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Abstract. Quantum computation performs calculations by using quantum
devices instead of electronic devices following classical physics and used by
classical computers. Although general purpose quantum computers of prac-
tical scale may be many years away, special purpose quantum computers
are being built with capabilities exceeding classical computers. One promi-
nent case is the so-called D-Wave quantum computer, which is a computing
hardware device built to implement quantum annealing for solving combi-
natorial optimization problems. Whether D-Wave computing hardware de-
vices display a quantum behavior or can be described by a classical model
has attracted tremendous attention, and it remains controversial to determine
whether quantum or classical effects play a crucial role in exhibiting the com-
putational input–output behaviors of the D-Wave devices. This paper consists
of two parts where the first part provides a review of quantum annealing
and its implementations, and the second part proposes statistical methodolo-
gies to analyze data generated from annealing experiments. Specifically, we
introduce quantum annealing to solve optimization problems and describe
D-Wave computing devices to implement quantum annealing. We illustrate
implementations of quantum annealing using Markov chain Monte Carlo
(MCMC) simulations carried out by classical computers. Computing exper-
iments have been conducted to generate data and compare quantum anneal-
ing with classical annealing. We propose statistical methodologies to analyze
computing experimental data from a D-Wave device and simulated data from
the MCMC based annealing methods, and establish asymptotic theory and
check finite sample performances for the proposed statistical methodologies.
Our findings confirm bimodal histogram patterns displayed in input–output
data from the D-Wave device and both U-shape and unimodal histogram pat-
terns exhibited in input–output data from the MCMC based annealing meth-
ods. Further statistical explorations reveal possible sources for the U-shape
patterns. On the other hand, our statistical analysis produces statistical evi-
dence to indicate that input–output data from the D-Wave device are not con-
sistent with the stochastic behaviors of any MCMC based annealing models
under the study. We present a list of statistical research topics for the future
study on quantum annealing and MCMC simulations.
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1. INTRODUCTION

Quantum computation is based on the idea of us-
ing quantum devices to process information and per-
form computation, instead of electronic devices fol-
lowing the laws of classical physics and used by clas-
sical computers (Nielsen and Chuang, 2000 and Wang,
2012). Here, classical computers mean today’s elec-
tronic based computers. Two quantum computing ap-
proaches are logic-gate based quantum computing and
adiabatic quantum computing (Aharonov et al., 2007,
Deutsch, 1985, DiVincenzo, 1995, Browne, 2014,
Farhi et al., 2000, 2001, 2002 and Johnson et al., 2011).
Logic-gate based quantum computing has as its pur-
pose the development of a quantum version of classic
logic gate operations and the construction of general
purpose (or universal) quantum computers. Adiabatic
quantum computing is based on quantum annealing to
build special purpose quantum computers (i.e., quan-
tum annealers) for solving tough combinatorial opti-
mization problems, where quantum annealing is the
quantum analog of classical annealing such as simu-
lated annealing with thermodynamics in classical an-
nealing replaced by quantum dynamics, and quantum
annealers refer to physical hardware implementations
of quantum annealing (see more details about classi-
cal annealing and quantum annealing later in this sec-
tion and Section 3). Since its introduction by Feynman
(1981/82), quantum computation has been proclaimed
to be the future of computing, and intensive research
efforts are under way around the globe to investigate a
number of technologies that could lead to more power-
ful and more prevalent quantum devices for better com-
putation, communication and cryptography. On the one
hand, in spite of tremendous progresses made in the
past two decades, general purpose quantum comput-
ers of practical scale still have a long way to go. On
the other hand, the development of quantum technolo-
gies is at the critical point where quantum communica-
tion devices and special purpose quantum computers,
such as quantum annealers, quantum simulators and
quantum crypto devices, can be built with capabilities
exceeding classical computer based devices (Aspuru-
Guzik et al., 2005, Britton et al., 2012, Browne, 2014,
Brumfiel, 2012, Nielsen and Chuang, 2000, Neumann
et al., 2008, and Wang, 2012). For these quantum de-
vices, it becomes increasingly important to test and/or
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certify their behaviors according to claims and/or spec-
ifications. One prominent example is the commercial-
ization of a special purpose quantum computer man-
ufactured by D-Wave Systems Incorporation for solv-
ing combinatorial optimization problems (Boixo et al.,
2014a, 2014b, Boixo et al., 2015a, 2015b, Johnson
et al., 2011, Jones, 2013, McGeoch, 2014, Rønnow
et al., 2014 and Vinci et al., 2014, Hen et al., 2015,
Venturelli et al., 2014, and Martin-Mayor and Hen,
2015).

