WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

CS 839: Design the Next-Generation Database
Lecture 25: Time Series

Xiangyao Yu
4/21/2020

Announcements

Next lecture: Guest lecture by Dr. Shasank Chavan from Oracle

Final presentation schedule:

Day 1 (Tuesday, April 28) Project Name

1:05-- 1:15 Scheduling for HTAP systems on CPU-GPU clusters

1:15--1:25 Pushing Databases to the Edge

1:25--1:35 Graph Embedding on Diverse Deployment Architectures: An Experimental Study
1:35--1:45 Experimental Analysis of Graph Database Systems

1:45 -- 1:55 A survey of GPU accelerated database systems

1:55 -- 2:05 Machine learning in databases: Where are we now, where can we go?

2:05 -- 2:15 Performance comparison of Deferred Lock Enforcement and Control Lock Violation

Day 2 (Thursday, April 30)

Project Name

1:05-- 1:15 Frontend and Query Scheduling Engine Based on SQLite3

1:15--1:25 Exploiting Accelerator Level Parallelism to Accelerate Database Analytics
1:25--1:35 The Poor Man’s Ferrari: A New NVM-based Database Architecture
1:35--1:45 RdJoin: A join algorithm for RDMA networks

1:45 -- 1:55 Graph Databases: A Survey on Models and System Designs

1:55 -- 2:05 Opportunities for adaptive concurrency control protocols

Discussion Highlights

Challenges of applying VM-snapshot to a shared-memory OLTP system?
« The additional burden in taking a consistent snapshot.

« Consistent snapshot across machines is a hard distributed system problem.
« Fork() becomes more expensive

How to reduce the cost of fork() when database is large?
» Large pages and partitioning
« Copy on write on the page table itself
Append child parameters to parents page table (one page table for all processes)
Share the page tables with OLTP while recording changed pages with a side data structure.
Fork() performs CoW at tuple granularity

Most promising architecture of HTAP? (single vs. separate systems, shared vs.
separate data)
« Single system, separate data: since optimal data formats (row vs column) for OLTP and OLAP.

« Single system, shared data: different data formats (row/column) in different replicas; avoid data
sync and update propagation

« Separate system and separate data: no interference between OLTP and OLAP.
« Separate system and shared data: better scalability and high availability 3

Today’s Paper

Gorilla: A Fast, Scalable, In-Memory Time Series Database

Tuomas Pelkonen Scott Franklin Justin Teller
Paul Cavallaro Qi Huang Justin Meza Kaushik Veeraraghavan

Facebook, Inc.
Menlo Park, CA

ABSTRACT
FB Servers
Large-scale internet services aim to remain highly available .
and responsive in the presence of unexpected failures. Pro- Web Tier
viding this service often requires monitoring and analyzing =
tens of millions of measurements per second across a large =
number of systems, and one particularly effective solution —=—" Long term
is to store and query such measurements in a time series Gorilla ---- storage
database (TSDB). (HBase)
A key challenge in the design of TSDBs is how to strike Back-end

VLDB 2015

What is a Time Series Database (TSDB)?

According to Wikipedia

A time series database (TSDB) is a software system that is
optimized for storing and serving time series through
associated pairs of time(s) and value(s) ’ ’

What is a Time Series Database (TSDB)?

According to Wikipedia

A time series database (TSDB) is a software system that is
optimized for storing and serving time series through
associated pairs of time(s) and value(s) ’ ’

Q: Can | use a normal database with a column called “timestamp”?
A: Yes, you can. But performance will suffer.

Database Popularity

Number of systems per category (355 systems in total), April 2020

Wide column stores: 10
| Time Series DBMS: 33|

(Content stores: 2

Document stores: 47
Search engines: 21

(O Event Stores: 3

(™ Graph DBMS: 32

Key-value stores: 64
| Multivalue DBMS: 10
Native XML DBMS: 7
Relational DBMS: 142 Navigational DBMS: 2

Object oriented DBMS: 21
\ .
RDF stores: 19

Source: DB-Engines https://db-engines.com/

https://db-engines.com/

Database Popularity

Ranking scores per category in percent, April 2020

Document stores 9.2%

Graph DBMS 1.5%

Wide column stores 3.1%

I Time Series DBMS 0.7%

Search engines 4.6% Key-value stores 4.9%

Multivalue DBMS 0.2%
Native XML DBMS 0.3%
Object oriented DBMS 0.2%
RDF stores 0.3%

Popularity measure:
* Number of mentions of the system on websites
* Frequency of technical discussions about the system.
Relational DBMS 74.9% * Number of job offers, in which the system is
* Number of profiles in professional networks, in which

the system is mentioned.
Source: DB-Engines htips://db-engines.com/ » Relevance in social networks. 8

https://db-engines.com/

Trend Since 2013

1200
1000
" 800 - Graph DBMS
9 — Document stores
£ — Time Series DBMS
5 — Key-value stores
> 600 - Search engines
= — Wide column stores
= -~ RDF stores
e — Native XML DBMS
o = —— Object oriented DBMS
400 — Multivalue DBMS
— Relational DBMS
200
0

