
Xiangyao Yu
2/4/2020

CS 839: Design the Next-Generation Database
Lecture 5: Multicore (Part II)

1



Announcements
Will upload slides before lecture

Submit review to see others’ reviews

Computation resources:
• CloudLab: https://www.cloudlab.us/signup.php?pid=NextGenDB
• Chameleon: https://www.cloudlab.us/signup.php?pid=NextGenDB
• AWS: Apply for free credits 

at https://aws.amazon.com/education/awseducate/

2

http://pages.cs.wisc.edu/~yxy/cs839-s20/index.html
https://www.cloudlab.us/signup.php?pid=NextGenDB
https://aws.amazon.com/education/awseducate/


Discussion Highlights
T/O vs. 2PL

• Pros of T/O: simpler, no deadlocks
• Cons of T/O: timestamp allocation bottleneck, storing read/write timestamps
• Examples of timestamps: third-party authentication, sync/recovery in distributed systems, consensus, 

parallel compilation, cryptocurrency, network protocol, cache coherence, distributed file systems, 
transactional memory, vector-clock

Multi-versioning
• Pros: good for rolling back, efficient writes, non-block reads
• Cons: Memory copy, memory space, timestamp bottleneck
• HTAP: old versions for OLAP and new versions for OLTP

Hardware for concurrency control
• NUMA management, clock synchronization, low-overhead locking, timestamp allocation, conflict detection in 

hardware, Persistent memory for logging, locking prefetch

Hyper uses fork() for consistent snapshot
• HyPer: A Hybrid OLTP&OLAP Main Memory Database System Based on Virtual Memory Snapshots, ICDE 

2011
3



Today’s Paper

4
SOSP 2013



A Simple Optimistic Concurrency Control
// read phase
read(): read record into read set (RS)
update(): read record into write set (WS) and update local copy

// validation phase
validation(): 

lock all records in WS
for r in RS ∪ WS:

if r.version != DB[r.key].version or r.is_locked:
abort()

// write phase
write(): 

for r in WS:
DB[r.key].value = r.value
DB[r.key].version ++
unlock(r) 5



Properties of This OCC
High Scalability: No scalability bottleneck for workloads with no contention

Invisible Read: reads do not write to shared memory 

6



Scalability of Logging

7…

Single stream of logging



Scalability of Logging

8…

Single stream of logging



Scalability of Logging

9…

Log_Sequence_Number = 
atomic_fetch_and_add(&lsn, size);

Single stream of logging



Scalability of Logging

10

atomic_fetch_and_add(&lsn, size);

1 8 16 24 32
Worker threads

0

2M

4M

6M

8M

10M

Th
ro

ug
hp

ut
(tx

ns
/s

ec
)



Scalability of Logging

11

atomic_fetch_and_add(&lsn, size);

1 8 16 24 32
Worker threads

0

2M

4M

6M

8M

10M

Th
ro

ug
hp

ut
(tx

ns
/s

ec
)



Why Have Global Transaction ID?

12



Why Have Global Transaction ID?

13…… …

Multiple streams of logging



Challenges of Parallel Logging

14

Challenge 1: When to commit?

Challenge 2: Whether to recover?

Challenge 3: How to recover?

Read-after-write 
dependency

…

T1

…

Log 1
Pe

rs
ist

ed
Bu

ffe
re

d

T2

…

…

Log 2

Persisted
Buffered

Crash

…

…

T2 read(X)

T1 write(X)



Challenges of Parallel Logging

15

Challenge 1: When to commit?
• Epoch-based commit

Challenge 2: Whether to recover?
• Up to last complete epoch

Challenge 3: How to recover?
• Value-based logging/recovery

Read-after-write 
dependency

…

T1

…

Log 1
Pe

rs
ist

ed
Bu

ffe
re

d

T2

…

…

Log 2

Persisted
Buffered

Crash

…

…

T2 read(X)

T1 write(X)



Epoch-Based Design

16

Time

Epoch 1 Epoch 2

…

Challenge 1: When to commit?
• Epoch-based commit

Challenge 2: Whether to recover?
• Up to last complete epoch



Value-Based Logging

17

No need to maintain read-after-write (RAW) or write-after-read (WAR) 
dependencies
Read-after-write (RAW): Flow dependency
Write-after-read (WAR): Anti dependency
Write-after-write (WAW): Output dependency

Read-after-write 
dependency

…

T1

…

Log 1
Pe

rs
ist

ed
Bu

ffe
re

d

T2

…

…

Log 2

Persisted
Buffered

Crash

…

… Challenge 3: How to recover?
• Value-based logging/recovery

What about operational logging?



