
Xiangyao Yu
1/28/2020

CS 839: Design the Next-Generation Database
Lecture 3: Analytics Basics

1

Announcements
Course website

http://pages.cs.wisc.edu/~yxy/cs839-s20/index.html

Email me if you are not in HotCRP
https://wisc-cs839-ngdb20.hotcrp.com

Email me if you are not enrolled

Office hour: Tue 2:30pm - 3:30pm @ CS 4385
Discussion submission deadline: 11:59pm the day after the lecture

2

http://pages.cs.wisc.edu/~yxy/cs839-s20/index.html
https://wisc-cs839-ngdb20.hotcrp.com/

Discussion Highlights
2PL vs. OCC
• 2PL is better for high contention, but needs to handle deadlocks.
• May choose based on application behavior

SQL vs. NoSQL
• A tradeoff of highly-skilled system engineers vs. application developers
• Depends on the application
• Configurable isolation levels

Logging scalability
• I/O cost, context switching cost, hardware buffer bottleneck
• Potential solutions: SSD, asynchronous logging

3

Today’s Agenda
Relational database

Operations

Row store

Column store

C-Store

4

OLTP vs. OLAP (recap)
OLTP: On-Line Transaction Processing
• Users submit transactions that contain simple read/write operations
• Example: banking, online shopping, etc.

OLAP: On-Line Analytical Processing
• Complex analytics queries that reveal insights behind data
• Example: business report, marketing, forecasting, etc.

5

OLTP vs. OLAP (recap)

OLTP database

Transactions

OLAP database
(Update Intensive) (Read Intensive, rare updates)

• Takes hours for
conventional databases

• Takes seconds for Hybrid
transactional/analytical
processing (HTAP)
systems

6

OLTP vs. OLAP

OLTP database OLAP database
(Update Intensive) (Read Intensive, rare updates)

Last lecture This lecture

7

Relation/Table

8

Student_ID Name Department_ID Age
1 Smith 1 21
2 Bob 2 25
3 Alex 1 26

Table 1: Students

Row/Tuple

Relation/Table

9

Student_ID Name Department_ID Age
1 Smith 1 21
2 Bob 2 25
3 Alex 1 26

Table 1: Students

Row/Tuple

Column/Attribute

Relation/Table

10

Student_ID Name Department_ID Age
1 Smith 1 21
2 Bob 2 25
3 Alex 1 26

Department_ID D_name Address
1 Computer Sciences 1210 W Dayton St
2 Math 480 Lincoln Dr

Table 1: Students

Table 1: DepartmentPrimary key

Relation/Table

11

Student_ID Name Department_ID Age
1 Smith 1 21
2 Bob 2 25
3 Alex 1 26

Department_ID D_name Address
1 Computer Sciences 1210 W Dayton St
2 Math 480 Lincoln Dr

Table 1: Students

Table 1: DepartmentPrimary key
Foreign key

Relation/Table

12

Student_ID Name Department_ID Age
1 Smith 1 21
2 Bob 2 25
3 Alex 1 26

Department_ID D_name Address
1 Computer Sciences 1210 W Dayton St
2 Math 480 Lincoln Dr

Table 1: Students

Table 1: DepartmentPrimary key
Foreign key

Rela
tion

ship

Relational Algebra
Select
Project
Cartesian product
Union
Set different
Rename

13

Relational Algebra Operations

14

Selection and Production Examples

15

Student_ID Name Department_ID Age
1 Smith 1 21
2 Bob 2 25
3 Alex 1 26

Table 1: Students

1. [Selection] All information of students under 24

Selection and Production Examples

16

Student_ID Name Department_ID Age
1 Smith 1 21
2 Bob 2 25
3 Alex 1 26

Table 1: Students

1. [Selection] All information of students under 24
2. [Projection] Names of all students in the department with Department_ID = 1

