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Discussion Highlights

SmartNIC vs. SmartSSD
« Different application scenarios: one for storage, one for network
« SATAvs. PCle?
« SmartNICs used for reducing CPU overhead; SmartSSD used for reducing data movement
« SmartNIC seems more popular among hardware vendors
« Computation in SmartNIC is stronger than SmartSSD

Database operators pushed to SmartNIC
« Common: encryption, caching
« OLTP: filtering, aggregation, locking, indexing
« OLAP: filtering, project, aggregation, compression

Benefits of putting smartness into the NIC
» Packet processing, latency reduction
« Effect of SmartSSD is limited due to caching; caching does not apply in SmartNIC
« Isolate security checks from CPU
» Collect run time statistics such as network usage and latencies
* Reduces burden on PCle



Today’s Paper

Distributed Join Algorithms on Thousands of Cores

Claude Barthels, Ingo Mdllert, Timo Schneider, Gustavo Alonso, Torsten Hoefler
Systems Group, Department of Computer Science, ETH Zurich
{firstname.lastname}@inf.ethz.ch

ABSTRACT

Traditional database operators such as joins are relevant not
only in the context of database engines but also as a build-
ing block in many computational and machine learning algo-
rithms. With the advent of big data, there is an increasing
demand for efficient join algorithms that can scale with the
input data size and the available hardware resources.

In this paper, we explore the implementation of distributed
join algorithms in systems with several thousand cores con-
nected by a low-latency network as used in high performance
computing systems or data centers. We compare radix hash
inin to sort-merge inin aleorithms and disenss their imnle-

VLDB 2017

This paper addresses the challenges of running state-of-
the-art, distributed radix hash and sort-merge join algo-
rithms at scales usually reserved to massively parallel sci-
entific applications or large map-reduce batch jobs. In the
experimental evaluation, we provide a performance analy-
sis of the distributed joins running on 4,096 processor cores
with up to 4.8 terabytes of input data. We explore how
join algorithms behave when high-bandwidth, low-latency
networks are used and specialized communication libraries
replace hand-tuned code. These two points are crucial to un-
derstand the evolution of distributed joins and to facilitate
the portability of the implementation to future systems.



Bandwidth and Latency
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Algorithm Designs

Shared RDMA & Distributed
Memory SmartNIC System

Concurrency Shared lock table  ?7?? Partitioned lock

Control table

Fault Tolerance Shared log ?77? Two-phase commit

Join Radix join 27?7 Bloom-filter +
semi-join



Message Passing

TTTR

Shared memory Message Passing




Message Passing Interface (MPI)

A7 NP

Standard library interface for writing parallel programs in high-
performance computing (HPC)

« Hardware independent interface

« Can leverage performance of underlying hardware



MP| One-Sided Operations

Memory Window: memory that is accessible by other processes
through RMA operations

Multicore CPU Multicore CPU
RMA

Memory Memory

Window




MP| One-Sided Operations

MPI_Win_create: exposes local memory to RMA operation by other
processes.

 Collective operation
» Creates window obiject

MPI_Win_free: deallocates window object
MPI_Put: moves data from local memory to remote memory
MPI_Get: retrieves data from remote memory into local memory

MPI_Win_lock and MPI_Win_unlock to protect RMA operations on a
specific window



Radix Hash Join

Partitioned hash join achieves the best performance when each

partition of the inner relation fits in cache

= A large number of partitions

Partitioning

PO

P1

Pk

— Performance suffers when the # partitions > # TLB entries or # of

cachelines in the cache

Radix Join: Partition through multiple passes

10



Radix Hash Join
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Radix Hash Join

| Process 1

| Process 2

Inner Relation (Part 2)
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MPI Put

Data shuffle
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Radix Hash Join

Following passes of
partitioning
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Radix Hash Join
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Radix Hash Join

MPI Put

Build and probe
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Radix Hash Join — Performance Model

Compute the histogram
« Determine the size of memory windows
» Assignment of partitions to nodes
« Offsets within memory windows into which each process writes exclusively
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Radix Hash Join — Performance Model

Multi-pass partitioning

Number of passes d = |logp,, (|R|/cache size)

Fp : partitioning fan-out

1 d—1
. .y . Ta,r — _|_ . R + S
Time of partitoning  Tows = -+ -5 ) - (I +1S)

Pnet — min (Ppa,rt, BWnode)

t
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Radix Hash Join — Performance Model