The D-Wave quantum computer is an analog com-
puting hardware device that is designed and built to
physically implement quantum annealing. It consists
of a quantum processor based on superconducting flux
quantum bits (where quantum bits, called qubits for
short, are the quantum analog of classic bits ones and
zeros, see more details about qubits in Section 2) and
surrounding system such as a cooling apparatus and
a magnetic shielded box (Boixo et al., 2014a, 2014b,
Clarke and Wilhelm, 2008, Devoret, Wallra and Marti-
nis, 2004, DiCarlo et al., 2009, Johnson et al., 2011,
Lanting et al., 2014 and Pudenz, Albash and Lidar,
2014). The hardware device is a quantum annealer, and
the qubits are an array of chilled superconducting nio-
bium loops that can be engineered to very quickly find
the lowest point in an energy “landscape” of hills and
valleys associated with a quantum system. The anneal-
ing idea is to define an optimization problem through
the energy landscape and represent the lowest energy
point as the solution of the problem posed. Such op-
timization problems turn up in everything from travel
salesman problem to integer factoring, from software
verification and validation to object recognition and
classification, and from genome sequence analysis and
protein folding to portfolio optimization and risk anal-
ysis (Brooke et al., 1999, Farhi et al., 2000, 2001, 2002,
McGeoch, 2014, and Shor, 1994). For example, D-
Wave devices have been tested on simple application
problems in graphs and networks, machine learning,
artificial intelligence and computational biology (Bian
et al., 2012, O’Gorman et al., 2014, Perdomo-Ortiz
et al., 2012, Perdomo-Ortiz et al., 2014, and Rieffel
et al., 2014). As a case in point, the lowest-energy ar-
rangement of a protein is thought to be its preferred
state, and protein folding is to find the lowest-energy
point in its energy landscape; a D-Wave device has
been arranged to manipulate the qubits to reach their
lowest-energy state and solve the problem of folding
a simple protein (McGeoch, 2014 and Perdomo-Ortiz
et al., 2012). For a physical system, its lowest-energy
point is referred to as a ground state in physics, with
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its higher energy points as excited states. Analogous to
classical annealing such as simulated annealing, quan-
tum annealing finds a ground state by allowing the
qubits to exploit a quantum effect called quantum tun-
neling in the sense that they go through the energy hills,
rather than climbing over the energy hills in classi-
cal thermal annealing (see more details about quantum
tunneling in Section 3). It may be more efficient to find
a ground state using quantum annealing via quantum
tunneling than classical annealing via thermal jump
(Boixo et al., 2015a, 2015b, Brooke et al., 1999, Farhi
et al., 2001, Jones, 2013, McGeoch, 2014, Perdomo-
Ortiz et al., 2014, Pudenz, Albash and Lidar, 2014, and
Santoro et al., 2002).

In contrast to the fact that research laboratories can
usually manage quantum computers with up to about
a dozen of qubits, D-Wave devices utilize a solid state
architecture with over a thousand of interlaced super-
conducting flux qubits. The manufacturing methods
and computing technologies of the D-Wave devices are
well documented, yet it is challenging to understand
their computational power. Whether the D-Wave de-
vices display a large-scale quantum behavior or can be
described by a classical model has attracted tremen-
dous attention, and it remains controversial to deter-
mine whether quantum or classical effects play a cru-
cial role in exhibiting the computational input–output
behaviors of the D-Wave devices. Boixo et al. (2014a,
2014b) employed random Ising model instances to test
on a 128-qubit D-Wave device and compared the out-
puts to the data generated from MCMC based anneal-
ing models. They found that the computing experimen-
tal data exhibit similar bimodal histogram patterns for
the D-Wave device and simulate quantum annealing
but unimodal histogram patterns for simulated anneal-
ing and a classical spin model. The results are used to
argue that the D-Wave performance is consistent with
simulated quantum annealing but inconsistent with be-
haviors of the classical simulated annealing and classi-
cal spin models. Shin et al. (2014) proposed a MCMC
model, which is simply referred to as the SSSV model,
to yield at least as strong correlation with the input–
output data of the D-Wave device as simulated quan-
tum annealing and disputed the implication in Boixo
et al. (2014a, 2014b) of quantum effects in the D-Wave
device. Albash et al. (2014) adopted a measure based
on the total variation distance between the probabil-
ity distributions over excited states and demonstrated
that the D-Wave data are not well correlated with SQA
or SSSV data by the measure. Vinci et al. (2014)

