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CS 839: Design the Next-Generation Database
Lecture 7: GPU Database
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Announcements
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[Optional] 5-min presentation of your project idea
• Find teammates
• Receive feedback
• Email me if you are interested



Discussion Highlights

3

Necessary to know read/write set? 
• No. But not knowing the sets severely degrades performance. (any solutions?)

Optimizations if know read/write sets? 
• No need to broadcast reads to all active participants
• Use better deterministic ordering to improve performance
• Enforce no conflicts within a batch -> no need to lock
• Blind write optimization 

Batch to amortize 2PC?
• Run 2PC in batches
• Epoch-based concurrency control like Silo



Today’s Paper
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SIGMOD 2020



Today’s Agenda
GPU background

Data analytics on CPU vs. GPU

Crystal library
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GPU Background
• Graphics processing unit 

(GPU)

• Accelerators for graphics 
computation

• Dedicated accelerators 
with simple, massively 
parallel computation

• More and more used for 
general-purpose 
computing
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CPU vs. GPU
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CPU: A few powerful cores with large caches. Optimized for sequential 
computation



CPU vs. GPU
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CPU: A few powerful cores with large caches. Optimized for sequential 
computation

GPU: Many small cores. Optimized for parallel computation 



CPU vs. GPU – Processing Units
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Nvidia

Throughput Power Throughput/Power
Intel Skylake 128 GFLOPS/4 Cores 100+ Watts ~1 GFLOPS/Watt
NVIDIA V100 15 TFLOPS 200+ Watts ~75 GFLOPS/Watt



CPU vs. GPU – Memory System
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DRAM DIMMs

< 128 GB/s

CPU: Large memory (up to Terabytes) with limited bandwidth (up to 100GB/s)



CPU vs. GPU – Memory System
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DRAM DIMMs

< 128 GB/s
Up to 1.2 TB/s

CPU: Large memory (up to Terabytes) with limited bandwidth (up to 100GB/s)
GPU: Small memory (up to 32 GB) with high bandwidth (up to 1.2 TB/s)



CPU vs. GPU – Overall Architecture
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CPU GPU

GPU Memory
(32 GB)

Main Memory
(Terabytes)

880 GB/s
PCIe 12.8 GB/s

55 GB/s

GPU has immense computational power
GPU memory has high bandwidth 
GPU memory has small capacity
Loading data from main memory is slow



GPU Database Operation Mode
Coprocessor mode: Every query loads data from CPU memory to 
GPU

GPU-only mode: Store working set in GPU memory and run the entire 
query on GPU

Key observation: With efficient implementations that can saturate 
memory bandwidth 

GPU-only  >  CPU-only  >  coprocessor 
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CPU-only vs. Coprocessor
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Efficient Query Execution on GPUs

Tile-based Execution Model 

Crystal Library 
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GPU Architecture

1684 streaming Multiprocessors (SM)

SM



GPU Architecture – Streaming Multiprocessor

17

Each SM has 4 warps

Each warp contains 32 threads

Each warp executes in a single 
instruction multiple threads (SIMT) 
model 

[1] V100 GPU Hardware Architecture In-Depth, 
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf


GPU Architecture – Memory System
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Data from global memory cached in L2/L1
Shared memory: a scratchpad controlled by the programmer



Sequential vs. Parallel
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Q0: SELECT y FROM R WHERE y > v; 
Goal: write the results in parallel into a contiguous output array

cnt = 0

for i in R.size():

if R[i] > v

output[cnt++] = R[i]

Sequential



Sequential vs. Parallel
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Q0: SELECT y FROM R WHERE y > v; 
Goal: write the results in parallel into a contiguous output array

cnt = 0

for i in R.size():

if R[i] > v

output[cnt++] = R[i]

for start in partitions[thread_id] 

cnt = 0

for (i=start; i<start+1000; i++)

if R[i] > v

cnt ++

out_offset = atom_add(&out_pos, cnt)

for (i=start; i<start+1000; i++)

if R[i] > v

output[out_offset ++] = R[i]

Sequential Parallel



Sequential vs. Parallel
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Q0: SELECT y FROM R WHERE y > v; 
Goal: write the results in parallel into a contiguous output array

cnt = 0

for i in R.size():

if R[i] > v

output[cnt++] = R[i]

for start in partitions[thread_id] 

cnt = 0

for (i=start; i<start+1000; i++)

if R[i] > v

cnt ++

out_offset = atom_add(&out_pos, cnt)

for (i=start; i<start+1000; i++)

if R[i] > v

output[out_offset ++] = R[i]