Build and Probe

R, IR
p- Pbuild P Pbuild

Build Time  Thua = (Fp)? -

Probe Time  T,,0pe = (Fp)® - Sl _ 5]

D Pprobe B D Pprobe
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Radix Hash Join — Performance Model

Trdx — Thist + Tpart + Tbuild + Tprobe
IR +1S]
D - Pscan

+ (oot ) (Rl IS)

. IR
P - Pouild
. 18]
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Sort-Merge Join

Range partitioning
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Sort-Merge Join

i Process 1

Inner Relation (Part 1)

Process 2

Inner Relation (Part 2)
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Sort-Merge Join

i Process 1 ' ,Process 2
]
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Inner Relation (Part 1) : : Inner Relation (Part 2)

e R . Range partitioning

Sort individual runs




Sort-Merge Join

i Process 1

Inner Relation (Part 1)

e

Range 1

Process 2

Inner Relation (Part 2)

Range 1

Range partitioning
Sort individual runs

Data shuffle

Merge
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Sort-Merge Join

i Process 1 ' ,Process 2
]
l

Inner Relation (Part 1) : : Inner Relation (Part 2)

: L Range partitionin
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gﬂﬂﬂﬂ ] g § gl ﬂuﬂﬂ Sort individual runs
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Sort-merge outer relation
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Sort-Merge Join
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Sort-Merge Join — Performance Model
Partitioning

R S
T _ |RI+1S]
p'Ppart
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Sort-Merge Join — Performance Model

Sorting individual runs of length /

Number of runs Np — |R| and  Ng — S|

L |RI+IS

i ' Tsor = (IV Ns) -
Sortlng time t ( R T S) P - Port D - Psort

27



Sort-Merge Join — Performance Model

Merging multiple runs into a sorted output

Number of iterations dr = [logg, (Nr/p)| and ds = [logp, (Ns/p)]

F'nr - Merge fan-in

LI
p- Pmerge D - Pmerge

I\/Ierge time Tmerge = dRr -
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Sort-Merge Join — Performance Model

Joining sorted relations

R|+|S]
Tma ch —
teh p'Pscan

29



Sort-Merge Join — Performance Model

Total execution time

Tsm — A part + Tsort + Tmerge + Tmatch
_IR|+1S
D Ppart
L IR+ 1S
p ’ Psort
R| S|
+dg -
p- Pmerge 5 p - Pmerge
R S
. [BI+1s]
p ' Pscan

+ dr-
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Radix-Hash Join vs. Sort-Merge Join

Radix join

Trdx — Thist + Tpart + Tbuild + Tprobe
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Sort-merge join
Tsm = part + Tsort + Tmerge + Tmatch
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Radix-Hash Join vs. Sort-Merge Join

Radix join

Trdx — Thist + Tpart + Tbuild + Tprobe
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Radix-Hash Join vs. Sort-Merge Join

Radix join

Trdx — Thist + Tpart + Tbuild + Tprobe

_[RI+18]
D- Pscan

( 1 + d—1
+ p'Pnet p‘Ppart
R
P+ Pouild
S|
p'Pprobe

+

+

) (IR +15))

Sort-merge join
Tsm = part + Tsort + Tmerge + Tmatch

_|R|+18]
p'Ppart
R

o R +18]
p'Psort

33



Radix-Hash Join vs. Sort-Merge Join

Radix join

Trdx — Thist + Tpart + Tbuild + Tprobe
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Radix-Hash Join vs. Sort-Merge Join

Radix join

Trdx — Thist + Tpart + Tbuild + Tprobe
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Performance Evaluation
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Baseline Experiments
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Scale-Out Experiments

50000

« Compression improves
performance

40000

30000 Radix hash join (M P|)
with data compression

« Radix join outperforms
sort-merge join

20000 Sort-merge join (MPI)

with data compression

throughput [10”6 input tuples/sec]
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0
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number of cores
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Radix Join Execution Time Breakdown
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Time of Histogram computation and window allocation largely remains constant
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Radix Join Execution Time Breakdown
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Time of local partitioning and build/probe remain constant
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Radix Join Execution Time Breakdown

[ histogram [ network partitioning =3 build / probe 0 198 cores I 512 cores N 2048 cores
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Time of network partitioning increases at more than 1024 cores
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Radix Join Execution Time Breakdown