further tested on a 512-qubit D-Wave device to dis-
tinguish (or associate) its input–output behavior from
(or with) those obtained from the classical and quan-
tum annealing models in terms of the population ra-
tio of the isolated and clustered ground states. Rønnow
et al. (2014) reported to find no evidence of quantum
speedup for a 512-qubit D-Wave device on the prob-
lem of random spin glass instances, despite of some
other speedup claims (Browne, 2014, Hen et al., 2015,
Katzgraber, Hamze and Andrist, 2014, McGeoch, 2014
and Venturelli et al., 2014).

Attempts to quantify the quantum nature of D-Wave
devices have been not only met with excitement but
also confronted with suspicion. These studies pose fun-
damental questions regarding the distinguishability be-
tween quantum annealers and classical thermal anneal-
ers. We may boil the distinguishability questions down
to statistical analysis of annealing methods and the
associated statistical inference problems. The consis-
tence or inconsistence claims in the literature regarding
the studies of the D-Wave devices along with MCMC
based annealing methods are largely based on causal
informal inspection of correlations and histogram pat-
terns. The first part of the paper reviews quantum an-
nealing and its implementations by D-Wave devices
and MCMC based annealing approaches. We illus-
trate computing experiments for quantum annealing
and carry out the MCMC simulations by classical com-
puters to generate data and compare quantum anneal-
ing with classical annealing. The second part of the
paper proposes statistical methodologies to analyze
the input–output behaviors of the D-Wave devices and
MCMC based annealing models. We have established
the asymptotic theory to justify the proposed statistical
methodologies, and conducted numerical simulations
to check their finite sample performances. The statis-
tical shape tests support bimodal but not U-shape his-
togram patterns exhibited in the data from a D-Wave
device, and confirm U-shape histogram patterns in the
data from the simulated quantum annealing and SSSV
models and unimodal (including monotone) histogram
patterns in the data from the classical simulated an-
nealing model. We further explore the energy gap be-
tween the ground states and the excited states, and un-
cover some possible sources for the U-shape patterns.
Our analysis results provide statistical evidence to sug-
gest that the input–output data from the D-Wave device
are not consistent with the statistical behaviors of these
MCMC based annealing models.

The rest of the paper proceeds as follows. Section 2
provides a brief introduction to quantum mechanics
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and quantum computation. The main review and re-
search parts of the paper are given by Sections 3 and 4,
respectively. Section 3 introduces quantum annealing
and its implementations by D-Wave devices and by the
MCMC based annealing methods in the context of the
Ising model. We describe D-Wave computing experi-
ments and carry out MCMC simulations by classical
computers to generate data and compare quantum an-
nealing with classical annealing. Section 4 proposes
statistical methodologies to analyze input–output data
from a D-Wave device and from various MCMC based
annealing models, and presents our findings on the sta-
tistical behaviors of the D-Wave device and the MCMC
based annealing models. Section 5 features concluding
remarks with a list of future statistical research topics.
All proofs are relegated in the Appendix.

2. A BRIEF QUANTUM BACKGROUND

Quantum physics is counter intuitive and hard to
grasp. It is fundamentally different from what we might
expect on the basis of everyday experiences. As a mat-
ter of fact, Neils Bohr, a founder of quantum theory,
once said, “Anyone who thinks he understands quan-
tum theory doesn’t really understand it.” As this pa-
per involves only quantum computing based on quan-
tum annealing, we will bypass high-level models of
quantum computation and keep our review on quan-
tum physics and quantum computation at the minimal
level.

