spent on MPI_Put
and MPIL_Flush. Difficult to fully interleave computation and

communication
48

Comparison with the Model

Radix hash join

Sort-merge join

Phase Exec. Time Model Diff. Partitoning 1.20s 1.02s +0.18s
Histogram Comp. 0.34s 0.36s —0.02s Wmfiow Allocation 0.06s o +0.06s
. : Sorting 1.99s 1.45s +0.54s
IMb.ndmAﬂma.ﬁm 0.21s — 10, Moere: 181 |78 0.03
Network Partitioning 2.08s 0.67s +1.41s crging 018 (08 0.8
a— Matching 0.26s 0.36s —0.10s
Local Partitioning 0.58s 0.67s —0.09s
. Imbalance 0.38s — +0.38s
Build-Probe 0.51s 0.51s +0.00s Total 5 70 461 1.09
Imbalance 0.62s — +0.62s ota U8 D28 +1.09
Total 4.34s 2.21s +2.13s
Parameters [million tuples per second]
RHJ: Pgcan = 225, Ppgyyt = 120, Ppet = 1024, Py 414 = 120, Pprobe = 225

SMJ: Ppart = 78’ PSOI‘t = 75, Pnet = 1024, Pmerge = 45, Pscan = 225

Network shuffling is the bottleneck

49

RDMA for OLAP — Q/A

Collective communication scheduling for joins?

Supercomputers used in the real world for database workloads?
Radix join vs. hash join?

Radix join does not achieve theoretical maximum performance
What is partition fan-out?

MPI vs. shared memory for join

50

Group Discussion

How can Smart NICs help improve the performance of joins?

Can you think of any hardware/software techniques that may close the
performance gap between radix join and sort-merge join?

Can you think of any hardware/software technigues that may allow
radix join to achieve its theoretical maximum performance?

51

Before Next Lecture

Submit discussion summary to https://wisc-cs839-ngdb20.hotcrp.com
* Deadline: Wednesday 11:59pm

Submit review for

« Amazon Aurora: Design Considerations for High Throughput Cloud-Native
Relational Databases

* [optional] Amazon Aurora: On Avoiding Distributed Consensus for 1/Os,
Commits, and Membership Changes

52

https://wisc-cs839-ngdb20.hotcrp.com/

