
Epoch-based Commit and Replication in Distributed OLTP
Databases

Yi Lu
Massachusetts Institute of Technology

yilu@csail.mit.edu

Xiangyao Yu
University of Wisconsin-Madison

yxy@cs.wisc.edu

Lei Cao
Massachusetts Institute of Technology

lcao@csail.mit.edu

Samuel Madden
Massachusetts Institute of Technology

madden@csail.mit.edu

ABSTRACT
Many modern data-oriented applications are built on top of dis-
tributed OLTP databases for both scalability and high availability.
Such distributed databases enforce atomicity, durability, and consis-
tency through two-phase commit (2PC) and synchronous replication
at the granularity of every single transaction. In this paper, we
present COCO, a new distributed OLTP database that supports
epoch-based commit and replication. The key idea behind COCO is
that it separates transactions into epochs and treats a whole epoch
of transactions as the commit unit. In this way, the overhead of
2PC and synchronous replication is significantly reduced. We sup-
port two variants of optimistic concurrency control (OCC) using
physical time and logical time with various optimizations, which
are enabled by the epoch-based execution. Our evaluation on two
popular benchmarks (YCSB and TPC-C) show that COCO outper-
forms systems with fine-grained 2PC and synchronous replication
by up to a factor of four.

PVLDB Reference Format:
Yi Lu, Xiangyao Yu, Lei Cao, and Samuel Madden. Epoch-based Commit
and Replication in Distributed OLTP Databases. PVLDB, 14(5): 743 - 756,
2021.
doi:10.14778/3446095.3446098

1 INTRODUCTION
Many modern distributed OLTP databases use a shared-nothing
architecture for scale out [9, 55, 64], since the capacity of a single-
node database fails to meet their demands. In distributed databases,
scalability is achieved through data partitioning [12, 57], where
each node contains one or more partitions of the whole database.
Partitioning-based systems can easily support single-partition trans-
actions that run on a single node and require no coordination be-
tween nodes. If a workload consists of only such transactions, it
trivially parallelizes across multiple nodes. However, distributed
databases become more complex when dealing with distributed
transactions that touch several data partitions across multiple nodes.
In particular, many implementations require the use of two-phase
commit (2PC) [40] to enforce atomicity and durability, making the

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 5 ISSN 2150-8097.
doi:10.14778/3446095.3446098

effects of committed transactions recorded to persistent storage
and survive server failures.

It is well known that 2PC causes significant performance degra-
dation in distributed databases [3, 12, 46, 61], because a transac-
tion is not allowed to release locks until the second phase of the
protocol, blocking other transactions and reducing the level of
concurrency [21]. In addition, 2PC requires two network round-
trip delays and two sequential durable writes for every distributed
transaction, making it a major bottleneck in many distributed trans-
action processing systems [21]. Although there have been some
efforts to eliminate distributed transactions or 2PC, unfortunately,
existing solutions either introduce impractical assumptions (e.g.,
the read/write set of each transaction has to be known a priori in
deterministic databases [19, 61, 62]) or significant runtime overhead
(e.g., dynamic data partitioning [12, 31]).

In addition, a desirable property of any distributed database is
high availability, i.e., when a server fails, the system can mask
the failure from end users by replacing the failed server with a
standby machine. High availability is typically implemented us-
ing data replication, where all writes are handled at the primary
replica and are shipped to the backup replicas. Conventional high
availability protocols must make a tradeoff between performance
and consistency. On one hand, asynchronous replication allows a
transaction to commit once its writes arrive at the primary replicas;
propagation to backup replicas happens in the background asyn-
chronously [14]. Transactions can achieve high performance but
a failure may cause data loss, i.e., consistency is sacrificed. On the
other hand, synchronous replication allows a transaction to commit
only after its writes arrive at all replicas [9]. No data loss occurs but
each transaction holds locks for a longer duration of time and has
longer latency — even single-partition transactions need to wait
for at least one round-trip of network communication.

In this paper, we make the key observation that the inefficiency
of both 2PC and synchronous replication mainly comes from the
fact that existing protocols enforce consistency at the granularity of
individual transactions. By grouping transactions that arrive within
a short time window into short periods of time — which we call
epochs — it’s possible to manage both atomic commit and consis-
tent data replication at the granularity of epochs. In our approach,
an epoch is the basic unit at which transactions commit and re-
cover — either all or none of the transactions in an epoch commit
— which adheres to the general principle of group commit [15] in
single-node databases. However, epoch-based commit and replica-
tion focus on reducing the overhead due to 2PC and synchronous

743

https://doi.org/10.14778/3446095.3446098
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3446095.3446098

replication rather than disk latency as in group commit. As a result,
a transaction releases its locks immediately after execution finishes,
and logging to persistent storage occurs in the background and is
only enforced at the boundary of epochs. Similarly, a transaction no
longer needs to hold locks after updating the primary replica, since
write propagation happens in the background as in asynchronous
replication. Note that the writes of a transaction are visible to other
transactions as soon as it commits but they may disappear if a fail-
ure occurs and a rollback happens. Therefore, a transaction does not
release the result to the end user until the current epoch commits,
when the writes of all transactions belong to the epoch are durable.
In COCO, consistency is enforced at the boundary of epochs as
in synchronous replication. The epoch size, which determines the
average latency of transactions, can be selected to be sufficiently
low for most OLTP workloads (e.g., 10 ms). Prior work [11, 43, 63]
has argued that such latencies are acceptable and are not a problem
for most transactional workloads. In addition, when the durable
write latency exceeds several hundred microseconds, epoch-based
commit and replication can help reduce tail latency compared to a
traditional architecture with 2PC [16].

In this paper, we describe COCO, a distributed main-memory
OLTP database we built that embodies the idea of epoch-based
commit and replication. COCO supports two variants of optimistic
concurrency control (OCC) [25] that serialize transactions using
physical time and logical time, respectively. In addition, it supports
both serializability and snapshot isolation with various optimiza-
tions, which are enabled by the epoch-based commit and replication.
Our evaluation on an eight-server cluster shows that our system
outperforms systems that use conventional concurrency control
algorithms and replication strategies by up to a factor of four on
YCSB and TPC-C. The performance improvement is even more
significant in a wide-area network, i.e., 6x on YCSB and an order
of magnitude on TPC-C. In addition, we show that epoch-based
commit and replication are less sensitive to durable write latency
with up to 6x higher throughput than 2PC.

In summary, this paper makes the following major contributions:
• Wepresent COCO, a distributed and replicatedmain-memory
OLTP framework that implements epoch-based commit and
replication.

• We introduce the design of two variants of optimistic concur-
rency control algorithms in COCO, implement critical perfor-
mance optimizations, and extend them to support snapshot
transactions.