2.1 Notation

For the purpose of this paper, we consider only the
finite dimension case. Denote by C

d the d-dimensional
complex space. Given a vector ψ in C

d , we follow the
convention in quantum mechanics and quantum com-
putation to use Dirac notations ket |·〉 and bra 〈·| to
indicate that |ψ〉 and 〈ψ | are column and row vectors,
respectively. Denote by superscripts ∗, ′ and † the con-
jugate of a complex number, the transpose of a vec-
tor or matrix, and the conjugate transpose operation,
respectively. A natural inner product in C

d is given
by 〈u|v〉 = ∑d

j=1 u∗
j vj = (u∗

1, . . . , u
∗
d)(v1, . . . , vd)′,

where 〈u| = (u1, . . . , ud) and |v〉 = (v1, . . . , vd)′, and
the modulus |u| = √〈u|u〉. We say a matrix A is Her-
mitian if A = A†, and a matrix U is said to be unitary
if UU† = U†U = I, where I is an identity matrix.

2.2 Quantum Physics

A quantum system is completely characterized by
its state and the time evolution of the state. A d-
dimensional quantum system at a given time can be

described by its quantum state, often given in terms
of a unit vector |ψ〉 in C

d . To study the quantum sys-
tem, we perform measurements on the system to obtain
data, which may be carried out in terms of the so-called
observables. An observable M is defined to be a Hermi-
tian matrix on C

d . Assume that the eigen-ecomposition
of M is as follows:

M =
r∑

a=1

λaQa,

where λ1, . . . , λr are the real eigenvalues of M, and Qa

is the projection onto the eigen-space corresponding to
the eigenvalue λa . According to quantum theory, when
we measure the quantum system in terms of M under
the state |ψ〉, the measurement outcome � is a ran-
dom variable that takes values in {λ1, λ2, . . . , λr}, with
probability distribution P(� = λa) = tr(Qa|ψ〉〈ψ |) =
〈ψ |Qa|ψ〉, a = 1,2, . . . , r . Statistically, we may per-
form measurements on M for the quantum system mul-
tiple times to obtain measurement data and infer the
quantum state from the data. For a quantum system at
a given time point, its state vector comprises all infor-
mation about the system in the sense that it can yield
the probability distributions of measurement outcomes
and may encapsulate all things of importance about the
quantum system.

To describe the time evolution of a quantum system,
we denote by |ψ(t)〉 the state of the quantum system
at time t , which is also referred to as a wave func-
tion. The states |ψ(t1)〉 and |ψ(t2)〉 at times t1 and
t2 are connected through |ψ(t2)〉 = U(t1, t2)|ψ(t1)〉,
where U(t1, t2) = exp[−iH(t2 − t1)] is a unitary ma-
trix, and H is a Hermitian matrix on C

d . In fact, the
continuous time evolution of |ψ(t)〉 is governed by the
Schrödinger equation

√−1
∂|ψ(t)〉

∂t
= H

∣∣ψ(t)
〉

or equivalently
(2.1) ∣∣ψ(t)

〉 = e−√−1Ht
∣∣ψ(0)

〉
,

where H is a possibly time-dependent Hermitian ma-
trix on C

d , which is known as the Hamiltonian of
the quantum system. The Schrödinger equation shows
that for the quantum system, its Hamiltonian can com-
pletely describe the dynamic evolution of its quantum
states. It should be stressed that besides the approach
by the Schrödinger equation to describe the quantum
evolution, there are other formulations of quantum me-
chanics such as the so-called matrix mechanics cre-
ated by Werner Heisenberg, Max Born and Pascual Jor-
dan and the path integral formulation due to Richard
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Feynman. See Holevo (1982), Sakurai and Napolitano
(2010), Shankar (1994), Wang (2012, 2013), Wang and
Xu (2015), Xu (2015) and Cai et al. (2016).