[ histogram [ network partitioning =3 build / probe 7 128 cores B 512 cores N 2048 cores
[T window allocation ~ [0 local partitioning T imbalance 0 956 cores  BZT 1024 cores BN 4096 cores

~
oy
(=>]

[=2]
o=
i

w
-
N

g
o

/]

E
|

execution time [seconds]
F =Y
execution time [seconds]

!
/]
]\
NN

)
o
P
AN

i
£

1
o_l_ 7 M z 7 AN / X Y

128 cores 256 cores 512 cores 1024 cores 2048 cores 4096 cores partitioning PUT operations FLUSH operations wait time

o
o
va

(a) Total join execution (b) Network partitioning pass

Time of network partitioning increases at more than 1024 cores

* Partitioning fan-out is increased beyond its optimal setting
« Additional time spent in MPIl_Put and MPI_Flush 42



Radix Join Execution Time Breakdown
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Time due to load imbalance increases with core count
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Sort-Merge Join Execution Time Breakdown

execution time [seconds]

[ 4 partitioning
[CT1 window allocation

[ sorting
0 merging

X1 joining
[ imbalance

D

N N

/|

\

N
N

A

128 cores

256 cores

512 cores 1024 cores

2048 cores

(a) Total join execution

4096 cores

execution time [seconds]

=
[+-}

=
(=2}

o
FN

=
N

-y
o

o
@

o
o

o
»

o
)

e
o

N

/

[ 128 cores [ 512 cores N 2048 cores
] 256 cores 271 1024 cores [ 4096 cores
N
I\
N
d
/ —
d
4 N
-

B

sorting

PUT operations

(b) Sorting phase

44



Sort-Merge Join Execution Time Breakdown

A partitioning [ sorting X1 joining
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Partitioning fan-out is pushed beyond its optimal configuration
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Sort-Merge Join Execution Time Breakdown

A partitioning [ sorting X1 joining
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Within sorting, time of network shuffling increases with core count
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Sort-Merge Join Execution Time Breakdown

A partitioning [ sorting X1 joining
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(a) Total join execution (b) Sorting phase

Time of merge and joining stays constant

Time due to load imbalance slightly increases with core count
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Scale-Up Experiments
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With more cores per machine, considerably more time spent on MPI_Put
and MPIL_Flush. Difficult to fully interleave computation and

communication
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Comparison with the Model

Radix hash join

Sort-merge join

Phase Exec. Time Model Diff. Partitoning 1.20s 1.02s +0.18s
Histogram Comp. 0.34s 0.36s —0.02s Wmfiow Allocation 0.06s o +0.06s
. : Sorting 1.99s 1.45s +0.54s
IMb.ndmAﬂma.ﬁm 0.21s — 10, Moere: 181 |78 0.03
Network Partitioning 2.08s 0.67s +1.41s crging 018 (08 0.8
a— Matching 0.26s 0.36s —0.10s
Local Partitioning 0.58s 0.67s —0.09s
. Imbalance 0.38s — +0.38s
Build-Probe 0.51s 0.51s +0.00s Total 5 70 461 1.09
Imbalance 0.62s — +0.62s ota U8 D28 +1.09
Total 4.34s 2.21s +2.13s
Parameters [million tuples per second]
RHJ: Pgcan = 225, Ppgyyt = 120, Ppet = 1024, Py 414 = 120, Pprobe = 225

SMJ: Ppart = 78’ PSOI‘t = 75, Pnet = 1024, Pmerge = 45, Pscan = 225

Network shuffling is the bottleneck
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RDMA for OLAP — Q/A

Collective communication scheduling for joins?

Supercomputers used in the real world for database workloads?
Radix join vs. hash join?

Radix join does not achieve theoretical maximum performance
What is partition fan-out?

MPI vs. shared memory for join
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Group Discussion

How can Smart NICs help improve the performance of joins?

Can you think of any hardware/software techniques that may close the
performance gap between radix join and sort-merge join?

Can you think of any hardware/software technigues that may allow
radix join to achieve its theoretical maximum performance?
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Before Next Lecture

Submit discussion summary to https://wisc-cs839-ngdb20.hotcrp.com
* Deadline: Wednesday 11:59pm

Submit review for

« Amazon Aurora: Design Considerations for High Throughput Cloud-Native
Relational Databases

* [optional] Amazon Aurora: On Avoiding Distributed Consensus for 1/Os,
Commits, and Membership Changes
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