Cartesian product

17

Student_ID Name Department_ID Age
1 Smith 1 21
2 Bob 2 25
3 Alex 1 26

Department_ID D_name Address
1 Computer

Sciences
1210 W
Dayton St

2 Math 480 Lincoln Dr

Table 1: Students Table 1: Department

x

=

Student_ID Name Department_ID Age
1 Smith 1 21
2 Bob 2 25
3 Alex 1 26
1 Smith 1 21
2 Bob 2 25
3 Alex 1 26

Department_ID D_name Address
1 Computer Sciences 1210 W Dayton St
1 Computer Sciences 1210 W Dayton St
1 Computer Sciences 1210 W Dayton St
2 Math 480 Lincoln Dr
2 Math 480 Lincoln Dr
2 Math 480 Lincoln Dr

Why Cartesian product?

18

Student_ID Name Department_ID Age
1 Smith 1 21
2 Bob 2 25
3 Alex 1 26

Department_ID D_name Address
1 Computer

Sciences
1210 W
Dayton St

2 Math 480 Lincoln Dr

Table 1: Students Table 1: Department

x

=

Student_ID Name Department_ID Age
1 Smith 1 21
2 Bob 2 25
3 Alex 1 26
1 Smith 1 21
2 Bob 2 25
3 Alex 1 26

Department_ID D_name Address
1 Computer Sciences 1210 W Dayton St
1 Computer Sciences 1210 W Dayton St
1 Computer Sciences 1210 W Dayton St
2 Math 480 Lincoln Dr
2 Math 480 Lincoln Dr
2 Math 480 Lincoln Dr

Names of departments that contain students under 24?

Why Cartesian product?

19

Student_ID Name Department_ID Age
1 Smith 1 21
2 Bob 2 25
3 Alex 1 26

Department_ID D_name Address
1 Computer

Sciences
1210 W
Dayton St

2 Math 480 Lincoln Dr

Table 1: Students Table 1: Department

x

=

Student_ID Name Department_ID Age
1 Smith 1 21
2 Bob 2 25
3 Alex 1 26
1 Smith 1 21
2 Bob 2 25
3 Alex 1 26

Department_ID D_name Address
1 Computer Sciences 1210 W Dayton St
1 Computer Sciences 1210 W Dayton St
1 Computer Sciences 1210 W Dayton St
2 Math 480 Lincoln Dr
2 Math 480 Lincoln Dr
2 Math 480 Lincoln Dr

Names of departments that contain students under 24?

Why Cartesian product?

20

Student_ID Name Department_ID Age
1 Smith 1 21
2 Bob 2 25
3 Alex 1 26

Department_ID D_name Address
1 Computer

Sciences
1210 W
Dayton St

2 Math 480 Lincoln Dr

Table 1: Students Table 1: Department

x

=

Student_ID Name Department_ID Age
1 Smith 1 21
2 Bob 2 25
3 Alex 1 26
1 Smith 1 21
2 Bob 2 25
3 Alex 1 26

Department_ID D_name Address
1 Computer Sciences 1210 W Dayton St
1 Computer Sciences 1210 W Dayton St
1 Computer Sciences 1210 W Dayton St
2 Math 480 Lincoln Dr
2 Math 480 Lincoln Dr
2 Math 480 Lincoln Dr

Names of departments that contain students under 24?

Why Cartesian product?

21

Student_ID Name Department_ID Age
1 Smith 1 21
2 Bob 2 25
3 Alex 1 26

Department_ID D_name Address
1 Computer

Sciences
1210 W
Dayton St

2 Math 480 Lincoln Dr

Table 1: Students Table 1: Department

x

=

Student_ID Name Department_ID Age
1 Smith 1 21
2 Bob 2 25
3 Alex 1 26
1 Smith 1 21
2 Bob 2 25
3 Alex 1 26

Department_ID D_name Address
1 Computer Sciences 1210 W Dayton St
1 Computer Sciences 1210 W Dayton St
1 Computer Sciences 1210 W Dayton St
2 Math 480 Lincoln Dr
2 Math 480 Lincoln Dr
2 Math 480 Lincoln Dr

Names of departments that contain students under 24?