Sequential Parallel

Vector-based execution model 



Parallel on CPU vs. GPU
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Q0: SELECT y FROM R WHERE y > v; 
Goal: write the results in parallel into a contiguous output array

Parallel
for p_start in partitions[thread_id] 

cnt = 0

for (i=p_start; i<p_start+1000; i++)

if R[i] > v

cnt ++

out_offset = atom_add(&out_pos, cnt)

for (i=start; i<start+1000; i++)

if R[i] > v

output[out_offset ++] = R[i]

In CPU, 10s of threads call atom_add()

In GPU, 1000s of threads call atom_add()
-->  performance bottleneck



Current GPU Parallel Implementation
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Q0: SELECT y FROM R WHERE y > v; 

K1: Load from global memory 

K3: Load from global memory 

Issue 1: Input array read 
from global memory twice

Issue 2: each thread 
writes to a different 
location in output array



Tile-Based Execution Model
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Q0: SELECT y FROM R WHERE y > v; 



Tile-Based Execution Model – Example 
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Q0: SELECT y FROM R WHERE y > 5; 



Crystal Library
Block-wide function: takes in a set of tiles as input, performs a 
specific task, and outputs a set of tiles 
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Primitive Description
BlockLoad Copies a tile of items from global memory to shared memory. Uses vector instructions to load full tiles.
BlockLoadSel Selectively load a tile of items from global memory to shared memory based on a bitmap.
BlockStore Copies a tile of items in shared memory to device memory.
BlockPred Applies a predicate to a tile of items and stores the result in a bitmap array.
BlockScan Co-operatively computes prefix sum across the block. Also returns sum of all entries.
BlockShuffle Uses the thread offsets along with a bitmap to locally rearrange a tile to create a contiguous 
BlockLookup array of matched entries. Returns matching entries from a hash table for a tile of keys.
BlockAggregate Uses hierarchical reduction to compute local aggregate for a tile of items. 



Operators – Project
Q1: SELECT ax1 + bx2 FROM R; 
Q2: SELECT σ(ax1 + bx2) FROM R; 
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CPU-Opt: 
• Non-temporal writes
• SIMD

Efficient CPU/GPU implementations 
can saturate DRAM bandwidth



Operators – Select
Q3: SELECT y FROM R WHERE y < v; 
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for y in R:
if y < v
output[cnt++] = v

for y in R:
output[i] = y
cnt += (y>v)

(a) With branching (a) With predication



Operators – Hash Join
Q4: SELECT SUM(A.v + B.v) AS checksum 

FROM A,B WHERE A.k = B.k
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Build phase: populate the hash table using 
tuples in one relation (typically the smaller 
relation)

Probe phase: use tuples in the other relation to 
probe the hash table

Latency-bound



Star-Schema Benchmark
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Crystal-based implementations always 
saturate GPU memory bandwidth

GPU is on average 25X faster than CPU



Cost Analysis

Purchase Cost Renting Cost (AWS)

CPU $2-5K $0.504 per hour 

GPU $CPU + 8.5K $3.06 per hour 
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GPU is 25X faster than CPU

GPU is 6X more expensive than CPU

GPU is 4X more cost effective than CPU



Future Work
Distributed GPUs + hybrid GPU/CPU

Data compression

Supporting string and array data type in GPU
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Summary
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CPU GPU

GPU Memory
(32 GB)

Main Memory
(Terabytes)

880 GB/s
PCIe 12.8 GB/s

55 GB/s

Performance: GPU-only  >  CPU-only  >  coprocessor

Crystal: Tile-based execution model  
GPUs are 25X faster and 4X more cost effective 



GPU Database – Q/A 
Does NVLink solve the PCIe bottleneck?

Will open-source the code soon

Overhead of loading data to GPU and transferring results back to CPU

What about updates/transactions?
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Group Discussion
What is the advantages and disadvantages of executing transactions 
on GPUs?

Can you think of any solutions (either software or hardware) to 
overcome the problems of (1) limited PCIe bandwidth between CPU 
and GPU and (2) limited GPU memory capacity? 

What are the main opportunities and challenges of deploying a 
database on heterogeneous hardware?
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Before Next Lecture
Submit discussion summary to https://wisc-cs839-ngdb20.hotcrp.com
• Deadline: Wednesday 11:59pm

Submit review for
• Q100: The Architecture and Design of a Database Processing Unit
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https://wisc-cs839-ngdb20.hotcrp.com/

