
Xiangyao Yu
3/31/2020

CS 839: Design the Next-Generation Database
Lecture 19: RDMA for OLAP

1

Discussion Highlights

2

SmartNIC vs. SmartSSD
• Different application scenarios: one for storage, one for network
• SATA vs. PCIe?
• SmartNICs used for reducing CPU overhead; SmartSSD used for reducing data movement
• SmartNIC seems more popular among hardware vendors
• Computation in SmartNIC is stronger than SmartSSD

Database operators pushed to SmartNIC
• Common: encryption, caching
• OLTP: filtering, aggregation, locking, indexing
• OLAP: filtering, project, aggregation, compression

Benefits of putting smartness into the NIC
• Packet processing, latency reduction
• Effect of SmartSSD is limited due to caching; caching does not apply in SmartNIC
• Isolate security checks from CPU
• Collect run time statistics such as network usage and latencies
• Reduces burden on PCIe

Today’s Paper

3VLDB 2017

Bandwidth and Latency

4

Algorithm Designs

5

Shared
Memory

RDMA &
SmartNIC

Distributed
System

Concurrency
Control

Shared lock table ??? Partitioned lock
table

Fault Tolerance Shared log ??? Two-phase commit

Join Radix join ??? Bloom-filter +
semi-join

Message Passing

6

Shared memory Message Passing

Message Passing Interface (MPI)

Standard library interface for writing parallel programs in high-
performance computing (HPC)

• Hardware independent interface

• Can leverage performance of underlying hardware

7

MPI One-Sided Operations
Memory Window: memory that is accessible by other processes
through RMA operations

8

Multicore CPU

Memory

Window

Multicore CPU

Memory

RMA

MPI One-Sided Operations
MPI_Win_create: exposes local memory to RMA operation by other
processes.
• Collective operation
• Creates window object

MPI_Win_free: deallocates window object
MPI_Put: moves data from local memory to remote memory
MPI_Get: retrieves data from remote memory into local memory
MPI_Win_lock and MPI_Win_unlock to protect RMA operations on a
specific window

9

Radix Hash Join
Partitioned hash join achieves the best performance when each
partition of the inner relation fits in cache

Þ A large number of partitions

Þ Performance suffers when the # partitions > # TLB entries or # of
cachelines in the cache

Radix Join: Partition through multiple passes
10

Partitioning

P0 P1 Pk…

Radix Hash Join

11

1st pass of partitioning

Radix Hash Join

12

Data shuffle

1st pass of partitioning

Radix Hash Join

13

Data shuffle

1st pass of partitioning

Following passes of
partitioning

Radix Hash Join

14

Data shuffle

1st pass of partitioning

Following passes of
partitioning

Partition outer relation

Radix Hash Join

15

Data shuffle

1st pass of partitioning

Following passes of
partitioning
Build and probe

Partition outer relation

Radix Hash Join – Performance Model

16

Compute the histogram
• Determine the size of memory windows
• Assignment of partitions to nodes
• Offsets within memory windows into which each process writes exclusively

Radix Hash Join – Performance Model

17

Multi-pass partitioning

Number of passes
: partitioning fan-out

Time of partitioning

Radix Hash Join – Performance Model

18

Build and Probe

Build Time

Probe Time

Radix Hash Join – Performance Model

19

+

+

+

Sort-Merge Join

20

Range partitioning

Sort-Merge Join

21

Range partitioning

Sort individual runs

Sort-Merge Join

22

Range partitioning

Sort individual runs

Data shuffle

Sort-Merge Join

23

Range partitioning

Sort individual runs

Data shuffle

Merge

Sort-Merge Join

24

Range partitioning

Sort individual runs

Data shuffle

Merge

Sort-merge outer relation

Sort-Merge Join

25

Range partitioning

Sort individual runs

Data shuffle

Merge

Sort-merge outer relation

Join

Sort-Merge Join – Performance Model

26

Partitioning

Sort-Merge Join – Performance Model

27

Sorting individual runs of length l

Number of runs

Sorting performance

Sorting time

Sort-Merge Join – Performance Model

28

Merging multiple runs into a sorted output

Number of iterations

: Merge fan-in

Merge time

Sort-Merge Join – Performance Model

29

Joining sorted relations

Sort-Merge Join – Performance Model

30

Total execution time

+

+

+

Radix-Hash Join vs. Sort-Merge Join

31

+
+

+

+

+

+

Radix join Sort-merge join

Radix-Hash Join vs. Sort-Merge Join

32

+
+

+

+

+

+

Radix join Sort-merge join

Radix-Hash Join vs. Sort-Merge Join

33

+
+

+

+

+

+

Radix join Sort-merge join

Radix-Hash Join vs. Sort-Merge Join

34

+
+

+

+

+

+

Radix join Sort-merge join

Radix-Hash Join vs. Sort-Merge Join

35

+
+

+

+

+

+

Radix join Sort-merge join

Performance Evaluation

36

Baseline Experiments

37

Scale-Out Experiments

• Compression improves
performance

• Radix join outperforms
sort-merge join

38

Radix Join Execution Time Breakdown

Time of Histogram computation and window allocation largely remains constant

39

Radix Join Execution Time Breakdown

Time of local partitioning and build/probe remain constant

40

Radix Join Execution Time Breakdown

Time of network partitioning increases at more than 1024 cores

41

Radix Join Execution Time Breakdown

Time of network partitioning increases at more than 1024 cores
• Partitioning fan-out is increased beyond its optimal setting
• Additional time spent in MPI_Put and MPI_Flush 42

Radix Join Execution Time Breakdown

Time due to load imbalance increases with core count

43

Sort-Merge Join Execution Time Breakdown

44

Sort-Merge Join Execution Time Breakdown

Partitioning fan-out is pushed beyond its optimal configuration

45

Sort-Merge Join Execution Time Breakdown

Within sorting, time of network shuffling increases with core count

46

Sort-Merge Join Execution Time Breakdown

Time of merge and joining stays constant
Time due to load imbalance slightly increases with core count

47

Scale-Up Experiments

48

With more cores per machine, considerably more time spent on MPI_Put
and MPI_Flush. Difficult to fully interleave computation and
communication

Comparison with the Model

Network shuffling is the bottleneck
49

RDMA for OLAP – Q/A
Collective communication scheduling for joins?

Supercomputers used in the real world for database workloads?

Radix join vs. hash join?

Radix join does not achieve theoretical maximum performance

What is partition fan-out?

MPI vs. shared memory for join
50

Group Discussion
How can Smart NICs help improve the performance of joins?

Can you think of any hardware/software techniques that may close the
performance gap between radix join and sort-merge join?

Can you think of any hardware/software techniques that may allow
radix join to achieve its theoretical maximum performance?

51

Before Next Lecture
Submit discussion summary to https://wisc-cs839-ngdb20.hotcrp.com
• Deadline: Wednesday 11:59pm

Submit review for
• Amazon Aurora: Design Considerations for High Throughput Cloud-Native

Relational Databases
• [optional] Amazon Aurora: On Avoiding Distributed Consensus for I/Os,

Commits, and Membership Changes

52

https://wisc-cs839-ngdb20.hotcrp.com/