• We report a detailed evaluation on two popular benchmarks
(YCSB and TPC-C). Overall, our proposed solution outper-
forms conventional commit and replication algorithms by
up to a factor of four.

2 BACKGROUND
This section discusses the background of distributed concurrency
control, 2PC and data replication in distributed databases.

2.1 Distributed Concurrency Control
Concurrency control enforces two critical properties of a database:
atomicity and isolation. Atomicity requires a transaction to expose
either all or none of its changes to the database. The isolation level

specifies when a transaction is allowed to see another transaction’s
writes.

Two classes of concurrency control protocols are commonly
used in distributed systems: two-phase locking (2PL) [5, 17] and
optimistic concurrency control (OCC) [25]. 2PL protocols are pes-
simistic and use locks to avoid conflicts. In OCC, a transaction does
not acquire locks during execution; after execution, the database
validates a transaction to determine whether it commits or aborts.
At low contention, OCC has better performance than 2PL due to its
non-blocking execution. Traditionally, both 2PL and OCC support
serializability. Multi-version concurrency control (MVCC) [51] was
proposed to support snapshot isolation in addition to serializability.
An MVCC protocol maintains multiple versions of each tuple in
the database. This offers higher concurrency since a transaction
can potentially pick from amongst several consistent versions to
read, at the cost of higher storage overhead and complexity.

2.2 The Necessity and Cost of 2PC
In distributed databases, a transaction that accesses data onmultiple
participant nodes is usually initiated and coordinated by a coordina-
tor. The most common way to commit transactions in a distributed
database is via two-phase commit (2PC) [40]. Once a transaction
finishes execution, the coordinator begins the two-phase commit
protocol, which consists of a prepare phase and a commit phase. In
the prepare phase, the coordinator communicates with each par-
ticipant node, asking if it is ready to commit the transaction. To
tolerate failures, each participant nodemust make the prepare/abort
decision durable before replying to the coordinator. After the co-
ordinator has collected all votes from participant nodes, it enters
the commit phase. In the commit phase, the coordinator is able to
commit the transaction if all participant nodes agree to commit.
It first makes the commit/abort decision durable and then asks
each participant node to commit the transaction. In the end, each
participant node acknowledges the commit to the coordinator.

Although the above mechanism ensures both atomicity and dura-
bility of distributed transactions, it also introduces some problems
that significantly limit the performance of distributed database sys-
tems. We now summarize the problems it introduces and discuss
the implications for distributed databases: (1) Two network round
trips: On top of network round trips during transaction execution,
two-phase commit requires two additional network round trips,
making the cost of running a distributed transaction more expen-
sive than the cost of running a single-partition transaction on a
single node [46]; (2) Multiple durable writes: A write is considered
durable when it has been flushed to disk (e.g., using fsync [58]).
Depending on different hardware, the latency of a flush is from tens
or hundreds of microseconds on SSDs to tens of milliseconds on
spinning disks; (3) Increased contention: Multiple network round
trips and durable writes also increase the duration that locks are
held. As a result, contention increases, which further impairs the
throughput and latency.

Some solutions have been proposed to address the inefficiency
caused by distributed transactions and 2PC [12, 31, 62], but they all
suffer from significant limitations. Schism [12] reduces the num-
ber of distributed transactions through a workload-driven parti-
tioning and replication scheme. However, distributed transactions
are frequent in real world scenarios and fundamentally unable

744

*
*

Prepare phase

Node 2

Node 1

①

②

③

④ *⑤

⑥

⑦ ⑧ ⑨
Commit phase

Figure 1: Failure scenarios in epoch-based commit

to be fully partitioned. G-Store [13] and LEAP [31] eliminate dis-
tributed transactions by dynamically re-partitioning the database.
However, multiple network round trips are still required to move
data across a cluster of nodes. Calvin [62] and other deterministic
databases [18, 19, 61] avoid 2PC by running transactions determin-
istically across multiple nodes, but these systems need to know a
transaction’s read/write set, which is not always feasible. Aria [33]
supports deterministic transaction execution without any prior
knowledge of the input transactions but it may suffer from unde-
sirable performance in high contention workloads, as we show in
our experiments. The major difference of deterministic databases
is that they replicate the input of transactions instead of the out-
put. However, to achieve determinism, different systems usually
come with different limitations as we introduced above. Note that
deterministic databases need to deploy a sequencing layer as well,
which requires additional hardware cost.

2.3 Replication in Distributed Databases
Modern database systems support high availability such that when
a subset of servers fail, the rest of the servers can carry out the
database functionality, thereby end users do not notice the server
failures. In most applications, high availability is implemented using
data replication, which can be broadly classified into (1) synchro-
nous replication [22], and (2) asynchronous replication [14].

Synchronous replication requires that a transaction does not
commit until its writes have been replicated on all replicas. Primary-
backup replication and state machine replication are two common
ways to implement synchronous replication. In primary-backup
replication, the primary node usually holds the write locks until the
writes of committed transactions are replicated on backup nodes.
In state machine replication, every node can initiate a write to the
database, but all of them must agree on the order of data access
through a consensus protocol, such as Paxos [26] or Raft [45]. Asyn-
chronous replication allows a transaction to commit as soon as its
writes are durable on the primary replica. The writes of committed
transactions are usually batched and applied to backup replicas
later on. Such design improves the efficiency of replication at the
cost of potential data inconsistency and reduced availability when
a failure occurs.

Some recent work such as G-PAC [37] and Helios [44] unifies the
commit and consensus protocols (e.g., Paxos or Raft) to reduce the
latency of transactions in geo-replicated databases. Epoch-based
commit and replication does not impose any restrictions on the
underlying replication protocol. The users of our system have the
flexibility to choose primary-backup replication or state machine
replication.

3 EPOCH-BASED COMMIT AND
REPLICATION

In this section, we first show how our new commit protocol based
on epochs offers superior performance and provides the same guar-
antees as two-phase commit (2PC). We then discuss how the epoch-
based design of COCO reveals opportunities to design a new replica-
tion scheme that unifies the best of both synchronous and asynchro-
nous replication schemes. In Section 4 and Section 5, we will discuss
how to design distributed concurrency control with epoch-based
commit and replication in COCO.

3.1 The Commit Protocol
In COCO, a batch of transactions run and commit in an epoch.
However, the result of each transaction is not released until the
end of the epoch, when all participant nodes agree to commit all
transactions from the current epoch. The system increments the
global epoch every few milliseconds (e.g., 10 ms by default) with
two phases: a prepare phase and a commit phase, as in two-phase
commit (2PC).