2.3 Qubits and Their Quantum Properties

Quantum computation grapples with understanding
how to take advantage of the enormous information
hidden in the quantum systems and to harness the im-
mense potential of atoms and photons for the purpose
of computing. It utilizes strange quantum phenomena
such as quantum superposition, quantum entanglement
and quantum tunneling to do the trick of performing
computation and processing information. It intends to
develop quantum computing devices for solving cer-
tain tough computational problems faster and/or more
efficient than classical computers.

Any computers must utilize some states of physical
systems to store digits. Classical computers use volt-
age levels to encode bits 0 and 1. Analog to bits 0 and
1 in classic computation, quantum computation uses
qubits |0〉 and |1〉. However, unlike classical compu-
tation where bits are either 0’s and 1’s and transistors
can crunch the ones and zeroes individually, quantum
computation allows qubits to encode ones and zeroes
simultaneously through what is known as quantum su-
perposition. A qubit can be realized by various physical
systems, such as the quantum spin of a particle where
|0〉 and |1〉 correspond to the spin up state |↑〉 and spin
down state |↓〉 of the particle, respectively. According
to quantum physics, besides states |0〉 and |1〉 the par-
ticle may also exist in a superposition state, which is a
blend of spin up and down states simultaneously. Thus,
while at any instant a classical bit can be either 0 or 1,
a qubit can be a superposition of both |0〉 and |1〉, that
is, a superposition qubit is in a quantum state that may
be viewed as both one and zero at the same time. Math-
ematically, a superposition qubit may take the form of
|ψ〉 = α0|0〉+α1|1〉, where α0 and α1 are two complex
numbers satisfying |α0|2 + |α1|2 = 1. In other words,
a qubit represents unit vectors in a two-dimensional
complex vector space C

2, and |0〉 and |1〉 consist of an
orthonormal basis for the space and are often referred
to as the computational basis. A classical bit can be ex-
amined to determine whether it is in the states 0 or 1,
but for a qubit we can not determine its state and find
the values of α0 and α1 by examining it. By quantum
physics, we can perform a measurement on qubit |ψ〉
and obtain either the result 0, with probability |α0|2, or
the result 1, with probability |α1|2.

Like classic bits, we can define multiple qubits.
The states of b qubits are unit vectors in C

d , where

d = 2b, with computational basis states of the form
|x1x2 · · ·xb〉, xj = 0 or 1, j = 1, . . . , b. For example,
the states of two qubits are unit vectors in C

4, with
the superposition states |ψ〉 = α00|00〉 + α01|01〉 +
α10|10〉 + α11|11〉, where amplitudes α’s are complex
numbers satisfying |α00|2 + |α01|2 + |α10|2 + |α11|2 =
1. Two qubits can be made to interact and stay in an
entangled state so that they maintain persistent, instant
influence on each other no matter how far apart they
become and regardless of the nature of the interven-
ing medium. A consequence of entanglement is that
measuring one of the two entangled qubits will make
the state of the other entangled qubit to be definite,
and thus completely predictable, even though the two
qubits may be very far away.

The quantum system of b qubits is described by C
d

with each superposition state specified by 2b ampli-
tudes. As 2b increases exponentially in b, it is very
easy for such a system to grow with an enormously
big space. As a result, we encounter a key signature
in handling a quantum system that its complexity usu-
ally grows exponentially with its size. It takes an expo-
nential number of bits of memory on a classical com-
puter to store the state of a quantum system, and sim-
ulations of quantum systems via classical computers
face great computational challenge. For example, be-
sides the memory storage difficulty, we need to eval-
uate e−√−1Ht in (2.1) for the study of the quantum
evolution; as the matrix size of Hamiltonian H grows
exponentially with the size of the system, it is ex-
tremely difficult to exponentiate the quantum Hamilto-
nian using mathematical analysis or classical comput-
ers. On the other hand, since quantum systems are able
to store and keep track an exponential number of com-
plex numbers and perform data manipulations and cal-
culations as the systems evolve, quantum computation
and quantum information search for ways to access the
exponential information reservoir hidden in the quan-
tum systems and utilize the tremendous potential for
computing. See Nielsen and Chuang (2000) and Wang
(2011, 2012).

