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Abstract

Oblivious RAM (ORAM) is an established technique to
hide the access pattern to an untrusted storage system. With
ORAM, a curious adversary cannot tell what address the user
is accessing when observing the bits moving between the user
and the storage system. All existing ORAM schemes achieve
obliviousness by adding redundancy to the storage system, i.e.,
each access is turned into multiple random accesses. Such
redundancy incurs a large performance overhead.

Although traditional data prefetching techniques success-
fully hide memory latency in DRAM based systems, it turns out
that they do not work well for ORAM because ORAM does not
have enough memory bandwidth available for issuing prefetch
requests. In this paper, we exploit ORAM locality by taking ad-
vantage of the ORAM internal structures. While it might seem
apparent that obliviousness and locality are two contradictory
concepts, we challenge this intuition by exploiting data local-
ity in ORAM without sacrificing security. In particular, we
propose a dynamic ORAM prefetching technique called PrO-
RAM (Dynamic Prefetcher for ORAM) and comprehensively
explore its design space. PrORAM detects data locality in
programs at runtime, and exploits the locality without leaking
any information on the access pattern.

Our simulation results show that with PrORAM, the per-
formance of ORAM can be significantly improved. PrORAM
achieves an average performance gain of 20% over the base-
line ORAM for memory intensive benchmarks among Splash2
and 5.5% for SPECO06 workloads. The performance gain for
YCSB and TPCC in DBMS benchmarks is 23.6% and 5% re-
spectively. On average, PrORAM offers twice the performance
gain than that offered by a static super block scheme.
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1. Introduction

As cloud computing becomes more and more popular, pri-
vacy of users’ sensitive data is a huge concern in computation
outsourcing. One solution to this problem is to use tamper-
resistant hardware and secure processors. In this setting, a
user sends his/her encrypted data to the trusted hardware, in-
side which the data is decrypted and computed upon. The
final results are encrypted and sent back to the user. The
trusted hardware is assumed to be tamper-resistant, namely,
an adversary is not able to look inside the chip to learn any
information. Many such hardware platforms have been pro-
posed, including Intel’s TPM+TXT [15], which is based on
TPM [1, 26, 34], eXecute Only Memory (XOM) [17, 18, 19]
and Aegis [31, 32].

While an adversary cannot access the internal states inside
the tamper-resistant hardware, information can still be leaked
through main memory accesses. Although all the data stored in
the external memory can be encrypted to hide the data values,
the memory access pattern (i.e., address sequence) may leak
information. Existing attacks ([39]) show that the control flow
of a program can be learned by observing the main memory
access patterns. This may leak the sensitive private data.

Completely preventing leakage from the memory access
pattern requires the use of Oblivious RAM (ORAM). ORAMs
were first proposed by Goldreich and Ostrovsky [11], and there
has been significant follow-up work that has resulted in more
and more efficient cryptographically-secure ORAM schemes
[2,7,12,13, 14, 22,23,27, 29, 30, 36]. The key idea which
makes ORAM secure is to translate a single ORAM read/write
into accesses to multiple randomized locations. As a result,
the locations touched in each ORAM read/write would have
exactly the same distribution and be indistinguishable to an
adversary.

The cost of ORAM security is performance. Each ORAM
access needs to touch multiple physical locations which incurs
one to two orders of magnitude more bandwidth and latency
when compared to a normal DRAM. Path ORAM [30], the
most efficient and practical ORAM system for secure pro-
cessors so far, still incurs at least 30x more latency than a
normal DRAM for a single access. This results in 2 — 10x
performance slowdown [10, 25].

Traditionally, data prefetching [24, 3] has been used to
hide long memory access latency. Data prefetching uses the



memory access pattern from history to predict which data
block will be accessed in the near future. The predicted block
is prefetched from the memory before it is actually requested
to hide the access latency.

Although it might seem that prefetching should be very
effective with ORAM since ORAM has very high access la-
tency, in reality prefetching does not work on ORAM when
the program is memory bound. The main reason is that unlike
DRAM, whose bottleneck is mainly memory latency, ORAM’s
bottleneck is in both latency and bandwidth. Prefetching only
works when DRAM has extra bandwidth, therefore does not
work well for ORAM (cf. Section 3.1).

In this paper, we enable ORAM prefetching by exploiting
locality inside the ORAM itself, which is very different from
traditional prefetching techniques. At first glance, exploiting
data locality and obfuscation seem contradictory: on one hand,
obfuscation requires that all data blocks are mapped to random
locations in the storage system. On the other hand, locality
requires that certain groups of data blocks can be efficiently
accessed together. One might argue that ORAM is inherently
poor in terms of locality. We challenge this intuition in this
paper by exploiting data locality in ORAM without sacrificing
provable security.

We propose a novel ORAM prefetcher called PrORAM
(pronounced as ‘Pro-RAM’), which introduces a dynamic su-
per block scheme. We demonstrate that it achieves the same
level of security as normal Path ORAM, and comprehensively
explore its design space. Our dynamic super block scheme
detects data locality in programs at runtime, and exploits the
locality without leaking information on the access pattern.

In particular, the paper makes the following contributions:

1. We study traditional data prefetching techniques in the
context of ORAM, and observe that they do not work
well for ORAM.

2. A dynamic super block scheme is proposed. The micro-
architecture of the scheme is discussed in detail, and the
design space is comprehensively explored.

3. Our simulation results show that PrORAM improves Path
ORAM performance by 20.2% (upto 42.1%) over the
baseline ORAM for memory bound Splash2 benchmarks,
5.5% for SPEC06 benchmarks, and 23.6% and 5% for
YCSB and TPCC in DBMS benchmarks respectively.
This is more than twice the performance gain offered by
an existing static super block scheme.

The rest of the paper is organized as follows: Section 2 pro-
vides the necessary background of ORAM in general and Path
ORAM in particular. Section 3 presents ORAM prefetch tech-
niques and discusses a previously proposed scheme called
static super block. A dynamic super block scheme is intro-
duced in Section 4. The design space is explored, security is
shown and hardware complexity is analyzed in detail. Sec-
tion 5 evaluates different optimizations proposed in the paper.
Related work is presented in Section 6 and we conclude the
paper in Section 7.