In the prepare phase, the coordinator sends a prepare message to
each participant node. Note that the coordinator node is the node
coordinating epoch advancement among a cluster of nodes and it’s
different from the coordinator of distributed transactions as we will
see in later sections. The coordinator can be any node in the system
or a standalone node outside the system. To prevent the coordinator
from being a single point of failure, it can be implemented as a
replicated state machine with Paxos [26] or Raft [45]. When a
participant node receives a prepare message, it prepares to commit
all transactions in the current epoch by force logging a durable
prepared write record (indicated by a purple star in Figure 1) with
all the transaction IDs (TIDs) of ready-to-commit transactions as
well as the current epoch number. Note that some transactions may
have aborted earlier due to conflicts. The underlying concurrency
control algorithms are also required to log all the writes of ready-to-
commit transactions durably (See Section 6.2) before the prepared
write record. When a participant node durably logs all necessary
writes, it then replies an acknowledgement to the coordinator.

In the commit phase, the coordinator first decides if the cur-
rent epoch can commit. If any participant node fails to reply an
acknowledgement due to failures, all transactions from the current
epoch will abort. Otherwise, the coordinator writes a durable com-
mit record (indicated by a purple star in Figure 1) with the current
epoch number and then increments the global epoch. It then sends
a commit message to each participant node. Note that if a trans-
action aborts due to concurrent accesses or integrity violation, it
does not stop the current epoch to commit. When a participant
node receives a commit message, all the writes of ready-to-commit
transactions from the last epoch are considered committed, and
the results of these transactions are released to users. In the end,
it replies an acknowledgement to the coordinator, and prepares to
execute transactions from the next epoch.

Note that COCO is a good fit for workloads in which most trans-
actions are short-lived. In reality, most long-running transactions
are read-only analytical transactions, which can be configured to
run over a slightly stale database snapshot. COCO is able to support
mixed short-lived and long-running update transactions without

745

sacrificing ACID properties. However, transactions will suffer from
higher commit latency. This is because a whole batch of transac-
tions cannot commit until all transactions belonging to the epoch
finish execution.

3.2 Fault Tolerance
In this paper, we assume fail-stop failures [14], in which we can
assume that any healthy node in the system can detect which
node has failed. A failed node is one on which the process of a
COCO instance has crashed. Since COCO detects failures at the
granularity of epochs, all transactions in an epoch will be aborted
and re-executed by the system automatically when a failure occurs.
Here, we argue that the benefit brought by COCO significantly
exceeds the cost to abort and re-run a whole epoch of transactions,
since failures are rare on modern hardware. 2PC ensures atomicity
and durability at the granularity of every single transaction, but
introduces expensive coordination, which is wasted most of the
time.

As shown in Figure 1, a failure can occur when an epoch of
transactions commit with the epoch-based commit protocol. We
classify all failure scenarios into nine categories: (1) before the
coordinator sends prepare requests, (2) after some participant nodes
receive prepared requests, (3) after all participant nodes receive
prepared requests, (4) before the coordinator receives all votes
from participant nodes, (5) after the coordinator writes the commit
record, (6) before some participant nodes receive commit requests,
(7) before the coordinator receives any acknowledgement, (8) after
the coordinator receives some acknowledgements, and (9) after the
coordinator receives all acknowledgements.

The durable commit record written on the coordinator node
indicates the time when the system commits all transactions from
the current epoch. Therefore, in cases (1) - (4), the system simply
aborts all transactions from the current epoch. Specifically, after
recovery, each participant node rollbacks its prepared writes and
discards all intermediate results. In cases (5) - (8), transactions
from the current epoch are considered committed even though a
failure has occurred. After recovery, each participant node can learn
the outcome of the current epoch when communicating with the
coordinator, and then releases the results to users. Case (9) is the
same as case (1), since the system has entered the next epoch.

Once a fault occurs, COCO rollbacks the database to the last
successful epoch, i.e., all tuples that are updated in the current
epoch are reverted to the states in the last epoch. To achieve this,
the database maintains two versions of each tuple. One always has
the latest value. The other one has the most recent value up to the
last successful epoch.

3.3 Efficient and Consistent Replication
A desirable property of any approach to high availability is strong
consistency between replicas, i.e., that there is no way for clients
to tell when a failover happened, because the state reflected by the
replicas is identical. Enforcing strong consistency in a replicated
and distributed database is a challenging task. The most common
approach to achieve strong consistency is based on primary-backup
replication, where the primary releases locks and commits only after

writes have propagated to all replicas, blocking other transactions
from accessing modified records and limiting performance.

If a transaction could process reads at replicas and ship writes to
replicas asynchronously, it could achieve considerably lower latency
and higher throughput, because transactions can read from the
nearest replica and release locks before replicas respond to writes.
Indeed, these features are central to many recent systems that offer
eventual consistency(e.g., Dynamo [14]). Observe that both local
reads and asynchronous writes introduce the same problem: the
possibility of stale reads at replicas. Thus, they both introduce the
same consistency challenge: the database cannot determinewhether
the records a transaction reads are consistent or not. Therefore,
transactions running with two-phase locking (2PL) [5, 17] must
always read from the primary replica, since there is no way for them
to tell if records are locked by only communicating with backup
replicas.

In COCO, atomicity and durability are enforced at the granularity
of epochs. Therefore, COCO can replicate writes of committed
transactions asynchronously without having to worry about the
replication lag within an epoch. The system only needs to ensure
that the primary replica is consistent with all backup replicas at
epoch boundaries. In addition, COCO uses optimistic concurrency
control and each record in the database has an associated TID. The
TID of a record usually indicates the last transaction that modified
the record and can be used to detect if a read from backup replicas
is stale [34, 63, 69, 72]. As a result, a transaction in COCO can read
from nearest backup replicas and only validates with the primary
replica in the commit phase, which significantly reduces network
traffic and latency.

3.4 Limitations
Our experiments show that COCO offers superior performance
to distributed transactional databases by running transactions in
epochs. We now discuss the limitations of epoch-based commit and
replication and how they impact existing OLTP applications.

First, epoch-based commit and replication add a fewmilliseconds
more latency to every single transaction, making it a poor fit for
workloads that require extremely low latency. Second, the system
could have undesirable performance due to imbalanced running
time among transactions. For example, a single long-running trans-
action can stop a whole batch of transactions from committing until
it finishes. Third, since failures are detected at the granularity of
epochs, all transactions in an epoch will be aborted and re-executed
by the system automatically when a failure occurs. Note that trans-
action aborts due to conflicts do not force all transactions in the
epoch to abort and conflicting transactions will be re-run by the
system automatically.

4 THE LIFECYCLE OF A TRANSACTION
In this section, we discuss the lifecycle of a distributed transac-
tion in COCO, which contains an execution phase and a commit
phase. Note that worker threads run transactions in the order they
are submitted. After a worker thread finishes the execution phase
of a transaction, it immediately starts the commit phase of the
transaction and runs it to completion.