Join (Natural Join)

22

Student_ID Name Department_ID Age
1 Smith 1 21
2 Bob 2 25
3 Alex 1 26

Department_ID D_name Address
1 Computer

Sciences
1210 W
Dayton St

2 Math 480 Lincoln Dr

Table 1: Students Table 1: Department

=
Student_ID Name Department_ID Age
1 Smith 1 21
2 Bob 2 25
3 Alex 1 26

D_name Address
Computer Sciences 1210 W Dayton St
Math 480 Lincoln Dr
Computer Sciences 1210 W Dayton St

⋈

Implementation

23

Storage Formats:
Row-store
Column-store

Operators:
Select
Project
Join

Tables on Storage

24

Student_ID Name Department_ID Age
1 Smith 1 21
2 Bob 2 25
3 Alex 1 26

Row store
1
Smith
1
21
2
Bob
2
25
3
Alex
1
26

Tables on Storage

25

Student_ID Name Department_ID Age
1 Smith 1 21
2 Bob 2 25
3 Alex 1 26

Row store
1
Smith
1
21
2
Bob
2
25
3
Alex
1
26

Column store
1
2
3
Smith
Bob
Alex
1
2
1
21
25
26

Select (Row-Store) - Scan

SELECT * FROM Student WHERE age < 24;

26

1
Smith
1
21
2
Bob
2
25
3
Alex
1
26

Student_ID Name Department_ID Age
1 Smith 1 21
2 Bob 2 25
3 Alex 1 26

• Sequentially read all rows from the table
• Send the row to output if age < 24

Select (Row-Store) - Index

27

1
Smith
1
21
2
Bob
2
25
3
Alex
1
26

Student_ID Name Department_ID Age
1 Smith 1 21
2 Bob 2 25
3 Alex 1 26

SELECT * FROM Student WHERE age < 24;

B-tree Index Indexing vs. Scan
• Runtime: O(output size) vs. O(input size)
• Access pattern: Potentially Random vs. Sequential

age

Project (Row-Store)

SELECT name FROM Student WHERE age < 24;

28

1
Smith
1
21
2
Bob
2
25
3
Alex
1
26

Student_ID Name Department_ID Age
1 Smith 1 21
2 Bob 2 25
3 Alex 1 26

• Send certain columns (rather than the entire rows) to output

Join (Row-Store)

29

Student_ID Name Department_ID Age
1 Smith 1 21
2 Bob 2 25
3 Alex 1 26

Department_ID D_name Address
1 Computer

Sciences
1210 W
Dayton St

2 Math 480 Lincoln Dr

⋈

=
Student_ID Name Department_ID Age
1 Smith 1 21
2 Bob 2 25
3 Alex 1 26

D_name Address
Computer Sciences 1210 W Dayton St
Math 480 Lincoln Dr
Computer Sciences 1210 W Dayton St

Join (Row-Store) – Nested Loop

30

Student_ID Name Department_ID Age
1 Smith 1 21
2 Bob 2 25
3 Alex 1 26

Department_ID D_name Address
1 Computer

Sciences
1210 W
Dayton St

2 Math 480 Lincoln Dr

⋈

foreach tuple r in R
foreach tuple s in S

if r and s satisfy the join condition
yield tuple <r,s>

Relation R Relation S

runtime = |R| * |S|

Join (Row-Store) – Index Join

31

Student_ID Name Department_ID Age
1 Smith 1 21
2 Bob 2 25
3 Alex 1 26

Department_ID D_name Address
1 Computer

Sciences
1210 W
Dayton St

2 Math 480 Lincoln Dr

⋈

foreach tuple r in R
S’ = Lookup r.joinKey in index of S
foreach s in S’

yield tuple <r,s>

Relation R Relation S

The inner relation must have the index

Join (Row-Store) – Merge Sort

32

Student_ID Name Department_ID Age
1 Smith 1 21
2 Bob 2 25
3 Alex 1 26

Department_ID D_name Address
1 Computer

Sciences
1210 W
Dayton St

2 Math 480 Lincoln Dr

⋈

Sort R using joinKey
Sort S using joinKey
Make one pass of R and S to join
Relations must be sorted on the join key