2. Background
2.1. Oblivious RAM

ORAM ([11]) is a data storage primitive which hides the user’s
access pattern such that an adversary is not able to figure out
what data the user is accessing by observing the address trans-
ferred from the user to the external untrusted storage (we
assume DRAM in this paper). A user accesses a sequence of
program addresses A = (a1, az, ..., a,), which will be trans-
lated to a sequence of ORAM accesses S = (s1, 52, ..., Sm),
where g; is the program address of the " access and the value
of a; should be hidden from the adversary. s; is the physical
address used to access the data storage engine. The value of s;
is exposed to the adversary. Given any two access sequences
A and A, of the same length, ORAM guarantees that the
transformed access sequences S| and S, are computationally
indistinguishable. In other words, the ORAM physical ac-
cess pattern (S) is independent of the logical access pattern
(A). Data stored in ORAMs should be encrypted using prob-
abilistic encryption to conceal the data content and also hide
which memory location, if any, is updated. With ORAM, an
adversary should not be able to tell (a) whether a given ORAM
access is a read or write, (b) which logical address in ORAM is
accessed, or (c) what data is read from/written to that location.

In this paper, we focus on Path ORAM [30], which is cur-
rently the most efficient ORAM scheme for limited client
(processor) storage, and, further, is appealing due to its sim-
plicity.

2.2. Path ORAM

Path ORAM [30] has two main hardware components: the
binary tree storage and the ORAM controller (cf. Figure 1).
Binary tree stores the data content of the ORAM and is im-
plemented on DRAM. Each node in the tree is defined as a
bucket which holds up to Z data blocks. Buckets with less than
Z blocks are filled with dummy blocks. To be secure, all blocks
(real or dummy) are encrypted and cannot be distinguished.
The root of the tree is referred to as level 0, and the leafs as
level L. Each leaf node has a unique leaf label s. The path
from the root to leaf s is defined as path s. The binary tree can
be observed by any adversary and is in this sense not trusted.
ORAM controller is a piece of trusted hardware that controls
the tree structure. Besides necessary logic circuits, the ORAM
controller contains two main structures, a position map and a
stash. The position map is a lookup table that associates the
program address of a data block (a) with a path in the ORAM
tree (path s). The stash is a piece of memory that stores up to
a small number of data blocks at a time.

At any time, each data block in Path ORAM is mapped
(randomly) to some path s via the position map. Path ORAM
maintains the following invariant: if data block a is currently
mapped to path s, then a must be stored either on path s, or in
the stash (see Figure 1). Path ORAM follows the following
steps when a request on block a is issued by the processor.
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Figure 1: A Path ORAM for L = 3 levels. Path s = 5 is ac-
cessed.

1. Look up the position map with the block’s program ad-

dress a, yielding the corresponding leaf label s.

2. Read all the buckets on path s. Decrypt all blocks within
the ORAM controller and add them to the stash if they
are real (i.e., not dummy) blocks.

Return block a to the secure processor.

4. Assign a new random leaf s’ to a (update the position
map).

5. Encrypt and evict as many blocks as possible from the
stash to path s. Fill any remaining space on path s with
encrypted dummy blocks.

Step 4 is the key to Path ORAM’s security. This guarantees
that a random path will be accessed when block a is accessed
later and this path is independent of any previously accessed
random paths (unlinkability). As a result, each ORAM access
is random and unlinkable regardless of the request pattern.

w

2.3. Recursive Path ORAM

In practice, the position map is usually too large to be stored
in the trusted processor. Recursive ORAM has been proposed
to solve this problem [27]. In a 2-level recursive Path ORAM,
for instance, the original position map is stored in a second
ORAM, and the second ORAM’s position map is stored in
the trusted processor (Figure 1(b)). The above trick can be
repeated, i.e., adding more levels of ORAM:s to further reduce
the final position map size at the expense of increased latency.
The recursive ORAM has a similar organization as OS page
tables.

Unified ORAM [8] is an improved and state-of-the-art re-
cursion technique. It leverages the fact that each block in a
position map ORAM stores the leaf labels for multiple data
blocks that are consecutive in the address space. Therefore,
Unified ORAM caches position map ORAM blocks to ex-
ploit locality (similar to the TLB exploiting locality in page
tables). To hide whether a position map access hits or misses
in the cache, Unified ORAM stores both data and position map
blocks in the same binary tree. In this paper, we use unified
ORAM as our baseline ORAM design.

2.4. Background Eviction

In Steps 4 and 5 of the basic Path ORAM operation, the ac-
cessed data block is remapped from the old leaf s to a new
random leaf s’, making it likely to stay in the stash. In practice,

this may cause blocks to accumulate in the stash and finally
overflow. It has been proven that the stash overflow probabil-
ity is negligible for Z > 6 [30]. For smaller Z, background
eviction [25] has been proposed to prevent stash overflow.

The ORAM controller stops serving real requests and issues
background evictions (dummy accesses) when the stash is full.
A background eviction reads and writes a random path s, in the
binary tree, but does not remap any block. During the writing
back phase (Step 5 in Section 2.2) of Path ORAM access,
all blocks that are just read in can at least go back to their
original places on s,, so the stash occupancy cannot increase.
In addition, the blocks that were originally in the stash are also
likely to be written back to the tree (they may share a common
bucket with s, that is not full of blocks). Background eviction
is proven secure in [25].

2.5. Timing Channel Protection

The original ORAM definition in [11] does not protect against
timing attacks. Timing information includes when an ORAM
access happens, the run time of the program, etc. For example,
by observing that a burst of memory accesses happen, an
adversary may be able to tell that a loop is being executed in
the program. By counting the length of the burst, sensitive
private information may be leaked.

In practice, periodic ORAM accesses are needed to protect
the timing channel [10]. Following prior work, we use Oj,,
as the public time interval between two consecutive ORAM
accesses. ORAM timing behavior is completely determined by
Ojp;. If there is no pending memory request when an ORAM
access needs to happen due to periodicity, a dummy access
will be issued (the same operation as background eviction).
If one is willing to leak a few bits, timing channel protection
schemes that allow for dynamically-changing O;,; may be
attractive [9], since they provide better performance. These
schemes can be used with the techniques proposed in this
paper if small data leakage is allowed.