746

Function: transaction_read(T, key)
ns = get_replica_nodes(key)
if node_id() in ns: # a local copy is available

record = db_read(key)
else: # n is the nearest node chosen from ns

record = calln(db_read, key)
T.RS.push_back(record)

Function: db_read(key)
atomically load value and TID
return db[tuple.key].{value, tid}

1
2
3
4
5
6
7
8
9

10
11

Figure 2: Pseudocode to read from the database

4.1 The Execution Phase
A transaction in COCO runs in two phases: an execution phase
and a commit phase. We say the node initiating a transaction is the
coordinator node, and other nodes are participant nodes.

In the execution phase, a transaction reads records from the
database and maintains local copies of them in its read set (RS).
Each entry in the read set contains the value as well as the record’s
associated transaction ID (TID). For a read request, the coordinator
node first checks if the request’s primary key is already in the read
set. This happens when a transaction reads a data record multiple
times. In this case, the coordinator node simply uses the value of
the first read. Otherwise, the coordinator node reads the record
from the database.

A record can be read from any replica in COCO. To avoid network
communication, the coordinator node always reads from its local
database if a local copy is available. As shown in Figure 2, the
coordinator first locates the nodes 𝑛𝑠 on which there exists a copy
of the record. If the coordinator node happens to be from 𝑛𝑠 , a
transaction can simply read the record from its local database. If
no local copy is available, a read request is sent to the nearest node
𝑛 chosen from 𝑛𝑠 . In COCO, TIDs are associated with records at
both primary and backup replicas. For a read request, the system
returns both the value and the TID of a record; and both are stored
in the transaction’s local read set.

All computation is performed in the execution phase. Since
COCO’s algorithm is optimistic, writes are not applied to the data-
base but are stored in a per-transaction write set (WS), in which, as
with the read set, each entry has a value and the record’s associated
TID. For a write operation, if the primary key is not in the write
set, a new entry is created with the value and then inserted into the
write set. Otherwise, the system simply updates the write set with
the new value. Note that for updates to records that are already in
the read set, the transaction also copies the TIDs to the entry in the
write set, which are used for validation later on.

4.2 The Commit Phase
After a transaction finishes its execution phase, it must be success-
fully validated before it commits. We now describe the three steps
to commit a transaction: (1) lock all records in the transaction’s
write set; (2) validate all records in the transaction’s read set and
generate a TID; (3) commit changes to the database. Since a later
step cannot start before an earlier step finishes, each step must run
in a different network round trip. However, the third step can run
asynchronously and a worker thread does not need to wait for the

Function: transaction_write(T)
for record in T.WS:

n = get_primary_node(record.key)
calln(db_write, record.key, record.value, T.tid)
for i in get_replica_nodes(record.key) \ {n}:

calli(db_replicate, record.key, record.value, T.tid)

Function: db_write(key, value, tid)
db[key] = {value, tid}
unlock(db[key])

Function: db_replicate(key, value, tid)
begin atomic section
if db[key].tid < tid: # Thomas write rule

db[key] = {value, tid}
end atomic section

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Figure 3: Pseudocode to write to the database
completion of writes and replication. In Section 5, we will discuss
the details of two concurrency control algorithms.

4.2.1 Locking the write set. A transaction first tries to acquire locks
on each record in the write set to prevent concurrent updates from
other transactions. In COCO, a locking request is only sent to the
primary replica of each record. To avoid deadlocks, we adopt a
NO_WAIT deadlock prevention policy, which was shown as the most
scalable protocol [21]. In NO_WAIT, if the lock is already held on the
record, the transaction does not wait but simply aborts. For each
acquired lock, if any record’s latest TID does not equal to the stored
TID, the transaction aborts as well. This is because the record has
been changed at the primary replica since the transaction last read
it.

4.2.2 Validating the read set & TID assignment. When a transaction
has locked each record in its write set, it begins to validate each
record in its read set. Unlike the execution phase, in which a read
request is sent to the nearest node with a copy of the record, a
read validation request is always sent to the primary replica of each
record. A transaction may fail to validate a record due to concurrent
transactions that access the same record. For example, a record
cannot be validated if it is being locked by another transaction or
the value has changed since its last read.

COCO assigns a TID to each transaction as well in this step. The
assignment can happen either prior to or after read validation [34,
63, 69–72], depending on whether the TID is used during read
validation. There are some conditions to assign a TID. For example,
it must be able to tell the order of conflicting transactions. We now
assume a TID is correctly assigned and leave the details of TID
assignment to Section 5.

4.2.3 Writing back to the database. If a transaction fails the vali-
dation, it simply aborts, unlocks the acquired locks, and discards
its local write set. Otherwise, it will commit changes in its write
set to the database. COCO applies the writes and replication asyn-
chronously to reduce round-trip communication. Other transac-
tions can observe the writes of committed transactions at each
replica as soon as a write is written to the database. Note that, to
ensure the writes of committed transactions durable across failures,
the result of a committed transaction is not released to clients until
the end of the current epoch.

747

As illustrated in Figure 3, the value of each record in a transac-
tion’s write set and the generated TID are sent to the primary and
backup replicas from the coordinator node. There are two scenar-
ios that a write is applied to the database: (1) the write is at the
primary replica: Since the primary replica is holding the lock, upon
receiving the write request, the primary replica simply updates the
value and the TID, and then unlocks the record; (2) the write is at
a backup replica: Since asynchronous replication is employed in
COCO, upon receiving the write request, the lock on the record is
not necessarily held on the primary replica, meaning replication
requests to the same record from multiple transactions could arrive
out of order. COCO determines whether a write at a backup replica
should be applied using the Thomas write rule [60]: the database
only applies a write at a backup replica if the record’s current TID is
less than the TID associated with the write (line 14 – 15 of Figure 3).
Because the TID of a record monotonically increases at the primary
replica, this guarantees that backup replicas apply the writes in
the same order as the order to commit transactions at the primary
replica.

5 THE TWO VARIANTS OF OCC
In this section, we discuss how to adapt two popular singe-node
concurrency control algorithms (i.e., Silo [63] and Tictoc [70]) into
the framework of COCO.

Before introducing the details of our modifications, we first sum-
marize our contributions when generalizing these two single-node
OCC protocols to the distributed environment: (1) we make a key
observation that the transaction ID (TID) in Silo and TicToc satisfies
the requirement of epoch-based commit and replication, i.e., the
TID assigned to each record increases monotonically and agrees
with the serial order, and (2) we make extensions to support snap-
shot transactions in Silo and TicToc and propose an optimization
to allow snapshot transactions to have one fewer round trip in the
commit phase.

