
Xiangyao Yu
2/11/2020

CS 839: Design the Next-Generation Database
Lecture 7: GPU Database

1

Announcements

2

[Optional] 5-min presentation of your project idea
• Find teammates
• Receive feedback
• Email me if you are interested

Discussion Highlights

3

Necessary to know read/write set?
• No. But not knowing the sets severely degrades performance. (any solutions?)

Optimizations if know read/write sets?
• No need to broadcast reads to all active participants
• Use better deterministic ordering to improve performance
• Enforce no conflicts within a batch -> no need to lock
• Blind write optimization

Batch to amortize 2PC?
• Run 2PC in batches
• Epoch-based concurrency control like Silo

Today’s Paper

4

SIGMOD 2020

Today’s Agenda
GPU background

Data analytics on CPU vs. GPU

Crystal library

5

GPU Background
• Graphics processing unit

(GPU)

• Accelerators for graphics
computation

• Dedicated accelerators
with simple, massively
parallel computation

• More and more used for
general-purpose
computing

6

CPU vs. GPU

7

CPU: A few powerful cores with large caches. Optimized for sequential
computation

CPU vs. GPU

8

CPU: A few powerful cores with large caches. Optimized for sequential
computation

GPU: Many small cores. Optimized for parallel computation

CPU vs. GPU – Processing Units

9

Nvidia

Throughput Power Throughput/Power
Intel Skylake 128 GFLOPS/4 Cores 100+ Watts ~1 GFLOPS/Watt
NVIDIA V100 15 TFLOPS 200+ Watts ~75 GFLOPS/Watt

CPU vs. GPU – Memory System

10

DRAM DIMMs

< 128 GB/s

CPU: Large memory (up to Terabytes) with limited bandwidth (up to 100GB/s)

CPU vs. GPU – Memory System

11

DRAM DIMMs

< 128 GB/s
Up to 1.2 TB/s

CPU: Large memory (up to Terabytes) with limited bandwidth (up to 100GB/s)
GPU: Small memory (up to 32 GB) with high bandwidth (up to 1.2 TB/s)

CPU vs. GPU – Overall Architecture

12

CPU GPU

GPU Memory
(32 GB)

Main Memory
(Terabytes)

880 GB/s
PCIe 12.8 GB/s

55 GB/s

GPU has immense computational power
GPU memory has high bandwidth
GPU memory has small capacity
Loading data from main memory is slow

GPU Database Operation Mode
Coprocessor mode: Every query loads data from CPU memory to
GPU

GPU-only mode: Store working set in GPU memory and run the entire
query on GPU

Key observation: With efficient implementations that can saturate
memory bandwidth

GPU-only > CPU-only > coprocessor

13

CPU-only vs. Coprocessor

14

Efficient Query Execution on GPUs

Tile-based Execution Model

Crystal Library

15

GPU Architecture

1684 streaming Multiprocessors (SM)

SM

GPU Architecture – Streaming Multiprocessor

17

Each SM has 4 warps

Each warp contains 32 threads

Each warp executes in a single
instruction multiple threads (SIMT)
model

[1] V100 GPU Hardware Architecture In-Depth,
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

GPU Architecture – Memory System

18

Data from global memory cached in L2/L1
Shared memory: a scratchpad controlled by the programmer

Sequential vs. Parallel

19

Q0: SELECT y FROM R WHERE y > v;
Goal: write the results in parallel into a contiguous output array

cnt = 0

for i in R.size():

if R[i] > v

output[cnt++] = R[i]

Sequential

Sequential vs. Parallel

20

Q0: SELECT y FROM R WHERE y > v;
Goal: write the results in parallel into a contiguous output array

cnt = 0

for i in R.size():

if R[i] > v

output[cnt++] = R[i]

for start in partitions[thread_id]

cnt = 0

for (i=start; i<start+1000; i++)

if R[i] > v

cnt ++

out_offset = atom_add(&out_pos, cnt)

for (i=start; i<start+1000; i++)

if R[i] > v

output[out_offset ++] = R[i]

Sequential Parallel

Sequential vs. Parallel

21

Q0: SELECT y FROM R WHERE y > v;
Goal: write the results in parallel into a contiguous output array

cnt = 0

for i in R.size():

if R[i] > v

output[cnt++] = R[i]

for start in partitions[thread_id]

cnt = 0

for (i=start; i<start+1000; i++)

if R[i] > v

cnt ++

out_offset = atom_add(&out_pos, cnt)

for (i=start; i<start+1000; i++)

if R[i] > v

output[out_offset ++] = R[i]