2.6. Path ORAM Limitation

Clearly, Path ORAM is far less efficient compared to insecure
DRAM. Under typical settings for secure processors (giga-
bytes of memory and 64- to 128-byte blocks), Path ORAM has
a 20-30 level binary tree (note that adding one level doubles
the capacity). In practice, Z is usually 3 or 4 [29, 25]. This in-
dicates that for each ORAM access, about 60-120 blocks need
to be read and written, in contrast to a single read or write
operation in an insecure storage system. Since a single ORAM
access saturates the available DRAM bandwidth, it brings no
benefits to serve multiple ORAM requests in parallel.
Recursive/unified ORAMs introduce additional overheads
of accessing multiple levels of ORAMs. This overhead hurts
both performance and energy efficiency. In total, Path ORAM
incurs roughly two orders of magnitude more bandwidth and
one order of magnitude more latency than DRAM. This leads
to up to an order of magnitude slowdown in a secure processor
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Figure 2: Data prefetching on DRAM and ORAM.

[25]. Although no study has looked into the energy overhead
of ORAM, we expect that the hundreds of blocks transferred to
and from Path ORAM binary tree will result in proportionally
larger energy consumption.

3. ORAM Prefetch: Super Block

As access latency is the main bottleneck in ORAM, a natural
solution that comes to mind is to apply latency hiding tech-
niques to ORAM. In this section, data prefetching is studied
in the context of Path ORAM. We will show in Section 5.2
that traditional prefetching techniques do not work for ORAM
and therefore new techniques are required.

3.1. Traditional Data Prefetch

Figure 2 shows the basic idea of traditional data prefetching.
When block a is accessed, if the prefetcher predicts that block
a+ 1 will also be accessed in the near future, then block a + 1
is prefetched from the DRAM. When the real request to a + 1
arrives, the data is already in the cache and the DRAM does
not need to be accessed again. Prefetching moves memory
accesses out of the critical path of execution thus leading to
overall speedup of the program.

When DRAM is replaced with ORAM, however, the situa-
tion changes. The much longer latency (more than 30x) and
lower throughput (2 orders of magnitude) of ORAM leads to
two effects. First, it is not useful to overlap multiple ORAM
accesses, since a single ORAM access already fully utilizes
the entire DRAM bandwidth (cf. Section 2.6). Second, for
memory bound applications, ORAM requests line up in the
ORAM controller and there is no idle time for prefetching. In
other words, prefetching is likely to block normal requests and
hurt performance.

In this section, a new prefetch technique specifically de-
signed for ORAM is proposed. The technique is called Super
Block.

3.2. General Idea of Super Block

The notion of super block, first proposed in [25], tries to
exploit spatial locality in ORAM. In particular, it tries to load
more than one block from the path in a single ORAM access.
The blocks that are loaded together are called a super block.
According to Section 2.2, this requires that all the blocks
belonging to a super block be mapped to the same path.

In this paper, we only consider super blocks that consist of
data blocks adjacent in program address space. Also, we only
consider super blocks of size 2X by merging blocks that differ
only in the last k address bits. We define the size of a super

Program ’ 0x00 ‘0)(01 ‘0)(02 ‘ox03 |0x04 |0x05 |0x06 |0x07 |
address

Figure 3: Super block construction. Blocks whose addresses
are different only in the last k address bits can be merged into
a super block of size n = 2. All blocks in a super block are
mapped to the same path.

block as the number of data blocks in it, denoted as sbsize.
For example, in Figure 3, block 0x00 and block 0x01 can be
merged into a super block of size 2; Blocks from 0x04 to 0x07
can be merged into a super block of size 4. However, block
0x03 and 0x04 cannot be merged because their addresses are
not properly aligned.

Whenever one block in a super block is accessed, all the
blocks in that super block are loaded from the path and
remapped to a same random path. The block of interest is
returned to the processor and the other blocks are prefetched
and put into the LLC (Last Level Cache). The idea is that the
prefetched blocks may be accessed in the near future due to
spatial data locality, which saves some expensive Path ORAM
accesses.

The super block scheme maintains the invariant that blocks
in the same super block are mapped to the same path in the
binary tree (Figure 3). This guarantees that all the blocks
belonging to the same super block can be found during a
single ORAM access (they may or may not reside in the same
bucket). It is important to note that although a super block
is always read out as a unit, the blocks are not required to be
written back to the binary tree at the same time. Rather, they
can be written back separately and in any order, as long as
they are mapped to the same path. This flexibility is useful in
designing different super block algorithms.

3.3. Static Super Block

The above description of the super block scheme is very gen-
eral and leaves many design decisions unspecified, for exam-
ple, what size should a super block be, when and what blocks
should be merged, etc.

Static super block has been proposed in previous work
([25]). In this scheme, every n = 2% data blocks consecu-
tive in the program address space are merged into super blocks
of size n. n is statically specified by the user before the pro-
gram starts. n can be tuned for different applications or be the
same for all applications. In the initialization stage of Path
ORAM, blocks are merged into super blocks, each of which is
forced to be mapped to the same path. During normal ORAM
operations, a super block is accessed as a unit as described in
Section 3.2.



3.3.1. Security Similar to the argument of background evic-
tion (Section 2.4), super block schemes are secure as long as a
super block access is indistinguishable from a normal ORAM
access. Security of normal Path ORAM is maintained since an
access to a super block loads and remaps all blocks in the su-
per block. Thus, subsequent accesses to this super block or to
different super blocks will always be touching independently
random paths. An adversary is not able to tell the super block
size or whether the static super block scheme is used at all.

3.3.2. Limitations Although the static super block scheme
provides performance gain for programs with good locality, it
has significant limitations which make it not practical:

First, it significantly hurts performance when the program
has bad spatial locality (cf. Section 5). With these programs,
prefetching always misses and pollutes the cache.

Second, it cannot adjust to different program behaviors in
different phases. In practice, this leads to suboptimal perfor-
mance for certain programs.

Third, it is the responsibility of programmers or the com-
piler to figure out whether the super block scheme should be
used and the size of the super block.

4. Dynamic ORAM Prefetch: PrORAM

In this paper, we propose a dynamic ORAM prefetching
scheme called dynamic super block, which is the foundation
of PrORAM, to address the limitations of the static scheme
and make super block scheme practical. The dynamic super
block scheme has the following key differences from the static
scheme:

1. Crucially, super block merging is determined at runtime.
Only blocks that exhibit spatial locality will be merged
into super blocks. Programmers or compilers are not
involved in this process.