5.1 PT-OCC – Physical Time OCC
Many recent single-node concurrency control protocols [34, 43,
72, 74] adopted the design philosophy of Silo [63], in which “anti-
dependencies" (i.e., write-after-read conflicts) are not tracked to
avoid scaling bottlenecks. Instead, anti-dependencies are only en-
forced across epochs boundaries, which naturally fits into the design
of COCO based on epoch-based commit and replication.

We now discuss how to adapt Silo to a distributed environment
in COCO and present the pseudocode on the top of Figure 4. Note
that we use 𝑛 to denote the primary node of a record in the database
and different records may have different values for 𝑛. A transaction
first locks each record in its write set. If any record is locked by
another transaction, the transaction simply aborts. The transaction
next validates the records that only appear in its read set. The vali-
dation would fail in two scenarios: (1) the record’s TID has changed,
meaning the record was modified by other concurrent transactions;
(2) the record is locked by another transaction. In either case, the
transaction must abort, unlock the acquired locks, and discard its
local write set. If the transaction successfully validates its read set,
the TID is next generated. There are three criteria [63] to generate
the TID for each transaction in PT-OCC: (1) it must be in the current

global epoch; (2) it must be larger than the TID of any record in the
read/write set; (3) it must be larger than the worker thread’s last
chosen TID. At last, the transaction commits changes in its write set
to the database. The value of each record in the transaction’s write
set and the TID are sent to the primary replica. As discussed in
Section 4, the writes are also asynchronously replicated to backup
replicas from the coordinator node.

The protocol above guarantees serializability because all written
records have been locked before validating the TIDs of read records.
A more formal proof of correctness through reduction to strict
two-phase locking can be found in Silo [63].

5.2 LT-OCC – Logical Time OCC
Many concurrency control algorithms [28, 52, 68] allow read-only
snapshot transactions to run over a consistent snapshot of the data-
base and commit back in time. TicToc [70], a single-node concur-
rency control algorithm, takes a further step by allowing read-write
serializable transactions to commit back in time in the space of log-
ical time. In TicToc, each record in the database is associated with
two logical timestamps, which are represented by two 64-bit inte-
gers: wts, rts . The wts is the logical write timestamp, indicating
when the record was written, and the rts is the logical read validity
timestamp, indicating that the record can be read at any logical
time ts such that wts ≤ ts ≤ rts. The key idea is to dynamically
assign a logical timestamp (i.e., TID) to each transaction on commit
so that each record in the read/write set is available for read and
update at the same logical time.

We now discuss how to adapt TicToc [70] to a distributed en-
vironment in COCO and present the pseudocode on the bottom
of Figure 4. A transaction first locks each record in its write set.
Since concurrent transactions may have extended the rts of some
records, LT-OCC updates the rts of each record in the transac-
tion’s write set to the latest one at the primary replica, which is
available when a record is locked. The transaction next validates
the records that only appear in its read set. The validation requires
a TID, which is the smallest timestamp that meets the following
three conditions [72]: (1) it must be in the current global epoch; (2)
it must be not less than the wts of any record in the read set; (3) it
must be larger than the rts of any record in the write set. The TID
is first compared with the rts of the record in its read set. A read
validation request is sent only when a record’s rts is less than the
TID. In this case, the transaction tries to extend the record’s rts at
the primary replica. The extension would fail in two scenarios: (1)
the record’s wts has changed, meaning the record was modified by
other concurrent transactions; (2) the record is locked by another
transaction and the rts is less than the TID. In either case, the rts
cannot be extended and the transaction must abort. Otherwise, the
transaction extends the record’s rts to the TID. If the transaction
fails the validation, it simply aborts, unlocks the acquired locks,
and discards its local write set. Otherwise, it will commit changes
in its write set to the database. As in PT-OCC, the writes are also
asynchronously replicated to backup replicas from the coordinator
node.

LT-OCC is able to avoid the need to validate the read set against
the primary replica as long as the logical commit time falls in all time
intervals of data read from replicas, even if the replicas are not fully

748

for record in T.WS:
ok, tid = calln(lock, record.key)
if record not in T.RS:

record.tid = tid
if ok == false or tid != record.tid:

abort = true

1
2
3
4
5
6

for record in T.RS \ T.WS:
begin atomic section
locked, tid = calln(read_metadata, record.key)
end atomic section
if locked or tid != record.tid:

abort()

for record in T.WS:
calln(db_write, record.key, record.value, record.tid)
calln(unlock, record.key)
for i in get_replica_nodes(record.key) \ {n}:

calli(db_replicate, record.key, record.value, T.tid)

for record in T.WS:
ok, {wts, rts} = calln(lock, record.key)
if record not in T.RS:

record.wts = wts
if ok == false or wts != record.wts:

abort()
record.rts = rts

1
2
3
4
5
6
7
8

for record in T.RS \ T.WS:
if record.rts < T.tid:

begin atomic section
locked, {wts, rts} = calln(read_metadata, record.key)
if wts != record.wts or (rts < T.tid and locked):

abort()
calln(write_metadata, record.key, locked, {wts, T.tid})
end atomic section

for record in T.WS:
wts, rts = T.tid, T.tid
calln(db_write, record.key, record.value, {wts, rts})
calln(unlock, record.key)
for i in get_replica_nodes(record.key) \ {n}:

calli(db_replicate, record.key, record.value, {wts, rts})

Validating the read set Writing back to the database

P
T
|
O
C
C

L
T
|
O
C
C

Locking the write set

Figure 4: Pseudocode of the commit phase in PT-OCC and LT-OCC

up to date. Informally, the protocol above guarantees serializability
because all the reads and writes of a transaction happen at the same
logical time. From logical time perspective, all accesses happen
simultaneously. A more formal proof of how logical timestamps
enforce serializability can be found in TicToc [70].

5.3 Snapshot Transactions
Serializability allows transactions to run concurrently while ensur-
ing the state of the database is equivalent to some serial ordering of
the transactions. In contrast, snapshot transactions only run over a
consistent snapshot of the database, meaning read/write conflicts
are not detected. As a result, a database system running snapshot
isolation has a lower abort rate and higher throughput.

Many systems adopt amulti-version concurrency control (MVCC)
algorithm to support snapshot isolation (SI). In an MVCC-based
system, a timestamp is assigned to a transaction when it starts to
execute. By reading all records that have overlapping time intervals
with the timestamp, the transaction is guaranteed to observe the
state of the database (i.e., a consistent snapshot) at the time when
the transaction began. Instead of maintaining multiple versions for
each record, we made minor changes to the algorithm discussed
in Section 5 to support snapshot isolation. The key idea behind
is to ensure that all reads are from a consistent snapshot of the
database and there are no conflicts with any concurrent updates
made since that snapshot. We now describe the extensions making
both PT-OCC and LT-OCC support snapshot transactions.