3. QUANTUM ANNEALING AND MCMC
SIMULATIONS

Annealing a material by heating and slowly cool-
ing it to enhance its quality is an ancient technique
that has been used for materials like glasses and met-
als over seven thousand years. Mimicking this process
by computer simulations creates simulated annealing
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as an optimization method. It is based on the anal-
ogy between the behavior of a complex physical sys-
tem with many degrees of freedom and an optimiza-
tion problem of finding the global minimum of a given
objective (or cost) function depending on many param-
eters. By viewing the objective function of the opti-
mization problem as the energy of the physical sys-
tem, we naturally formulate the optimization problem
as the (possible NP-hard) problem of finding minimum
energy configurations (or ground states) of the many-
body physical system, and develop computer simu-
lation algorithms to mimic the system behavior and
search for the minimum energy configurations of the
corresponding physical model.

A classical approach is simulated annealing (SA),
which takes into account the relative configuration
energies and a fictitious time-dependent temperature
when probabilistically exploring the immense search
space. For a given optimization problem, its objective
function to be minimized is identified with the energy
of a physical system, and we then give the physical sys-
tem a temperature as an artificially-introduced control
parameter. By reducing the temperature gradually from
a high value to zero, we wish to drive the system to
the state with the lowest value of the energy (objec-
tive function), and thus reach the solution of the op-
timization problem. The initial temperature is usually
set high relative to the system energy scale in order
to induce thermal fluctuations and sample its config-
urations using MCMC simulations like the Metropolis
algorithm, and the annealing process escapes from lo-
cal minima by thermal fluctuations to climb over en-
ergy barriers and searches for lower energy configura-
tions. As the system evolves with the change of tem-
perature sufficiently slow, the system is expected to
stay close to thermal equilibrium during time evolu-
tion, and thus in the end we lead the SA system to the
zero-temperature equilibrium state, the lowest-energy
state. See Bertsimas and Tsitsiklis (1992), Kirkpatrick,
Gelatt and Vecchi (1983) and Winker (2001).

Quantum annealing is based on the physical process
of a quantum system whose lowest energy, or equiv-
alently, a ground state of the system, represents the
solution to an optimization problem posed. It starts
with building a simple quantum system initialized in
its ground state, and then moves the simple system
gradually toward the target complex system. According
to the quantum adiabatic theorem (Farhi et al., 2000,
2001, 2002), as the system slowly evolves, it tends to
remain in a ground state, and hence measuring the state
of the final system will yield an answer to the original

optimization problem with some probability. The key
idea behind quantum annealing is to replace thermal
fluctuations in SA by quantum fluctuations via quan-
tum tunneling so that the system is kept close to some
instantaneous ground state of the quantum system dur-
ing the quantum annealing evolution, analog to some
quasi-equilibrium state to be kept during the time evo-
lution of SA.

Both classical and quantum annealing techniques are
powerful tools for solving hard optimization problems,
whether they are utilized as physical devices or sim-
ulation methods. The physical scheme is to employ a
natural system or build a device to engineer a physi-
cal system so that ground states of the system repre-
sent the sought-after solution of an optimization prob-
lem (McGeoch, 2014). The simulation approach is to
apply “escape” rules in computer simulations to pre-
vent the system from getting trapped in local minima
of an energy or cost function, and eventually reach
the global minimum with some probability (Rieger and
Kawashima, 1999 and Martoňák, Santoro and Tosatti,
2002). In both situations, the system is allowed to prob-
abilistically explore its immense configuration space
and ultimately “freeze” in the global minimum with
certain probability, and by enough repeated tries we
can find the global minimum and solve the optimiza-
tion problem.

3.1 Classical Ising Model and Simulated Annealing

The Ising model is often used to describe natural
systems in physics, and many optimization problems
can be mapped into physical systems described by the
Ising model whose ground states provide the solutions
to the optimization problems. Examples include travel-
ing salesman problem, portfolio optimization, integer
factoring, social economics network, protein folding,
protein modeling and statistical genetics. See Irback,
Peterson and Potthast (1996), Majewski, Li and Ott
(2001), McGeoch (2014) and Stauffer (2008).