2. In determining whether blocks should be merged into a
super block, the dynamic super block scheme also takes
into account the ORAM access rate, prefetch hit rate, etc.
For example, if the prefetch hit rate is too low, merging
should be stopped.

3. Finally, when a super block stops showing locality, the
super block is broken. This makes it possible to adjust to
program phases.

The dynamic super block scheme does not merge blocks
during Path ORAM initialization. In other words, all blocks
have sbsize = 1 after initialization. Accessing a block b in
ORAM involves the following steps:

1. Access the path s where b is mapped to (according to
the position map) and return to the processor’s LLC
(Last Level Cache) all the blocks that constitute the super
block.

2. Super blocks are merged or broken according to spatial
locality information.

3. Update the spatial locality statistics based on whether the
prefetched blocks are used or not.
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Figure 4: Hardware structure of merge and break counter.
Merge bits from neighbor blocks form the their merge counter.
Only super blocks have break counters.

The second and third steps are what make the dynamic super
block scheme different from the static scheme. We propose a
per block counter-based scheme to efficiently measure spatial
locality to guide block merging/breaking.

4.1. Spatial Locality Counter

We first introduce the notion of a neighbor block to simplify the
discussion. We call B’ a neighbor block of block B, if they have
the same size (n = 2X) and can form a larger super block of
size 2n = 21 In Figure 3, block 0x02 is a neighbor block of
0x03 and super block (0x00,0x01) is a neighbor block of super
block (0x02,0x03). However, super block (0x02,0x03) is not
a neighbor block of super block (0x04,0x05). We restrict
that only neighbor blocks can be merged into super blocks.
Thus, as in the static super block scheme, only blocks with
addresses differing in the last several bits can be merged into
super blocks.

In order to decide what blocks should be merged, a merge
counter and a break counter are introduced. Each pair of
neighbor blocks have a merge counter indicating the spatial
locality in them and to determine whether they should be
merged or not (cf. Section 4.2). A break counter is associated
with one super block to keep track of its spatial locality. A
super block should be broken if it stops showing locality. The
value of the counters will be updated based on the operations
in Section 4.2 and Section 4.3.

Both counters are stored in the position map ORAM. Fig-
ure 4 shows the structure of a block in the position map ORAM
(Pos-Map Block). Recall that each Pos-Map block contains
the position map for multiple program addresses and stores the
leaf labels for these addresses. A merge bit and a break bit are
stored next to the leaf label in each position map. A counter is
the concatenation of bits of the involved basic blocks. Once
super blocks are merged or broken, the counters are recon-
structed and the bits are reused for different super block sizes.
This keeps the hardware overhead small.

Note that the maximum super block size is limited by the
maximum number of position maps stored in a Pos-Map block.
With our parameters, each Pos-Map block (128B) stores 32
position maps (25 bits each) of consecutive addresses along
with their merge and break bits (i.e., 32 X (25+2) = 864 bits).
A super block in our scheme only consists of the basic blocks
which are consecutive in the address space, and its size is



always a power of 2. Therefore, position mapping of all the
basic blocks of a super block always reside in the same Pos-
Map block. When address a is accessed, the Pos-Map block
containing a’s mapping is loaded into the chip. The same
Pos-Map block also contains the mappings of addresses near a
(ie.,---,a—1,a+1,---)because they fit in the same Pos-Map
block. As a result, whenever we access the position mapping
of a [super]block, we also get the mapping for its neighbor
blocks and its own sub-blocks along with their merge and
break bits for free. Hence, there is no need for extra Pos-Map
block accesses to load merge/break counter bits.

4.2. Merge Scheme

The merge operations are shown in Algorithm 1!. When a
super block B of size n is returned to the LLC of the processor,
the merge counter is first constructed. Since the position map
for B and B’ are stored in the same Pos-Map block, which
has to be loaded into the ORAM controller before the data
block can be accessed, the merge counter is completely recon-
structed and can be operated on. The processor then detects
whether all the n blocks in its neighbor block B’ are also in
the processor’s cache. If so, we say B and B’ have locality,
and the merge counter of (B,B’) is incremented. Otherwise,
the merge counter will be decremented. If the merge counter
reaches a threshold, B and B’ are merged to a super block of
size 2n. How the threshold is determined will be discussed in
Section 4.4.

Algorithm 1 Merge Algorithm

Super block B is loaded from ORAM to LLC
Merge counter is constructed for B and its neighbor B’
if all blocks in B’ are in LLC then
(B,B').merge_counter ++
if (B, B').merge_counter > threshold then
Merge B and B' into (B,B’)
end if
else
(B,B').merge_counter - -
end if

Merging block B and B’ is achieved by changing the position
map of B to the position map of B’. (Note that B’ is already
in the cache before merging) The changes are written to the
Pos-Map block.

The Pos-Map blocks also keep track of the super block
size. When the Pos-Map block is loaded, if the corresponding
blocks in it are mapped to the same leaf label, the ORAM
controller then treats these blocks as a super block.

Different from the static super block scheme discussed pre-
viously, Algorithm 1 dynamically exploits locality in the pro-
gram. Blocks are merged only when they exhibit spatial local-
ity, i.e., they are often present in the cache at the same time.

!Incrementing a counter that is already the maximum value does not
change the counter. Same for decrementing.

After merging into super blocks, locality can be exploited
since a single access now loads several useful data blocks.

4.3. Break Scheme

Break operations may happen when super blocks are accessed
in the ORAM. This is the time when all the blocks in a super
block B are on-chip and the break counter of B can be fully
reconstructed. Each data block in the ORAM or LLC is associ-
ated with a prefetch bit and a hit bit. The prefetch bit indicates
whether a basic block was prefetched. The hit bit indicates
whether the block’s last prefetch was used.