Sequential Parallel

Vector-based execution model

Parallel on CPU vs. GPU

22

Q0: SELECT y FROM R WHERE y > v;
Goal: write the results in parallel into a contiguous output array

Parallel
for p_start in partitions[thread_id]

cnt = 0

for (i=p_start; i<p_start+1000; i++)

if R[i] > v

cnt ++

out_offset = atom_add(&out_pos, cnt)

for (i=start; i<start+1000; i++)

if R[i] > v

output[out_offset ++] = R[i]

In CPU, 10s of threads call atom_add()

In GPU, 1000s of threads call atom_add()
--> performance bottleneck

Current GPU Parallel Implementation

23

Q0: SELECT y FROM R WHERE y > v;

K1: Load from global memory

K3: Load from global memory

Issue 1: Input array read
from global memory twice

Issue 2: each thread
writes to a different
location in output array

Tile-Based Execution Model

24

Q0: SELECT y FROM R WHERE y > v;

Tile-Based Execution Model – Example

25

Q0: SELECT y FROM R WHERE y > 5;

Crystal Library
Block-wide function: takes in a set of tiles as input, performs a
specific task, and outputs a set of tiles

26

Primitive Description
BlockLoad Copies a tile of items from global memory to shared memory. Uses vector instructions to load full tiles.
BlockLoadSel Selectively load a tile of items from global memory to shared memory based on a bitmap.
BlockStore Copies a tile of items in shared memory to device memory.
BlockPred Applies a predicate to a tile of items and stores the result in a bitmap array.
BlockScan Co-operatively computes prefix sum across the block. Also returns sum of all entries.
BlockShuffle Uses the thread offsets along with a bitmap to locally rearrange a tile to create a contiguous
BlockLookup array of matched entries. Returns matching entries from a hash table for a tile of keys.
BlockAggregate Uses hierarchical reduction to compute local aggregate for a tile of items.

Operators – Project
Q1: SELECT ax1 + bx2 FROM R;
Q2: SELECT σ(ax1 + bx2) FROM R;

27

CPU-Opt:
• Non-temporal writes
• SIMD

Efficient CPU/GPU implementations
can saturate DRAM bandwidth

Operators – Select
Q3: SELECT y FROM R WHERE y < v;

28

for y in R:
if y < v
output[cnt++] = v

for y in R:
output[i] = y
cnt += (y>v)

(a) With branching (a) With predication

Operators – Hash Join
Q4: SELECT SUM(A.v + B.v) AS checksum

FROM A,B WHERE A.k = B.k

29

Build phase: populate the hash table using
tuples in one relation (typically the smaller
relation)

Probe phase: use tuples in the other relation to
probe the hash table

Latency-bound

Star-Schema Benchmark

30

Crystal-based implementations always
saturate GPU memory bandwidth

GPU is on average 25X faster than CPU

Cost Analysis

Purchase Cost Renting Cost (AWS)

CPU $2-5K $0.504 per hour

GPU $CPU + 8.5K $3.06 per hour

31

GPU is 25X faster than CPU

GPU is 6X more expensive than CPU

GPU is 4X more cost effective than CPU

Future Work
Distributed GPUs + hybrid GPU/CPU

Data compression

Supporting string and array data type in GPU

32

Summary

33

CPU GPU

GPU Memory
(32 GB)

Main Memory
(Terabytes)

880 GB/s
PCIe 12.8 GB/s

55 GB/s

Performance: GPU-only > CPU-only > coprocessor

Crystal: Tile-based execution model
GPUs are 25X faster and 4X more cost effective

GPU Database – Q/A
Does NVLink solve the PCIe bottleneck?

Will open-source the code soon

Overhead of loading data to GPU and transferring results back to CPU

What about updates/transactions?

34

Group Discussion
What is the advantages and disadvantages of executing transactions
on GPUs?

Can you think of any solutions (either software or hardware) to
overcome the problems of (1) limited PCIe bandwidth between CPU
and GPU and (2) limited GPU memory capacity?

What are the main opportunities and challenges of deploying a
database on heterogeneous hardware?

35

Before Next Lecture
Submit discussion summary to https://wisc-cs839-ngdb20.hotcrp.com
• Deadline: Wednesday 11:59pm

Submit review for
• Q100: The Architecture and Design of a Database Processing Unit

36

https://wisc-cs839-ngdb20.hotcrp.com/