Consider the Ising model described by a graph G =
(V(G),E(G)), where V(G) and E(G) stand for the ver-
tex and edge sets of G, respectively. Each vertex is oc-
cupied by a random variable taking values in {+1,−1},
and each edge represents the coupling (or interaction)
between the two vertex variables connected by the
edge. A configuration s = {sj , j ∈ V(G)} is defined to
be an assignment of a set of values to all vertex vari-
ables sj , j ∈ V(G). Vertices are also referred to as sites,
and vertex variables as spins in physics, with +1 for
spin up and −1 for spin down. For example, consider a
graph corresponding to a two-dimensional lattice with



368 Y. WANG, S. WU AND J. ZOU

a magnet placed at each lattice site pointing either up
or down. Suppose that there are b lattice sites labelled
by j = 1, . . . , b. Site variable sj stands for a binary
random variable indicating the position of the magnet
at site j , where sj = ±1 may be interpreted as the j th
magnet pointing up or down, respectively.

The Hamiltonian of the classical Ising model is given
by

(3.1) Hc
I (s) = − ∑

(i,j)∈E(G)

Jij sisj − ∑
j∈V(G)

hj sj ,

where (i, j) stands for the edge between sites i and
j , with the first sum over all pairs of vertices with
edge (i, j) ∈ E(G), Jij stands for the interaction (or
coupling) between sites i and j associated with edge
(i, j) ∈ E(G), and hj describes an external magnetic
field on vertex j ∈ V(G). A set of fixed values {Jij , hj }
is referred to as one instance of the Ising model. For a
given configuration s, the energy of the Ising model is
equal to Hc

I (s).
According to Boltzmann’s law, the probability of a

given configuration s is described by the Boltzmann
(or Gibbs) distribution

Pβ(s) = e−βHc
I (s)

Zβ

, Zβ = ∑
s

e−βHc
I (s),

where β = (kBT )−1 is an inverse temperature, with kB

a generic physical constant called the Boltzmann con-
stant and T the absolute temperature, and the normal-
ization constant Zβ is called the partition function. If
we take kB = 1, T is interpreted as the fundamental
temperature of the system with units of energy, and β

is treated as the reciprocal to the fundamental tempera-
ture. The configuration probability Pβ(s) represents the
probability that the physical system is in a state with
configuration s in equilibrium.

When a combinatorial optimization is represented
by the Ising model, the objective is to find a ground
state of the Ising model, that is, we need to find a
state whose configuration minimizes the energy func-
tion Hc

I (s). If the Ising model has b sites, the config-
uration space is {−1,+1}b with the total number of
the configurations equal to 2b. For a system with many
sites, because of the exponential complexity, it is an ex-
tremely difficult task to numerically find ground states
and solve the minimization problem. In fact, it is pro-
hibitive for deterministic exhaustive search algorithms
to solve the minimization problem with such an ex-
ponential growth search space. Annealing approaches
such as SA are often employed to probabilistically ex-
plore the search space and find the global minimum

of Hc
I (s). SA finds the minimum with repeated tries

by using MCMC methods such as the Metropolis–
Hastings algorithm to generate configuration samples
from the Boltzmann distribution with temperature de-
creasing slowly. It starts with a random initial spin
configuration and randomly flips spins at each time
step; we always accept a new spin configuration if it
lowers the energy and accept it probabilistically us-
ing the Metropolis rule otherwise; and we gradually
lower the temperature to reduce the escape probability
of trapping in local minima. Specifically, the SA algo-
rithm initializes spins with −1 and +1 randomly and
independently from each other to obtain initial spins
s(0) = {s(0)

j }. We update spins one by one, and each
complete updating over all spins constitutes one sweep.
At the kth sweep, for spin i, we attempt to flip its state
s
(k−1)
i to new state s

(k)
i = −s

(k−1)
i while keeping all

other spins unchanged, and calculate energy change
between its original state s

(k−1)
i and the newly flipped

state s
(k)
i ,

�E
(k)
i = −hi

(
s
(k)
i − s

(k−1)
i

)
−

i−1∑
j=1

Jij s
(k)
j

(
s
(k)
i − s

(k−1)
i

)

−
b∑

j=i+1

Jij s
(k−1)
j

(
s
(k)
i − s

(k−1)
i

)
.