2013 2014 2015 2016 2017 2018 2019 2020
© 2020, DB-Engines.com

Source: DB-Engines https://db-engines.com/

https://db-engines.com/

Trend of the Last 24 Months

200

180

160 — Time Series DBMS
—— Object oriented DBMS
- Graph DBMS
— Multivalue DBMS
140 — Document stores
/ == — Key-value stores
/\/ RDF stores
— Search engines
/ — Native XML DBMS
120 — Wide column stores

. ‘/_/ ,A ’A — Relational DBMS
100 = ﬂf.'= /_

Popularity Changes

80
Apr 2018 Jul 2018 Oct 2018 Jan 2019 Apr 2019 Jul 2019 Oct 2019 Jan 2020 Apr 2020
© 2020, DB-Engines.com

Source: DB-Engines https://db-engines.com/ 10

https://db-engines.com/

Why is TSDB Popular?

Monitoring software systems: Virtual machines, containers, services,
applications

Monitoring physical systems: Equipment, machinery, connected devices,
the environment, our homes, our bodies (Internet of Things)

Asset tracking applications: Vehicles, trucks, physical containers, pallets
Financial trading systems: Classic securities, newer cryptocurrencies
Eventing applications: Tracking user/customer interaction data

Business intelligence tools: Tracking key metrics and the overall health of
the business

Source: What the heck is time-series data (and why do | need a time-series database)? 11
https://blog.timescale.com/blog/what-the-heck-is-time-series-data-and-why-do-i-need-a-time-series-database-dcf3b1b18563/

https://blog.timescale.com/blog/what-the-heck-is-time-series-data-and-why-do-i-need-a-time-series-database-dcf3b1b18563/

Gorilla

FB Servers
Web Tier

Back-end
Services

C==+1
=a

Gorilla

Alarms and
automatic
remediation

Time Series
Correlation

Long term
storage
(HBase)

Ad-hoc visualizations and
dashboards

WA
\/l

L e

An in-memory cache for the slower

TSDB on HBase

12

Time Series Compression

Data format: (timestamp, value)
* Timestamp: 64-bit
« Value: 64-bit double-precision floating point value

Timestamp compression

 Delta-of-delta

Value compression
« XOR

02:00:01 [10.2
02:00:02 |11.3
02:00:03 |11.8
02:00:04 [12.2

Time Series Compression

Data stream

comprossosann N\ / / ,/ /

Header: Al 11 q
March 24, 2015 02:00:00 | 82 | 12 | "0 1121 o0
Bit length 64 1 9 1 1 2+5+6+1
b) c)
N-2 timestamp | 02:00:00 - Previous Value 12.0 0x4028000000000000
N-1 timestamp | 02:01:02 Delta: 62 Value 24.0 0x4038000000000000
timestamp 02:02:02 Delta: 60 XOR - 0x0010000000000000
Delta of deltas: e e ———————
é (11 leading zeros, # of meaningful bits is 1)

Timestamp Compression

Key observation: Vast majority of data points arrive at a fixed interval

Original Values Delta Delta-of-Delta

02:00:04
02:00:08
02:00:12
02:00:16
02:00:20
02:00:24

e
o| ©O| ©O| ©O

64-bit 3-bit 1-bit

Timestamp Compression Algorithm

1. The block header stores the starting time stamp, t_1,
which is aligned to a two hour window; the first time
stamp, tp, in the block is stored as a delta from ¢t_; in

14 bits. * Delta-of-Delta
2. For subsequent time stamps, tn:

02:00:00 => Block header
(a) Calculate the delta of delta:
D=ty —tn_1) — (tn_1 — tn_2) 4 => Delta

N
(b) If D is zero, then store a single ‘0’ bit

(c) If D is between [-63, 64|, store ‘10’ followed by
the value (7 bits)

(d) If D is between [-255, 256], store ‘110’ followed by
the value (9 bits)

(e) if D is between [-2047, 2048], store ‘1110’ followed _
by the value (12 bits) 1-bit

(f) Otherwise store ‘1111’ followed by D using 32 bits

> Delta of delta

ol o] O] O

Timestamp Compression Example

Data stream

Compressed data

Header:
March 24, 2015 02:00:00 | 82 | 12
Bit length 64 1
’
b)
N-2 timestamp | 02:00:00 -
N-1 timestamp | 02:01:02 Delta: 62
timestamp 02:02:02 Delta: 60
Delta of deltas:
-2
T —
\