Relation R Relation S

sort time = |R|log(|R|) + |S|log(|S|)
runtime = |R| + |S|

Join (Row-Store) – Hash Join

33

Student_ID Name Department_ID Age
1 Smith 1 21
2 Bob 2 25
3 Alex 1 26

Department_ID D_name Address
1 Computer

Sciences
1210 W
Dayton St

2 Math 480 Lincoln Dr

⋈
Relation R Relation S

runtime = |R| + |S|

1
NULL NULL
2

Hash table of S

Foreach r in R
lookup the hash table of S

Column-Store

34

Student_ID Name Department_ID Age
1 Smith 1 21
2 Bob 2 25
3 Alex 1 26

Row store
1
Smith
1
21
2
Bob
2
25
3
Alex
1
26

Column store
1
2
3
Smith
Bob
Alex
1
2
1
21
25
26

Column-Store

35

Student_ID Name Department_ID Age
1 Smith 1 21
2 Bob 2 25
3 Alex 1 26

Row store
1
Smith
1
21
2
Bob
2
25
3
Alex
1
26

Column store
1
2
3
Smith
Bob
Alex
1
2
1
21
25
26

Pros of column store:
• Great when accessing a subset of

columns
• Easy to compress data

Cons of column store:
• Updates are expensive

Column-Store – Compression

36

Gender
Male
Male
Female
Female
Male
Female
Male

1100101

Column-Store – Selection, Projection

37

Projection: Straight-forward

Selection:
SELECT name, age WHERE age < 25;
age < 25 => bitstring
use the bitstring as a mask to access column “name”

C-Store
Aggressive compression
Overlapping projections of tables
• SELECT * WHERE age < 24;
• SELECT * WHERE gender = ’Male’

38

Gender
Male
Male
Male
Male
Female
Female
Female

Age
21
24
23
22
23
24
21

Gender
Male
Male
Male
Male
Female
Female
Female

Age
21
21
22
23
23
24
24

Sort by gender Sort by age

C-Store – Evaluation

39

Disk Space

Query Execution Time

C-Store – Q/A

40

Is C-store commercially available today?
• Yes. It is called Vertica https://www.vertica.com

How does snapshot-isolation work? Isn't this a weak-isolation model?

https://www.vertica.com/

Summary

41

Relation/table

Common operators: selection, projection, join

Implementations in row store

Column store

C-store

Group Discussion
What are the advantages and disadvantages of running transactions on a
column store?

What is the right data layout for HTAP (Hybrid transactional/analytical
processing)? Can you think of a way to combine the benefits of row-store
and column-store?

If there is a small processor (weak CPU and small DRAM) sitting right next
to disk, what would you use it for?

42

Before Next Lecture
Submit discussion summary to https://wisc-cs839-ngdb20.hotcrp.com
• One summary per group
• Authors: group members
• Any format is ok (e.g., pdf, doc, txt)
• Deadline: Wednesday 11:59pm

Submit review for
Staring into the Abyss: An Evaluation of Concurrency Control with One Thousand Cores
[optional] Concurrency Control Performance Modeling: Alternatives and Implications
[optional] OLTP Through the Looking Glass, and What We Found There

43

https://wisc-cs839-ngdb20.hotcrp.com/
http://pages.cs.wisc.edu/~yxy/cs839-s20/papers/1000cores_2014.pdf
http://pages.cs.wisc.edu/~yxy/cs839-s20/papers/cc_modeling_1987.pdf
http://pages.cs.wisc.edu/~yxy/cs839-s20/papers/hstore_lookingglass_2008.pdf