5.3.1 Snapshot transactions in PT-OCC. In PT-OCC, a transaction
first locks all records in the write set and next validates each record
in the read set to see if there exists any concurrent modification. If
the validation succeeds, the transaction can safely commit under
serializability. There is a short period of time after all records in
the write set are locked and before any record in the read set is
validated. The serialization point can be any physical time during
the period.

To support snapshot transactions, a transaction can validate its
read set without locks being held for each record in its write set. As
long as no changes are detected, it is guaranteed that the transaction
reads a consistent snapshot from the database. Likewise, there is
a short period of time after the transaction finishes all reads and
before the validation, and the snapshot is taken at some physical
time during the period above. Snapshot transactions are more likely
to commit than serializable transactions, since read validation can
happen right after execution without locks being held.

5.3.2 Snapshot transactions in LT-OCC. In LT-OCC, the TID is as-
signed to each serializable transaction after all records in the write
set have been locked. The TID must be larger than the rts of each
record in the write set and not less than the wts of each record in the
read set. To support snapshot transactions, LT-OCC assigns an ad-
ditional TIDSI to each transaction, which is the smallest timestamp
not less than the wts of each record in the read set. Since the new
TIDSI is not required to be larger than the rts of each record in the
write set, it’s usually less than the TID for serializable transactions
allowing more transactions to commit. During read validation, a
transaction can safely commit under snapshot isolation as long as
each record in the read set does not change until logical time TIDSI.

5.3.3 Parallel locking and validation optimization. As we discussed
in sections above, a snapshot transaction can validate its read set
regardless of its write set in both PT-OCC and LT-OCC. In particular,
read validation can happen before the records in the write set have
been locked in PT-OCC. Likewise, the calculation of TIDSI does not
depend on the rts of each record in the write set in LT-OCC, which
indirectly implies that read validation can happen independently.

We now introduce an optimization we call parallel locking and
validation optimization, which combines the first two steps in the
commit phase. In order words, locking the write set and validating
the read set are now allowed to happen in parallel at the same
time, making both PT-OCC and LT-OCC have one fewer round
trip of network communication. This is the key reason that COCO
running transactions in snapshot isolation has higher throughput
even when the contention in a workload is low.

6 IMPLEMENTATION
This section describes COCO’s underlying data structures, disk
logging and checkpointing for durability and recovery, and imple-
mentation of insert and delete database operations.

6.1 Data Structures
COCO is a distributed in-memory OLTP database, in which each
table in COCO has a pre-defined schema with typed and named
attributes. Transactions are submitted to the system through pre-
compiled stored procedures with different parameters, as in many
popular systems [34, 62, 63, 67, 70]. Arbitrary logic (e.g., read/write
and insert/delete operations) can be implemented in a stored pro-
cedure in C++.

749

Tables are currently implemented as a collection of hash tables
— a primary hash table and zero or more secondary hash tables. A
record is accessed through the probing primary hash table. Two
probes are needed for secondary index lookups, i.e., one in a sec-
ondary hash table to find the primary key, followed by a lookup
on the primary hash table. The system currently does not support
range queries, but can be easily adapted to tree structures [6, 38, 66].
Note that the two concurrency control algorithms [63, 70] have
native support for range queries with phantom prevention.

In COCO, we use TIDs to detect conflicts. We record the TID
value as one or more 64-bit integers depending on the underlying
concurrency control algorithm, and the TID is attached to each
record in a table’s primary hash table. The high 35 bits of each
TID contain an epoch number, which indicates the epoch that a
transaction comes from. The middle 27 bits are used to distinguish
transactions within the same epoch. The remaining two bits are
the status bits showing if the record has been deleted or locked.
Likewise, we use two 64-bit integers as a TID to represent wts
and rts in LT-OCC. Note that status bits only exist in the integer
indicating the wts. By default, the epoch size is 10 ms. The number
of bits reserved for epochs is sufficient for ten years, and the number
of bits reserved for transactions are sufficient for over 100 million
transactions per epoch.

6.2 Disk Logging and Checkpointing
As shown in Section 3.2, a commit record is written to disk when
an epoch commits. On recovery, the system uses the commit record
to decide the outcome of the whole epoch. However, the commit
record does not have the writes of each transaction from an epoch.
As a result, COCO requires that the underlying concurrency control
algorithm must properly log to disk as well.

We now take PT-OCC as an example to show how transactions
are logged to disk. In COCO, each transaction is run by a single
worker thread, which has a local recovery log. The writes of com-
mitted transactions are first buffered in memory. They are flushed
to disk when the local buffer fills or when the system enters to
the next epoch. A log entry contains the information of a single
write to a record in the database with the following information:
(1) table and partition IDs, (2) TID, (3) primary key, and (4) value. A
log entry in LT-OCC is the same as in PT-OCC, except for the TID,
which has both wts and rts.

To bound the recovery time, a separate checkpointing thread
can be used to periodically checkpoint the database to disk as in
SiloR [74]. The checkpointing thread first logs the current epoch
number 𝑒𝑐 to disk, and next scans the whole database and logs
each record to disk. Note that the epoch number 𝑒𝑐 indicates when
the checkpoint begins, and all log entries with embedded epoch
numbers smaller than 𝑒𝑐 can be safely deleted after the checkpoint
finishes.

On recovery, COCO recovers the database through checkpoints
and log entries. The system first loads the most recent checkpoint
if available, and next replays all epochs since the checkpoint. An
epoch is only replayed if the commit record indicates committed.
Note that the database can be recovered in parallel with multiple
worker threads. A write can be applied to the database as long as
its TID is larger than the latest one in the database.

6.3 Deletes and Inserts
A record deleted by a transaction is not immediately deleted from
the hash table. Instead, the system only marks the record as deleted
by setting the delete status bit and registers it for garbage collection.
This is because other concurrent transactions may read the record
for validation. If a transaction finds a record it read has been deleted,
it aborts and retries. All marked records from an epoch can be safely
deleted, when the system enters the next epoch.

When a transaction makes an insert during execution, a place-
holder is created in the hash table with TID 0. This is because a
transaction needs to lock each record in its write set. If a transaction
aborts due to conflicts, the placeholder is marked as deleted for
garbage collection. Otherwise, the transaction writes a new value
to the placeholder, updates the TID, and unlocks the record.

7 EVALUATION
In this section, we study the performance of each distributed con-
currency control algorithm with 2PC and epoch-based commit
focusing on the following key questions:

• How does each distributed concurrency control algorithm
perform with 2PC and epoch-based commit?

• How does epoch-based commit perform compared to deter-
ministic databases?

• What’s the effect of durable write latency affect on 2PC and
epoch-based commit?

• How does network latency affect each distributed concur-
rency control algorithm?