Epoch-Based OCC
// validation phase
validation(): 

lock all records in WS
e = get_epoch_number()
for r in RS ∪ WS:

if r.version != DB[r.key].version or r.is_locked:
abort()

version = gen_version(WS, RS, e) 

// write phase
write(): 

for r in WS:
DB[r.key].value = r.value
DB[r.key].version = version
unlock(r) 18



Epoch read = serialization point
Key property: epoch differences agree with dependencies.
• T2 reads T1’s write à T2’s epoch ≥ T1’s (T2 RAW depends on T1)
• T1 does not read T2’write à T2’s epoch ≥ T1’s (T2 WAR depends on T1)

19



Read-After-Write (RAW) Example
Key property: epoch differences agree with dependencies
• T2 reads T1’s write à T2’s epoch ≥ T1’s (T2 RAW depends on T1)

20

T1:
WriteLocal(A, 2);

Lock(A);
e = Global_Epoch;

t = GenerateTID(e);

WriteAndUnlock(A, t); 
T2:
tmp = Read(A); 
WriteLocal(A, tmp+1); 

Lock(A);
e = Global_Epoch;

Validate(A); // passes
t = GenerateTID(e);

WriteAndUnlock(A, t);

T2’s epoch ≥ T1’s epoch

Ti
m

e T2’s TID > T1’s TID



Read-After-Write (RAW) Example
Key property: epoch differences agree with dependencies
• T2 reads T1’s write à T2’s epoch ≥ T1’s (T2 RAW depends on T1)

21

T1:
WriteLocal(A, 2);

Lock(A);
e = Global_Epoch;

t = GenerateTID(e);

WriteAndUnlock(A, t); 
T2:
tmp = Read(A); 
WriteLocal(A, tmp+1); 

Lock(A);
e = Global_Epoch;

Validate(A); // passes
t = GenerateTID(e);

WriteAndUnlock(A, t);

T2’s epoch ≥ T1’s epoch

Ti
m

e



Read-After-Write (RAW) Example
Key property: epoch differences agree with dependencies
• T2 reads T1’s write à T2’s epoch ≥ T1’s (T2 RAW depends on T1)

22

T1:
WriteLocal(A, 2);

Lock(A);
e = Global_Epoch;

t = GenerateTID(e);

WriteAndUnlock(A, t); 
T2:
tmp = Read(A); 
WriteLocal(A, tmp+1); 

Lock(A);
e = Global_Epoch;

Validate(A); // passes
t = GenerateTID(e);

WriteAndUnlock(A, t);

T2’s epoch ≥ T1’s epoch

Ti
m

e T2’s TID > T1’s TID



Write-After-Read Example
Key property: epoch differences agree with dependencies
• T1 does not read T2’write à T2’s epoch ≥ T1’s (T2 WAR depends on T1)

23

T2:
WriteLocal(A, 2);

Lock(A);
e = Global_Epoch;

t = GenerateTID(e);

WriteAndUnlock(A, t); 

T1:
tmp = Read(A); 
WriteLocal(B, tmp); 

Lock(B);
e = Global_Epoch;

Validate(A); // passes
t = GenerateTID(e);

WriteAndUnlock(B, t);Ti
m
e



Write-After-Read Example
Key property: epoch differences agree with dependencies
• T1 does not read T2’write à T2’s epoch ≥ T1’s (T2 WAR depends on T1)

24

T2:
WriteLocal(A, 2);

Lock(A);
e = Global_Epoch;

t = GenerateTID(e);

WriteAndUnlock(A, t); 

T1:
tmp = Read(A); 
WriteLocal(B, tmp); 

Lock(B);
e = Global_Epoch;

Validate(A); // passes
t = GenerateTID(e);

WriteAndUnlock(B, t);Ti
m
e

T2’s epoch ≥ T1’s epoch



Low-Level Optimizations

25



Transaction Identifiers
Each record contains a TID word which is broken into three pieces:

Status bits = A lock bit, a latest-version bit, and an absent bit 

Assign TID at commit time (after reads).
• (a) larger than the TID of any record read or written by the transaction
• (b) larger than the worker’s most re- cently chosen TID
• (c) in the current global epoch. The result is written into each record 

modified by the transaction. 