Algorithm 2 Break Algorithm

In ORAM controller
Super block B = (By,B5) is loaded from ORAM to LLC. The requested
block is in Bj.
Reconstruct the break counter
for all basic block b in B coming from ORAM do
if b.prefetch and not b.hit then
B.break_counter - -
else if b.prefetch and b.hit then
B.break_counter ++
end if
b.prefetch = false
end for
if B.break_counter < threshold then
break B into By and B>
return B to LLC and write B, back to ORAM
else
for all basic block b in B, do
b.prefetch = true
b.hit = false
end for
end if

In Processor
when block b is accessed.
b.hit = true

Algorithm 2 specifies the super block breaking algorithm.
Without loss of generality, we assume that the interesting
block is located in the first half of B = (B;,B>), which is
B;. The algorithm starts with updating the break counter
with prefetch/hit information of previous accesses. The break
counter is incremented by one for a prefetch hit and decre-
mented by one for a prefetch miss.

If the resulting break counter is smaller than a threshold,
super block B will be broken. Breaking of B is done by remap-
ping B; and B; to independent leaf labels. And the half that
does not have the requested block (B, in our case) is written
back to ORAM. Note that the position map for both B; and
B; are on chip at this time and can be modified.

Otherwise, the whole B will be returned to the LLC. In this
case, each block in B, will have the prefetch bit set and hit bit
reset indicating that the block is prefetched into the processor
because B, is prefetched with respect to B but has not been
accessed yet. When a basic block with the prefetch bit set is
accessed, a prefetch hit occurs and the hit bit is set. If a basic
block has never been accessed since it was prefetched, the



block will be evicted to ORAM with the hit bit unset; this is
deemed a prefetch miss. Both the prefetch bit and the hit bit
will be read the next time the super block is loaded.

4.4. Counter Threshold

For both the merge counter and the break counter, merge
and break operations are carried out when the value of the
counter reaches a threshold. Properly determining the thresh-
old value is important in achieving good system performance.
We provide two algorithms to determine the threshold: static
thresholding and adaptive thresholding.
4.4.1. Static Thresholding Static thresholding is very simple.
The initial value of the merge counter is set to 0. Two neighbor
blocks By and B, of size n = 2 are merged when the value
of their merge counter is higher or equal to 2n (note that this
threshold fits in the merge counter which is 2n bits long). For
block size of 1, 2 and 4 before merging, this corresponds to
the threshold value of 2, 4 and 8, respectively. The threshold
increases for larger block sizes because larger blocks incur
more dummy accesses which may hurt performance.

Similarly, the initial value of break counter is 2n where n
is the super block size. In our scheme, the threshold of break
counter is 0, which is the minimal value of the break counter.
4.4.2. Adaptive Thresholding With static thresholding,
blocks are merged whenever they exhibit enough data locality.
However, even if all blocks have perfect spatial locality, if
too many blocks are merged into large super blocks, system
performance would still suffer due to the large number of
background evictions required to ensure that the stash does
not overflow (cf. Section 5.5.1). We propose to use adaptive
thresholding to resolve this problem.

In particular, we propose to use the following equation to
calculate the threshold.

sbsize® x eviction_rate x access_rate

threshold = C 1
resho x prefetch_hit_rate M

eviction_rate is the number of background evictions di-
vided by the total number of memory requests. access_rate
is the percentage of time when the ORAM is busy.
prefetch_hit_rate is the percentage of hits out of all
prefetched blocks. These numbers are collected within a time
window and be updated periodically (every 1000 ORAM re-
quests in this paper). Note that a larger threshold makes it
harder to merge into super blocks.

The intuition behind the equation is fairly simple. As the
threshold goes up, less blocks would be merged into super
blocks, which reduces the number of background evictions.
Take merging threshold as an example—when sbsize is large,
we want to raise the threshold to be conservative Z since larger
sbsize incurs more background evictions. When eviction_rate
and access_rate are high, we raise the threshold to prevent fur-
ther increasing of background eviction. The prefetch_hit_rate

2Experimental results show that sbsize? performs better than sbsize.

is the opposite: we want to lower the threshold and merge
more blocks when prefetch_hit_rate is high, which means
block merging is accurate. The same arguments also hold for
break threshold.

In practice, the merge threshold and break threshold are
different by a small term to introduce some hysteresis into
the system. In particular, thresholdyerqe = threshold + sbsize
and thresholdp.q.x = threshold. This prevents the case where
a block keeps being merged and broken constantly.

Notice that the equation is not provably the optimal equation
for the merge/break threshold, but it is simple and easy to
implement in hardware. We leave the exploration of more
complicated thresholding algorithms to future work.

4.5. Hardware Support

4.5.1. Storage The hit bit is stored with each data block in the
ORAM and the LLC, since it is updated on an LLC hit and the
corresponding position map block may not be on-chip. The
merge bit, break bit and the prefetch bit are stored in the Pos-
Map blocks. We assume 128-byte block size, so the storage
overhead of dynamic super block is only 4 bits per block, less
than 0.4%.

4.5.2. Computation For the merging scheme, when a block
B is loaded into the LLC, we need to probe the LLC to check
if the neighbor block B’ exists in the cache (cf. Section 4.2).
Only the tag array of the LL.C needs to be accessed for this
purpose. This can be done in parallel with the ORAM access
and is not on the critical path. For the breaking scheme, the
break counter is updated based on the prefetch bit and hit bit
of each block in B, using simple comparison and arithmetic
operations. When a block is accessed in LLC, the hit bit needs
to be set. In summary, the scheme only involves several cache
lookups and simple operations. They are cheap compared
to the path read/write and data encryption/decryption in an
ORAM access.

4.6. Security of Dynamic Super Block

The threat model under discussion is identical to prior ORAM
work. We claim that ORAM with a dynamic super block
scheme maintains the same level of security as a normal
ORAM. In other words, adding dynamic super blocks to
ORAM does not change the security guarantee of the original
ORAM.

Following the security of the static super block scheme,
accessing a super block of any size will look indistinguishable
from accessing a normal data block because all the blocks in a
super block are remapped at the same time. To demonstrate
the security of dynamic super block, we only need to show the
security of merging and breaking processes.

For merging, assume that block B and B, (mapped to leaf
51, 57 respectively) are merged into a super block B = (B}, B3).
After merging, both blocks are mapped to a same leaf s which
is a new independent random number, and is unlinkable to s1,
s or any other previously accessed path. From the adversary’s



point of view, the leaves that are accessed in the ORAM are
not linkable to each other. The adversary cannot figure out
whether merging happens in an ORAM access at all.