• How much performance gain of snapshot isolation over se-
rializability?

• What’s the effect of different epoch sizes?

7.1 Experimental Setup
We run our experiments on a cluster of eight m5.4xlarge nodes on
Amazon EC2 [2], each with 16 2.50 GHz virtual CPUs and 64 GB
RAM. Each node runs 64-bit Ubuntu 18.04 with Linux kernel 4.15.0.
iperf shows that the network between each node delivers about
4.8 Gbits/s throughput. We implement COCO in C++ and compile
it using GCC 7.4.0 with -O2 option enabled.

In our experiments, we run 12 worker threads and 2 threads for
network communication on each node. In addition, we have a thread
coordinating all worker threads and IO threads and we leave one
more CPU thread for other processes. Each worker thread has an
integrated workload generator. Aborted transaction are re-executed
with an exponential back-off strategy. To study the performance
gain that epoch-based commits are able to achieve in the worst
case, we disable logging and checkpointing for 2PC and epoch-
based commit by default, since any additional latency from durable
writes gives epoch-based commits more performance advantage.
All results are the average of five runs.

7.1.1 Workloads. To evaluate the performance of COCO, we run
a number of experiments using the following two popular bench-
marks:

YCSB: The Yahoo! Cloud Serving Benchmark (YCSB) is a sim-
ple transactional workload. It’s designed to be a benchmark for
facilitating performance comparisons of database and key-value

750

S2PL PT-OCC LT-OCC
0

200K

400K

600K

800K

Th
ro

ug
hp

ut
(tx

ns
/s

ec
)

2PC w/o Replication

S2PL PT-OCC LT-OCC

2PC(Sync)

PT-OCC LT-OCC

Epoch(Async)

~2x improvement

Figure 5: Throughput on YCSB

S2PL PT-OCC LT-OCC
0

200K

400K

600K

800K

Th
ro

ug
hp

ut
(tx

ns
/s

ec
)

2PC w/o Replication

S2PL PT-OCC LT-OCC

2PC(Sync)

PT-OCC LT-OCC

Epoch(Async)

~4x improvement

Figure 6: Throughput on TPC-C

S2PL PT-OCC LT-OCC
0

10
20
30
40

of

 m
es

sa
ge

s

2PC w/o Replication

S2PL PT-OCC LT-OCC

2PC(Sync)

PT-OCC LT-OCC

Epoch(Async)

Figure 7: Average # of messages on YCSB

S2PL PT-OCC LT-OCC
0

10
20
30
40

of

 m
es

sa
ge

s

2PC w/o Replication

S2PL PT-OCC LT-OCC

2PC(Sync)

PT-OCC LT-OCC

Epoch(Async)

Figure 8: Average # of messages on TPC-C

systems [8]. There is a single table and each row has ten attributes.
The primary key of the table is a 64-bit integer and each attribute
has 10 random bytes. We run a workload mix of 80/20, i.e., each
transaction has 8 read operations and 2 read/write operation. By
default, we run this workload with 20% multi-partition transactions
that access to multiple partitions.

TPC-C: The TPC-C benchmark is a popular benchmark to eval-
uate OLTP databases [1]. It models a warehouse-centric order pro-
cessing application. We support the NewOrder and the Payment
transaction in this benchmark, which involves customers placing
orders and making payments in their districts within a local ware-
house. 88% of the standard TPC-C mix consists of these two trans-
actions. We currently do not support the other three transactions
that require range scans. By default, a NewOrder transaction is
followed by a Payment transaction, and 10% of NewOrder and 15%
of Payment transactions are multi-partition transactions.

In YCSB, we set the number of records to 400K per partition and
the number of partitions to 96, which equals to the total number of
worker threads in the cluster. In TPC-C, we partition the database
by warehouse and there are 96 warehouses in total. Note that we
replicate the read-only Item table on each node. We set the number
of replicas to 3 in the replicated setting, i.e., each partition has a
primary partition and two backup partitions, which are always
hashed to three different nodes.

7.1.2 Distributed concurrency control algorithms. We study the
following distributed concurrency control algorithms in COCO.
To avoid an apples-to-oranges comparison, we implemented all
algorithms in C++ in our framework.

S2PL: This is a distributed concurrency control algorithm based
on strict two-phase locking. Read locks and write locks are acquired
as aworker runs a transaction. To avoid deadlock, the same NO_WAIT
policy is adopted as discussed in Section 4. A worker thread updates
all records and replicates the writes to replicas before releasing all
acquired locks.

PT-OCC: Our physical time OCC from Section 5.1.
LT-OCC: Our logical time OCC from Section 5.2.
In addition to each concurrency control algorithm, we also sup-

port three different combinations of commit protocols and replica-
tion schemes.

2PC w/o Replication: A transaction commits with two-phase
commit and no replication exists.

2PC(Sync): A transaction commits with two-phase commit. A
transaction’s write locks are not released until all writes are repli-
cated on all replicas.

Epoch(Async): A transaction commits with epoch-based com-
mit and replication, i.e., a transaction’s write locks are released as
soon as the writes are applied to the primary replica.

Note that a transaction cannot run with S2PL and commit with
Epoch(Async), since it’s not straightforward to asynchronously
apply writes on replicas without write locks being held in S2PL.
By default, optimistic concurrency control protocols (i.e., PT-OCC
and LT-OCC) are allowed to read from the nearest replica in both
2PC(Sync) and Epoch(Async).

7.2 Performance Comparison
We now study the performance of each concurrency control algo-
rithm with different combinations of commit protocols and replica-
tion schemes.

We first ran a YCSB workload and report the result in Figure 5.
S2PL with synchronous replication only achieves about 50% of the
original throughput when there is no replication. This is because
each transaction cannot commit before writes are replicated and
even a single-partition transaction now has a round-trip delay.
Similarly, both PT-OCC and LT-OCC have about 40% performance
slowdown, even though they are allowed to read from the nearest
replica. We now study how epoch-based commit and replication
affect the performance of PT-OCC and LT-OCC, which is shown in
Epoch(Async). As shown in the right side of Figure 5, both PT-OCC
and LT-OCC have about 2x performance improvement compared
to the ones (shown in the middle) with 2PC(Sync). This is because
the write locks can be released as soon as the writes have been
applied at the primary replica. In this way, transactions no longer
pay the cost of a round-trip delay.

We also ran a TPC-C workload and report the result in Figure 6.
We observe that there exist a 4x performance improvement from
Epoch(Async) over 2PC(Sync). The throughput even exceeds the ones
(shown in the left side) with 2PC w/o Replication, since PT-OCC and
LT-OCC are allowed to read from the nearest replica.