26

Status bits Sequence number Epoch number
0 63



Read/Write

// read phase
read(): read record into read set (RS)

27

Status bits Sequence number Epoch number
0 63



Read/Write

// read phase
read(): read record into read set (RS)

28

Status bits Sequence number Epoch number
0 63

How to consistently read a record and its TID word?



Read/Write

// read phase
read(): read record into read set (RS)

// read record t
do 

v1 = t.read_TID_word()
RS[t.key].data = t.data
v2 = t.read_TID_word() 

while (v1 != v2 or v1.lock_bit == 1); 

29

Status bits Sequence number Epoch number
0 63

How to consistently read a record and its TID word?



Range Scan and Phantom
Phantom reads:

New rows are added or removed by another transaction to the records being read

Perform the scan twice
Ok if the second scan returns the same set of record

30



Silo Commit Protocol

31

// Validation phase
for w, v in sorted(WS)

Lock(w); // use a lock bit in TID

Fence(); // compiler-only on x86
e = Global_Epoch; // serialization point
Fence(); // compiler-only on x86

for r, t in RS
Validate(r, t); // abort if fails

tid = Generate_TID(RS, WS, e);

// Write phase
for w, v in WS {

Write(w, v, tid);
Unlock(w);

}



Experimental Evaluation
32 core machine:

• 2.1 GHz, L1 32KB, L2 256KB, L3 shared 24MB 
• 256GB RAM
• Three Fusion IO ioDrive2 drives, six 7200RPM disks in RAID-5
• Linux 3.2.0

TPC-C
• Average log record length is ~1KB
• All loggers combined writing ~1GB/sec

YCSB
• 80/20 read/read-modify-write
• 100 byte records
• Uniform key distribution

32



Silo on TPC-C

I/O slightly limits scalability, protocol does not.

33

1 8 16 24 32
Worker threads

0
0.1M
0.2M
0.3M
0.4M
0.5M
0.6M
0.7M
0.8M
0.9M

Th
ro

ug
hp

ut
(tx

ns
/s

ec
) Silo+tmpfs

Silo

I/O 
(scalability 
bottleneck)



Silo on YCSB

Key-Value: Masstree (no multi-key transactions).
• Transactional commits are inexpensive.

MemSilo+GlobalTID: A single compare-and-swap added to commit protocol.
34

1 8 16 24 32
Worker threads

0
2M
4M
6M
8M

10M
12M
14M
16M
18M

Th
ro

ug
hp

ut
(tx

ns
/s

ec
) Key-Value

MemSilo
MemSilo+GlobalTID

Protocol (~4%)

Global TID (~45%)



Summary

35

Even a single atomic_add instruction can limit scalability

Silo remove bottleneck through epochs
When to commit? Epoch-based commit
Whether to recover? Up to last complete epoch
How to recover? Value-based logging/recovery

Low-level optimizations for high performance
• TID word
• Invisible reads



Silo – Q/A
Limitations: 
• Only one-shot transactions (Good enough for real systems?)
• Value-based logging
• Long transactions
• Long latency 

Adoptions of epochs
• Many follow-up research papers use epochs
• Deterministic DB (next lecture) uses epochs

What is a memory/compiler fence?
36



Group Discussion
Is Silo compatible with operational logging?
• Operational logging: log the operations instead of the values. The DB re-

executes the transactions during recovery

One downside of Silo is long transaction latency (due to epochs), can 
you come up with any solution to this problem? 

What are the challenges of applying Silo to a distributed database?

37



Before Next Lecture
Submit discussion summary to https://wisc-cs839-ngdb20.hotcrp.com
• Deadline: Wednesday 11:59pm

Submit review for
Calvin: Fast Distributed Transactions for Partitioned Database Systems
[optional] Rethinking serializable multiversion concurrency control 

(Extended Version)
[optional] An Evaluation of Distributed Concurrency Control

38

https://wisc-cs839-ngdb20.hotcrp.com/
http://pages.cs.wisc.edu/~yxy/cs839-s20/papers/calvin-sigmod12.pdf
http://pages.cs.wisc.edu/~yxy/cs839-s20/papers/bohm-extended.pdf
http://pages.cs.wisc.edu/~yxy/cs839-s20/papers/p553-harding.pdf