Similarly, if block B = (By,B;) (mapped to s) breaks, the
two halves B and B; (mapped to s; and s;) will be mapped
to two independent random leaves. When one of B| and B,
is accessed later, the leaf being accessed will be unlinkable
to the leaf of the other half or s. This indicates that when or
whether breaking happens cannot be learned by observing the
ORAM access sequence.

To this point, the dynamic super block scheme does not leak
any more information through the access pattern. However,
one may argue that super block schemes leak locality informa-
tion through timing channels. For example, merging blocks
into super blocks reduces the total number of ORAM accesses
which may be an indicator that the program has good spatial
locality.

Although it is true that locality information may be learned
through timing attacks, as said in Section 2.5, timing protec-
tion is not part of the original ORAM definition [11]. Very few
ORAM designs in the literature considered timing attacks (i.e.,
when ORAM accesses happen or the total number of accesses)
and ORAMs in general break under timing attacks. In order
to protect the timing channel, periodic ORAM accesses need
to be adopted ([10]), which can be easily added on top of
ORAM with super blocks. We evaluate this design point in
Section 5.6.

With periodic ORAM accesses to prevent timing channel
leakage, the ORAM accesses are completely deterministic
during the normal execution of a program and no leakage
can happen. The only possible timing leakage is through the
program’s total execution time. As discussed by Fletcher et
al. [9], the execution time of a program only leaks 1g(7') bits
information where T is the number of cycles the program
takes. This is a very small leakage and applies to all types of
ORAMs; adding a super block mechanism does not change
it. Although it is true that enabling super blocks on a system
may change the total runtime which tells the adversary some
information about data locality, the same argument applies
to other system components as well. For example, enabling
vs. disabling branch prediction or the L3 cache leaks the
branch behavior or memory footprint of the program. Super
block is just one of these components and does not leak more
information than other components.

To conclude, the dynamic super block scheme or any super
block scheme in general maintains the same security level as
conventional ORAMs. No extra leakage is introduced.

5. Evaluation

5.1. Methodology

Graphite [21] is used as the simulator in our experiments.
Graphite simulates a tiled multi-core chip. The hardware con-
figurations are listed in Table 1. We assume there is only one

Table 1: System Configuration.

Secure processor configuration

Core model 1 GHz, in order core
L1 I/D Cache 32 KB, 4-way

Shared L2 cache 512 KB per tile, 8-way
Cacheline (block) size 128bytes

DRAM bandwidth 16 GB/s

conventional DRAM latency 100 cycles

Default ORAM configuration

ORAM Capacity 8 GB
Number of ORAM hierarchies | 4

ORAM basic block size 128 Bytes
Path ORAM latency 2364 cycles
zZ 3

Max Super Block Size 2

Stash Size 100

memory controller on the chip. While the insecure DRAM
model can exploit bank-level parallelism and issue multiple
memory requests at the same time (according to the Graphite
DRAM model), all ORAM accesses are serialized (cf. Sec-
tion 2.6).

The DRAM in Graphite is simply modeled by a flat latency.
The 16 GB/s is calculated assuming a 1 GHz chip with 128
pins and pins are the bottleneck of the data transfer. Although
this model neglects many DRAM internal structures, previous
work ([25]) showed that using a more accurate model does not
change the result much.

We use Splash-2 [37], SPECO06 [16] and a database manage-
ment system (DBMS) application [38] to evaluate different
ORAM prefetching techniques. For DBMS, we run two OLTP
benchmarks: YCSB [5] and TPCC [33]. For most of the exper-
iments, we will show both the speedup and the total memory
accesses with respect to the baseline ORAM. The number of
memory accesses is proportional to the energy consumption
of the memory subsystem.

Three baseline designs are used for comparison: the inse-
cure baseline using normal DRAM, the baseline Path ORAM
without super blocks (oram) and the static super block scheme
(stat). The default parameters for ORAM are shown in Table 1.
Unless otherwise stated, all the experiments use these ORAM
parameters.

We first evaluate a traditional stream prefetcher on both
DRAM and Path ORAM (Section 5.2). Then, we will show
the performance of different super block schemes with both
synthetic and real benchmarks (Section 5.4). Different system
parameters are explored in the sensitivity study section (Sec-
tion 5.5). Finally, we evaluate the impact of having periodic
ORAM accesses on these algorithms (Section 5.6).

5.2. Traditional Prefetching on Path ORAM

As discussed in Section 3.1, traditional prefetching does not
help much in the context of ORAM. The reason behind this is
the available memory bandwidth budget. Traditional DRAM
prefetchers utilize the available bandwidth between useful
accesses to issue prefetch requests. However, ORAM does not
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have that extra bandwidth available to issue prefetch requests.
This conclusion is verified in Figure 5. Here, prefetching is
added to both DRAM and ORAM based systems. Prefetching
helps to improve performance on DRAM based systems. The
ORAM, however, takes too much memory bandwidth and the
memory subsystem is busy serving useful requests. Inserting
prefetch requests will delay these useful requests. In the best
case, if the prefetch hits and the prefetching is timely, the
performance does not suffer. But if any prefetch misses, the
performance decreases.

5.3. Synthetic Benchmark

In this section, a synthetic benchmark is used to study different
aspects of super block schemes. Z = 4 is chosen here to make
it easier to see the performance difference. The synthetic
benchmark accesses an array with two patterns, sequential or
random. For the sequential pattern, the part of the array is
scanned sequentially, leading to good spatial locality. For the
random pattern, the data is randomly accessed with no spatial
locality.

5.3.1. Locality In Figure 6a, we sweep the percentage of data
with locality. A benchmark with X% locality means that X%
percentage of data are accessed sequentially and the rest are
accessed randomly. Only the sequentially-accessed data has
locality and can benefit from having super blocks.

