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Announcements
Email me if you are not in HotCRP

https://wisc-cs839-ngdb20.hotcrp.com

New deadline for submitting paper review: 
Before lecture starts

This course is on PhD breadth requirement list 

Please talk to me to discuss project ideas
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https://wisc-cs839-ngdb20.hotcrp.com/


Discussion Highlights
Transactions on column-store
• Pros: Compression, good for read workload, good for sequential writes
• Cons: More I/O for row selection/update/insert

Data format for HTAP?
• Hot data in row format, convert cold data to column format in background
• Different formats in replicas

Small processor near disk
• Compression/decompression, encryption, filtering, sorting, hashing, hot data
• Coalesce random accesses
• Fast indexing
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Today’s Paper
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Story Behind the Paper
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Lesson learned: Talk to people about your research
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Many-core systems have arrived
ØThe era of single-core CPU speed-up is 

over
ØNumber of cores on a chip is increasing 

exponentially
§ 1000-core chips are a near…

ØDBMSs are not ready
§ Most DBMSs still focus on single-threaded 

performance
§ Existing works on multi-cores focus on 

small core count

Xeon Phi (up to 61 cores)

Tilera (up to 100 cores)
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Many-core systems have arrived
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Databases on 1000-core systems
Ø DBMS on future computer architectures
Ø Will DBMSs scale to this level of parallelism?

§ What are the main bottlenecks to scalability?
§ What improvements will be needed from the software and 

hardware perspectives?

All classic concurrency control algorithms fail to 
scale to 1000 cores.



Ø On Line Transaction Processing (OLTP)
Ø Concurrency control is a key limiting factor to the scalability

Ø new database: DBx1000
§ Support all seven classic concurrency control algorithms
§ Study the fundamental bottlenecks
§ https://github.com/yxymit/DBx1000

Ø Graphite Multi-core Simulator

1000-Core DBMS



Simulated Hardware
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Simulated Hardware
• CPU: 1024 in-order core
• Cache: 32KB L1, 512KB L2
• Network: 2D-mesh
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Graphite Simulator[1]

11[1] J. Miller, et al. Graphite: A Distributed Parallel Simulator for Multicores. HPCA’10



Concurrency Control Schemes
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CC Scheme Description

DL_DETECT 2PL with deadlock detection

NO_WAIT 2PL with non-waiting deadlock prevention

WAIT_DIE 2PL with wait-and-die deadlock prevention

TIMESTAMP Basic T/O algorithm

MVCC Multi-version T/O

OCC Optimistic concurrency control

HSTORE T/O with partition-level locking

Two–Phase 
Locking (2PL)

Timestamp 
Ordering (T/O)

Partitioning



2PL – DL_DETECT
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Wait-for Graph:

T1 <---- T2 when T2 waits for a lock held by T1

Periodically, detect cycles in the graph and abort the transaction that holds the 
fewest locks



2PL – NO_WAIT, WAIT_DIE
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NO_WAIT: A transaction cannot wait for another transaction. Whenever two 
transactions conflict, the requesting transaction aborts.

WAIT_DIE: A transaction T1 waits for another transaction T2 only if T1 has 
higher priority than T2 (e.g., T1 starts execution before T2).

Pros over NO_WAIT
• Guaranteed forward progress (i.e., no starvation)
• Fewer aborts

Cons over NO_WAIT
• Locking logic is more complex



Timestamp Ordering – Basic 
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Each transaction is assigned a unique timestamp indicating the serial order

Timestamp Orderwts=10 rts=20

Read from T (T.ts.= 15)



Timestamp Ordering – Basic 
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Each transaction is assigned a unique timestamp indicating the serial order

Timestamp Orderwts=10 rts=20

Read from T (T.ts.= 5)



Timestamp Ordering – Basic 
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Each transaction is assigned a unique timestamp indicating the serial order

Timestamp Orderwts=10 rts=20

Read from T (T.ts.= 25)



Timestamp Ordering – Basic 
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Each transaction is assigned a unique timestamp indicating the serial order

Timestamp Orderwts=10 rts=25

Read from T (T.ts.= 25)



Timestamp Ordering – Basic 
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Each transaction is assigned a unique timestamp indicating the serial order

Timestamp Orderwts=10 rts=20

Write from T (T.ts.= 15)



Timestamp Ordering – Basic 
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Each transaction is assigned a unique timestamp indicating the serial order

Timestamp Orderwts=10 rts=20

Write from T (T.ts.= 5)



Timestamp Ordering – Basic 
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Each transaction is assigned a unique timestamp indicating the serial order

Timestamp Orderwts=10 rts=20

Write from T (T.ts.= 25)



Timestamp Ordering – Basic 
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Each transaction is assigned a unique timestamp indicating the serial order