Next, we study the number of messages sent for a transaction
during execution and commit, and report the results in Figure 7
and Figure 8. We observe that a transaction in 2PC(Sync) sends
more messages than that in 2PC w/o Replication due to replication.
Compared to 2PC(Sync), Epoch(Async) effectively reduces the num-
ber of messages in both PT-OCC and LT-OCC, requiring 26% fewer
messages on YCSB and 42% fewer messages on TPC-C on average.
This is because Epoch(Async) reduces the number of network round
trips during commit.

To study how Epoch(Async) reduces contention of a workload,
we report the abort rate in TPC-C in Figure 9. We do not report the

751

S2PL PT-OCC LT-OCC
0

20
40
60
80

A
bo

rt
ra

te
 (%

)

2PC w/o Replication

S2PL PT-OCC LT-OCC

2PC(Sync)

PT-OCC LT-OCC

Epoch(Async)

Figure 9: Abort rate on TPC-C

PT-OCC LT-OCC Aria
0

400K

800K

1,200K

Th
ro
ug

hp
ut

(tx
ns

/s
ec

) YCSB

PT-OCC LT-OCC Aria

TPC-C

Figure 10: Comparison with deterministic databases

results for YCSB, since each read or write follows a uniform distri-
bution and the abort rate is close to zero in all configurations. Each
concurrency control method has a higher abort rate in 2PC(Sync)
than that in 2PC w/o Replication. This is because locks are held for a
longer period of time due to synchronous replication. Compared to
2PC(Sync), Epoch(Async) effectively reduces the abort rate in both
PT-OCC (from 40% to 19%) and LT-OCC (from 34% to 16%).

Due to space limitations, we do not show the latency of each
configuration in this experiment. Interested readers can refer to the
data points with zero write latency in Figure 11.

In summary, concurrency control protocols are able to achieve
2 ∼ 4x higher throughput through epoch-based commit and repli-
cation compared to the ones with 2PC(Sync).

7.3 Comparison with Deterministic Databases
We now compare COCO with Aria [33], a deterministic concur-
rency control and replication algorithm. Aria runs transactions in
batches and commits transactions deterministically upon receiving
the input batch of transactions. There is no need for replicas to
communicate with one another to achieve consistency. Note that
Aria is implemented in the same framework as COCO to ensure a
fair comparison. In this experiment, we measure the performance
of Aria on one replica in the same cluster of eight nodes.

We run both YCSB and TPC-C and report the results in Figure 10.
In YCSB, 20% of transactions are multi-partition transactions. In
TPC-C, 10% of NewOrder and 15% of Payment transactions are
multi-partition transactions. The batch size in Aria is set to 40K
on YCSB and 2K on TPC-C. For convenience, the same results of
PT-OCC and LT-OCC with Epoch(Async) in Section 7.2 are shown
in Figure 10 as well. We observe that Aria achieves about 2.3x higher
throughput than Epoch(Async) on YCSB. This is because the abort
rate is close to zero on YCSB, making it an ideal workload for deter-
ministic databases such as Aria. Even though Aria achieves higher
throughput than COCO, it does not achieve the same availability.
This is because there exist three copies of each record in COCO,
however, there is only one replica deployed in Aria in the cluster.
For TPC-C, PT-OCC and LT-OCC with Epoch(Async) achieve 1.5x
and 1.8x higher throughput than Aria respectively. This is because
there are contended writes in this workload and many transactions
must abort and re-execute in Aria. In COCO, the performance ad-
vantage is larger when a workload has a higher contention. This is
because epoch-based commit and replication enables the locks of a
transaction to be held for a shorter period of time.

7.4 Effect of Durable Write Latency
We next study the effect of durable write latency on throughput
and latency. For databases with high availability, the prepare and
commit records of 2PC and epoch-based commit must be written
to durable secondary storage, such as disks and replication to a
remote node. To model the latency of various durable secondary

storage, we add an artificial delay to 2PC and epoch-based commit
through spinning.

In this experiment, we vary the durable write latency from 1 𝜇s
to 2 ms and run both YCSB and TPC-C. Figures 11(a) and 11(b) show
the throughput and the latency at the 99th percentile of S2PL with
2PC(Sync) and PT-OCC with Epoch(Async) on YCSB. Transactions
using 2PC(Sync) have a noticeable throughput decline or a latency
increase when the durable write latency is larger than 20 𝜇s. In
contrast, transactions using Epoch(Async) have stable throughput
until the durable write latency exceeds 200 𝜇s. In addition, the la-
tency is more stable as well, since the epoch size can be dynamically
adjusted based on different durable write latency. Likewise, we re-
port the results of TPC-C in Figure 11(c) and 11(d). A noticeable
throughput decline or latency increase is observed in 2PC(Sync)
when the durable write latency is larger than 50 𝜇s. Furthermore,
when the durable write latency exceeds 1000 𝜇s on YCSB and 200 𝜇s
on TPC-C, the latency of 2PC(Sync) at the 99th percentile exceeds
the latency of Epoch(Async), showing that epoch-based commit also
helps reduce tail latency. For interested readers, we also report the
latency at the 50th percentile, which is shown at the bottom of the
shaded band in Figures 11(b) and 11(d). In COCO, the latency at the
50th percentile is about 6.5 ms on YCSB and 7 ms on TPC-C, since
we set the epoch size to 10 ms. In 2PC(Sync), the latency at the 50th
percentile is not sensitive to durable write latency, and it is about
270 𝜇s on YCSB and 600 𝜇s on TPC-C. This is because durable write
latency exists only in distributed transactions and more than 80%
transactions are single-partition transactions in our experiment.

Overall, epoch-based commit and replication trade latency for
higher throughput. The performance advantage is more significant
when durable write latency is larger. For example, with 1 ms durable
write latency, Epoch(Async) has roughly 6x higher throughput than
2PC(Sync) on both YCSB and TPC-C.

7.5 Wide-Area Network Experiment
In this section, we study how epoch-based commit and replication
perform compared to S2PLwith 2PC(Sync) in the wide-area network
(WAN) setting. For users concerned with very high availability,
wide-area replication is important because it allows the database
to survive the failure of a whole data center (e.g., due to a power
outage or a natural disaster).

We use three m5.4xlarge nodes running on Amazon EC2 [2].
The three nodes are in North Virginia, Ohio, and North California
respectively. Each partition of the database is fully replicated in
all area zones, meaning each one has a primary partition and two
backup partitions. The primary partition is randomly chosen from 3
nodes. The round trip times between any two nodes are as follows:
(1) North Virginia to Ohio: 11.3 ms, (2) North Virginia to North
California: 60.9 ms, and (3) Ohio to North California: 50.0 ms. In this
experiment, we set the epoch size to one second, and use 2PC(Sync)
in S2PL and Epoch(Async) in PT-OCC and LT-OCC.

752