As the figure shows, the static super block scheme only

works when there is good spatial locality in the application
and performs worse than the baseline ORAM if locality is
bad. The dynamic super block scheme, on the other hand,
always outperforms both the baseline ORAM and the static
super block scheme. When there is no locality at all, the
dynamic super block scheme has the same performance as
the baseline ORAM. As the locality increases, performance
also increases. Finally, the dynamic super block scheme has
similar performance as the static scheme when there is 100%
locality.
5.3.2. Phase Change The benchmark in Figure 6a only has
static locality behavior, namely, the part of the data having
locality always has locality throughout the whole execution.
In practice, many programs have phase change behavior. Fig-
ure 6b models the phase change behavior where different parts
of the data exhibit locality in different phases. Specifically, in
the first phase, half of the data are accessed sequentially and
the other half randomly. In the second phase, the first (second)
half is randomly (sequentially) accessed. The pattern keeps
switching in the following phases of the program.
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Figure 6: Different locality in the synthetic benchmark.
Speedup is measured with respect to the baseline ORAM.
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Figure 7: Sweep super block size of synthetic benchmark

In Figure 6b, Sm,Am stands for static and adaptive merging

and Nb,Ab stands for no breaking and adaptive breaking re-
spectively, and static represents the static super block scheme.
In this case, it is obvious that breaking helps improve the per-
formance. In the phases with locality, blocks will be merged
to improve performance. And in the phases without locality,
super blocks will be broken to prevent inaccurate prefetching.
This helps to reduce the number of background evictions and
improve prefetch hit rate.
5.3.3. Super Block Size Figure 7 sweeps the super block size
(sbsize) in different super block schemes (for dynamic super
block, sbsize is the maximum super block size). We run the
synthetic benchmark which has 100% spatial locality.

Even with perfect locality, as sbsize increases, performance
of the static super block scheme still degrades quickly due
to excessive background evictions. On the other hand, the
dynamic super block scheme will throttle merging of too large
super blocks using the adaptive thresholding strategy intro-
duced in Section 4.4. Once the background eviction rate is too
high, super block merging is stopped and background eviction
rate is kept low.

5.4. Real Benchmarks

Even though Path ORAM has inherent performance overhead
over DRAM as explained in Section 2.6, it is important to
note that this overhead is proportional to the memory inten-
siveness of the application. Memory intensive applications
have significantly higher overhead than computation inten-
sive applications. Figure 8a and Figure 8b show Splash2 and
SPEC06 benchmarks respectively sorted in ascending order
with respect to the overhead of baseline ORAM over DRAM.
We consider all the benchmarks with less than 2x overhead as
Computation Intensive benchmarks (plotted over green back-
ground) and all those with more than 2 x overhead as Memory
Intensive benchmarks (plotted over red background).
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Figure 8: Speedup and normalized memory access count
(with respect to baseline ORAM) of static and dynamic super
block schemes on Splash2, SPEC06 and DBMS benchmarks.

As pointed out in Section 3.3, the static super block scheme
is very sensitive to the nature of the application. Le., it only
shows performance gain for benchmarks that have good spatial
locality (e.g., ocean_contiguous) which is clear from Figure 8.
On some benchmarks (e.g., volrend, radix, sjeng, astar, om-
net, mcf, TPCC), the static super block scheme gets worse
performance than the baseline ORAM. This is either due to
the fact that these benchmarks lack locality or that excessive
background evictions hurt performance.

On the other hand, the dynamic super block scheme outper-
forms the baseline ORAM on all the benchmarks we evaluate
here. On average, the performance gain of the dynamic su-
per block scheme for memory intensive Splash2 benchmarks
(mem_avg) over baseline ORAM is 20.2% whereas the overall
average gain (avg) is 10.6% i.e., twice as much than what
the static super block scheme offers. The overall average per-
formance gain over the baseline ORAM for SPEC06 bench-
marks is 5.5% whereas for DBMS, the performance gain over
the baseline ORAM is 23.6% for YCSB and 5% for TPCC.
The performance gain is most prominent for highly memory
bound benchmarks. For ocean_contiguous for example, the
performance gain is 42%. We also show the total number
of ORAM accesses (normalized to the baseline ORAM) in
Figure 8 (shown by red markers). This is proportional to
the energy consumption of the memory subsystem. On av-
erage, the dynamic super block scheme saves 16.8% energy
for Splash2, 16.6% for SPEC06 and 19.1% (4.8%) for YCSB
(TPCC) over plain ORAM.

Figure 9 shows the prefetch miss rates of static and dynamic
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Figure 9: Miss rate for different Path ORAM schemes on
Splash-2 and SPEC06 benchmarks.
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Figure 10: Sweep the coefficient in merging and breaking
strategies.
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super block schemes on Splash2 and SPEC06 benchmarks.
water-spatial and water-nsquared are not shown here since
they are too compute bound and do not access ORAM fre-
quently. Since the static super block scheme prefetches all the
neighbor blocks, the miss rate is very high for benchmarks that
lack spatial locality (e.g., volrend, omnet). On average, the
dynamic super block scheme lowers the overall prefetch miss
rate of static super block from 48.6% to 37.1% for Splash2
benchmarks and from 55.5% to 34.8% for SPEC06 bench-
marks.

5.5. Sensitivity Study

In this section, we will study how different parameters in the
system affect the performance of super block schemes.

5.5.1. Merge/Break coefficient Equation 1 in Section 4.4.2
has a coefficient C unspecified. We now study how the coeffi-
cient affects the performance of super blocks.

Figure 10 sweeps the merge and break coefficients (Cperge
and Cpeqr). mxny in the figure means that Cyeree = x and
Chreak = Y-

For benchmarks with good spacial locality (e.g.,
ocean_contiguous, ocean_non_contiguous), smaller coeffi-
cient makes it easier for blocks to be merged into super blocks.
As a result, merging happens earlier in the execution leading
to better performance. For benchmarks with bad spacial lo-
cality (e.g., volrend), the coefficient actually does not have an
effect on the performance, because merging does not happen
regardless of the value of the coefficient.
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Figure 12: Sweep stash size.

For the rest of the paper, we use Cperge = Chrear = 1 for our
experiments.

5.5.2. DRAM Bandwidth The DRAM has a default band-
width of 16 GB/s in our evaluations, which is calculated as-
suming that the pin bandwidth is the system bottleneck. In
practice, however, this bandwidth might not be achievable.
In Figure 11, we sweep different DRAM bandwidth values
and the performance gain of the dynamic super block scheme
is consistent across all configurations for memory intensive
benchmarks (Figure 11a). This is because super blocks im-
prove the memory efficiency in general by reducing the total
number of ORAM accesses. This gain is orthogonal to the
DRAM bandwidth.