Timestamp Order

Write from T (T.ts.= 25)

rts=wts=25



Timestamp Ordering – MVCC
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MVCC: Multi-Version Concurrency Control

Timestamp Orderwts=10 rts=20

Read from T (T.ts.= 5)



Timestamp Ordering – MVCC
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MVCC: Multi-Version Concurrency Control

Timestamp Orderwts=10 rts=20

Read from T (T.ts.= 5)

A transaction can read previous versions



Timestamp Ordering
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Pros:
• Timestamp order is the serialization order
• Logic for locking is simplified
• In MVCC, read-only and read-write transactions do not conflict

Cons:

• Timestamp allocation is a bottleneck



Pessimistic/Optimistic vs. 2PL/TO
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Pessimistic Optimistic

Timestamp 
Ordering

MVCC



Partition-Level Locking – H-store

Pro: Only one lock per partition
Con: Performance degrades for multi-partition transactions 27



Partition-Level Locking – H-store
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Single Partition 
Transaction

Multi Partition 
Transaction

% of Multi-partition Txn



Evaluation – Experimental Setup
Yahoo! Cloud Serving Benchmark (YCSB)

• 20 million tuples

• Each tuple is 1KB (total database is ~20GB)

Each transaction reads/modifies 16 random tuples following a skewed pattern

Serializable isolation level
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Evaluation – Readonly

30

2PL schemes are scalable for read-only benchmarks



Evaluation – Readonly
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2PL schemes are scalable for read-only benchmarks

Timestamp allocation limits scalability



Evaluation – Readonly
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2PL schemes are scalable for read-only benchmarks

Timestamp allocation limits scalability
Memory copy hurts performance 



Evaluation – Medium Contention
Write : Read = 50% : 50%
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DL_DETECT does not scale due to deadlocks and thrashing



Evaluation – High Contention
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Scaling stops at small core count



Evaluation – High Contention
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Scaling stops at small core count

NO_WAIT has good performance until 1000 cores



Evaluation – High Contention
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Scaling stops at small core count

NO_WAIT has good performance until 1000 cores

OCC wins at 1000 cores



Scalability Bottlenecks
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Concurrency 
Control

Waiting
(Thrashing)

High Abort 
Rate

Timestamp 
Allocation

Multi-
partition

DL_DETECT

NO_WAIT

WAIT_DIE

TIMESTAMP

MULTIVERSION

OCC

HSTORE



Solutions to Timestamp Allocation
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Mutex based allocation



Solutions to Timestamp Allocation
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Mutex based allocation
Atomic instruction 



Solutions to Timestamp Allocation
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Mutex based allocation
Atomic instruction 
Batch allocation



Solutions to Timestamp Allocation
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Mutex based allocation
Atomic instruction 
Batch allocation
Hardware Counter (~1000 million ts/s)



Solutions to Timestamp Allocation
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Mutex based allocation
Atomic instruction 
Batch allocation
Hardware Counter (~1000 million ts/s)
Distributed Clock (perfect scalability)

– All clocks must be synchronized



1000-core – Q/A
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Why 1000?

Workload realistic? 

Simulator (Graphite) realistic? 

Distributed transactions? 
• Harding, R., Van Aken, D., Pavlo, A. and Stonebraker, M., An evaluation of distributed 

concurrency control. VLDB 2017
• Similar conclusions

Abyss removed?



Summary
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Core counts will keep increasing

Conventional concurrency control protocols do not scale
• Lock trashing
• Timestamp allocation

Need software hardware codesign 
(software-only solutions can go a long way)



Group Discussion
What are the pros and cons of timestamp ordering over two-phase locking? 
Can you think of other examples of using timestamps in other fields of CS?

What are the main pros and cons of a multi-version concurrency control 
(MVCC) protocol? How is MVCC related to HTAP (Hybrid 
transactional/analytical processing)? 

Can you think of any hardware changes to a multicore CPU that can 
improve the performance/scalability of concurrency control? 
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Before Next Lecture
Submit discussion summary to https://wisc-cs839-ngdb20.hotcrp.com
• Deadline: Friday 11:59pm

Submit review for
Speedy Transactions in Multicore In-Memory Databases
[optional] TicToc: Time Traveling Optimistic Concurrency Control
[optional] Hekaton: SQL Server's Memory-Optimized OLTP Engine
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https://wisc-cs839-ngdb20.hotcrp.com/
http://pages.cs.wisc.edu/~yxy/cs839-s20/papers/silo.pdf
http://pages.cs.wisc.edu/~yxy/cs839-s20/papers/tictoc.pdf
http://pages.cs.wisc.edu/~yxy/cs839-s20/papers/Hekaton-Sigmod2013-final.pdf