"10':-2

'0' '0' 1101111 000

1 1 2+5+6+1

Previous Value 12.0 0x4028000000000000

Value 24.0 0x4038000000000000

XOR - 0x0010000000000000
R e ————————

(11 leading zeros, # of meaningful bits is 1 }

17

Value Compression

Binary representation of floating point numbers

sign exponent (8 bits) fraction (23 bits)
| I |

o|011111oo|o1000000000000000000000 = 0.15625

31 30 2322 (bit index) 0
, XOR truth table
exponent fraction
sign (11 bit) (52 bit) Input
I | | Output
A B
o o o 0 O 0
63 52 0
0 1 1
1.0 1
11 0

18

Value Compression — XOR

0x4028000000000000
0x4038000000000000 ©x0010000000000000

DEE 0x402¢000000000000 0x0016000000000000
0x4028000000000000 0x0Q060¢0000000000
0x4041800000000000 0x00698¢0000000000

Double Representation XOR with previous

0x4021000000000000
0x402c200000000000 Ox0C
0x4000000000000000 Ox0O€
0x4021400000000000
0x402a333333333333 0x000b733333333333

Decimal

10000000000
10000000000

Value Compression — XOR

1. The first value is stored with no compression

2. If XOR with the previous is zero (same value), store
single ‘0’ bit
3. When XOR is non-zero, calculate the number of lead-

ing and trailing zeros in the XOR, store bit ‘1’ followed
by either a) or b):

(a) (Control bit ‘0’) If the block of meaningful bits
falls within the block of previous meaningful bits,
i.e., there are at least as many leading zeros and
as many trailing zeros as with the previous value,
use that information for the block position and
just store the meaningful XORed value.

(b) (Control bit ‘1’) Store the length of the number
of leading zeros in the next 5 bits, then store the
length of the meaningful XORed value in the next
6 bits. Finally store the meaningful bits of the

XORed value.

20

Value Compression Example

Data stream

Compressed data

Header: 1 LECI 1 n' 1 1. . 410
March 24, 2015 02:00:00 | 62 | 12 10':-2 '0 0 111101 000
Bit length 64 1 9 1 1 2+5+6+1
b) C)
N-2 timestamp | 02:00:00 - Previous Value 12.0 0x4028000000000000
N-1 timestamp | 02:01:02 Delta: 62 Value 24.0 0x4038000000000000
timestamp 02:02:02 Delta: 60 XOR - 0x0010000000000000
Delta of deltas: I ——————————————————————
é (11 leading zeros, # of meaningful bits is 1 }

21

Compression Effectiveness

Timestamp Compression Value Compression

o
S

Q0
o

59.06 (1.0)

o
o

3.35 (12) ”

"\
/}(\ N\ /A\

S
o

019 (9) [28.30 (26.6)

AN

N
o

Percent of floating values
(w/ compressed bits for each)

12.64 (39.6)

Percent of time stamps
(w/ compressed bits for each)

ol e 003 (16) 003 (3¢)

LK

o

Single bit '10' Control bit 'l I' Control bit
Timestamp delta-of-delta compression buckets Floating value compression buckets

[63,64] [255’256] [2047’20485681'

A two-hour block allows a compression ratio of 1.37 bytes per data point

22

In-Memory Data Structure

a)

ShardMap
vector<unique_ptr<TSmap>>

TSmap

vector<shared_ptr<TS>>

unordered_map<string,
shared_ptr<TS>> %

=

* TSmap uses a case-preserving, case-insensitive hash

d)

TS L
=== -
3

' Open data block
Append only string

e

23

Handling Failures

Replica 1 Replica 2
Shards — Nodes
D\:x/
Writes (No consistency) \ /
Queries

Node failure => data re-shard
« Data buffered in write client for 1 minute (prioritize recent data)

Query from a second replica if the first replica returns partial results

Example Use Case: Monitoring

100 -
§O)
> ©
oD /5
8 Routine process of copying release binary begins
S 50 -
©
5
o 25
()
o

0
5 10 15 20 25 30
Minutes

Time series correlation search

* Routine process of copying the release binary to Facebook’s web servers caused
an anomalous drop in memory used across the site

25

Query Latency

Gorilla &2 HBase /w cache 1B

- Gorilla on flash £ HBase [
=
c X
2 10° -
Z 103
= [113x]
e 102
S
o
> 10’
5
O 10%°

P50 P90 P99

Percentile

Discussion

What’s new in TSDB compared to Relational DB?
* Opportunities of data compression
* Different access pattern: append intensive
* Relaxed consistency model?
« Different query pattern

27

Time Series — Q/A

Conclusions in Gorilla generalized to other time series data?

Weak evaluation

Why store data up to 26 hours?

Gorilla works only with recent data

Other enterprise scale platforms implemented something like Gorilla?

Where else is TSDB useful?

28