For benchmarks with little or no locality (Figure 11b), the

dynamic super block scheme does not have much gain over the
baseline ORAM since merging does not take place. But both
the dynamic super block scheme and the baseline ORAM have
performance gain over the static super block scheme where
blocks are blindly merged resulting in a large number of cache
misses.
5.5.3. Stash Size As discussed in Section 2.2, the stash is
an on-chip data structure which temporarily holds the blocks
that cannot be evicted back to the binary tree. Whenever
the stash becomes full, the ORAM does background eviction
which introduces an extra ORAM access doing no real work.
A larger stash is less likely to become full and thus reduces
background eviction rate and improves performance.

In Figure 12, the stash size is swept for two different bench-
marks, one with good spatial locality (ocean_contiguous) and
the other with bad spatial locality (volrend). For both bench-
marks, the performance of baseline ORAM does not change
much when the stash size increases. This is because that the
baseline ORAM already has a very low background eviction
rate and enlarging the stash only gives marginal gain.
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Figure 14: Sweep cacheline size.

For super block schemes, however, background eviction
rate is high because multiple blocks may be added to the stash
in each ORAM access. As a result, the performance increases
as stash size becomes larger. For ocean_contiguous, both the
dynamic and static super block schemes gain from larger stash
size. For volrend, only the static super block scheme merges
blocks into super blocks.

In general, dynamic super block scheme shows significant

performance gain over ORAM even at small stash sizes in
contrast to static super block.
5.5.4. Z Value Having larger Z increases the latency of each
ORAM access since more data needs to be loaded. On the
other hand, having smaller Z increases the background eviction
rate. Previous work [25] showed that Z = 3 provides the
best performance without super block. It is also the default
parameter setting in this paper.

In Figure 13, both Z = 3 and Z = 4 are evaluated for

baseline ORAM, static and dynamic super block schemes.
Z = 3 achieves better performance than Z = 4 for the baseline
ORAM, which corroborates previous results. The dynamic
super block scheme has consistent performance gain for both
Z values.
5.5.5. Cacheline Size The default cacheline size is 128 Bytes
in this paper, in order to match the parameters in the previous
work ([25]). Figure 14 shows the performance of different
ORAM schemes at three different cacheline sizes (64, 128 and
256 Bytes). In general, the behaviors of dynamic and static
super block schemes do not change.

5.6. Protecting Timing Channel

As pointed out in Section 4.6, the ORAM definition does not
try to protect timing attacks. And an adversary may still learn
lots of information from the timing of memory accesses. We
need periodic ORAM accesses to protect the timing channel.
Both dynamic and static super block schemes can be easily
integrated with periodic ORAM accesses. Figure 15 shows the
simulation results of periodic ORAM with static super blocks
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Figure 15: Periodic ORAM accesses. Speedup is respect to
the baseline ORAM with periodic accesses. O;,; = 100 cycles.

(stat_intvl) and dynamic super blocks (dyn_intvl) normalized
to periodic ORAM. For comparison, non-periodic ORAM
(oram) results are also shown. Oy, is defined as the number
of cycles between two consecutive ORAM accesses, which is
chosen to be 100 cycles in this experiment.

Two observations can be made from Figure 15.

First, for most applications, adding periodicity in ORAM
accesses does not significantly hurt performance. On average,
only 3.6% additional performance degradation is incurred for
Splash2. Part of the reason is that the O;;,; is chosen to be
small in our evaluations thus ORAM bandwidth is almost
maximized.

Second, dynamic super blocks provide performance gain re-
gardless whether periodicity is used or not and therefore, once
integrated with periodic ORAM, it can still provide significant
speedup while preventing the information leakage over the
timing channel.

Since the ORAM has a strictly periodic access pattern, the
energy consumption of different ORAM schemes would be
the same. However, this performance advantage of dynamic
super blocks can be easily translated to energy advantage by
setting O;,, high, which slows down the system but makes it
more energy efficient ([9]).

6. Related Work

This paper mainly focuses on applying data locality optimiza-
tions to Oblivious RAM. The most relevant previous works are
ORAM optimization techniques and locality optimizations in
the memory system.

6.1. ORAM Optimization

Previous work [25] has explored the Path ORAM design space
and proposed a static super block scheme. We used this opti-
mized Path ORAM as the baseline in this paper. We extend the
static super block scheme to a dynamic super block scheme
which is significantly more stable and has better performance.

Previous work has exploited the fact that ORAM operations
can be easily parallelized and assigned to multiple trusted
coprocessors [20]. The optimization techniques proposed in
our paper are orthogonal and can be applied on top of [20].

While we used Path ORAM for discussion in this paper,
the optimization techniques proposed are not constrained to
Path ORAM. For example, other ORAM schemes (e.g., [27])
have similar binary tree structure to Path ORAM. After adding
background eviction, these ORAM schemes can also benefit
from using super blocks. In general, all ORAM schemes
should be able to take advantage of super blocks as long as
they have support for background eviction.

6.2. Exploiting Locality in Memory

In the architecture community, there has been lots of work
exploiting data locality in programs. An important technique
that has been widely used is data prefetch [28, 6, 4, 35], where
the processor loads blocks that are likely to be accessed in the
near future into the cache.

In this paper, we showed that traditional prefetching tech-
niques do not work well in an ORAM context, and that super
block schemes take advantage of ORAM internal structure to
exploit locality.

Our paper makes the assumption that only the blocks con-
secutive in address space can be merged into super blocks.
However, previous work in data prefetch [4] allows data strid-
ing in the address space to be prefetched. Merging striding
blocks is also possible for the dynamic super block scheme.
Such exploration is left for future work.

7. Conclusion

A novel ORAM prefetcher: PrORAM based on dynamic super
block is proposed in this paper. The implementation details are
discussed and the design space is comprehensively explored.
We show that PrORAM introduces the first practical super
block scheme and is much more stable than a static super block
scheme over different benchmarks. On memory intensive
Splash-2 and SPEC06 benchmarks, PrORAM improves over
baseline ORAM by 20.2% and 5.5% in terms of completion
time and reduces energy consumption by 16.8% and 16.6%
respectively. For DBMS, the performance gain is 23.6% and
5% and energy reduction is 19.1% and 4.8% for YCBS and
TPCC respectively.
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