The new state s
(k)
i is accepted with probability min{1,

exp(−�E
(k)
i /Tk)}, that is, we change spin i’s state

from s
(k−1)
i to new state s

(k)
i if �E

(k)
i ≤ 0 and other-

wise update its state with probability exp(−�E
(k)
i /Tk),

where Tk is the annealing schedule to lower the temper-
ature. Typical annealing schedules for lowering tem-
perature include Tk proportional to 1

k
or 1

logk
. See

Bertsimas and Tsitsiklis (1992), Geman and Geman
(1984) and Hajek (1988).

3.2 Quantum Annealing

We describe a quantum Ising system associated with
quantum annealing through the same graph G used for
the classical Ising model, where similar to the clas-
sical case, the vertex set V(G) now represents quan-
tum spins, with edge set E(G) for couplings (or inter-
actions) between two quantum spins. As illustrated in
Section 2.3, each quantum spin may realize a qubit,
and thus each vertex represents a qubit, with the to-
tal number of qubits in the system equal to the total
number, b, of the vertices in G. The quantum system
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is characterized by complex space C
d , where d = 2b,

with its quantum state described by a unit vector in C
d

and its dynamic evolution governed by the Schrödinger
equation defined in (2.1) via a quantum Hamiltonian,
which is a Hermitian matrix of size d . The energies of
the quantum system correspond to the eigenvalues of
the quantum Hamiltonian, with a ground state being an
eigenvector corresponding to the smallest eigenvalue.
To specify the quantum Hamiltonian we need to define

Ij =
(

1 0
0 1

)
, σ x

j =
(

0 1
1 0

)
,

σ z
j =

(
1 0
0 −1

)
, j = 1, . . . , b,

where σ x
j and σ z

j are called Pauli matrices in x and z

axes, respectively (here we do not need Pauli matrix
in y axis, see Nielsen and Chuang, 2000 and Wang,
2012). To describe the quantum system, we replace
each classical vertex variable sj = ±1 in (3.1) by σ z

j

for quantum spin j . Pauli matrix σ z
j has two eigenval-

ues ±1 whose eigen-states |+1〉 and |−1〉 correspond
to spin up state |↑〉 and spin down state |↓〉, respec-
tively, so that a qubit at vertex j is realized by the
quantum spin. Quantum configurations consist of the
2b possible combinations of 2b eigen-states |±1〉 of
the Pauli matrices {σ z

j }bj=1. Replacing sj in classical
Ising Hamiltonian Hc

I (s) by σ z
j , we obtain the follow-

ing quantum Hamiltonian of the quantum Ising model:

Hq
I = − ∑

(i,j)∈E(G)

Jijσ
z
i σ

z
j − ∑

j∈V(G)

hjσ
z
j ,(3.2)

where Jij is the Ising coupling along the edge (i, j) ∈
E(G), and hj is the local field on the vertex j ∈ V(G).
Here, we use the convention in the quantum literature
that σ z

j and σ z
i σ

z
j in (3.2) denote their tensor products

along with identical matrices in such a way that

σ z
i σ

z
j ≡ I1 ⊗ · · · ⊗ Ii−1

⊗ σ z
i ⊗ Ii+1 ⊗ · · · ⊗ Ij−1 ⊗ σ z

j︸ ︷︷ ︸
vertices i and j

⊗ Ij+1 ⊗ · · · ⊗ Ib,

σ z
j ≡ I1 ⊗ · · · ⊗ Ij−1 ⊗σ z

j⊗︸ ︷︷ ︸
vertex j

Ij+1 ⊗ · · · ⊗ Ib.

That is, we have one matrix, either a Pauli matrix σ z
j

or an identity matrix Ij , to act on the j th qubit, each
term in (3.2) is a tensor product of b matrices of size
two, and the quantum convention simply identifies the
qubits with Pauli matrices for real actions but omits the

identical matrices and tensor product signs. Because of
the tensor products, all terms in Hq

I are diagonal matri-
ces of size 2b, and so does Hq

I .
The goal of finding a ground state of quantum

Hamiltonian Hq
I is to search for an eigenvector of Hq

I

corresponding to its smallest eigenvalue, or equiva-
lently, a quantum spin configuration with the minimal
energy. Because Hq

I involves only tensor products of
commuting diagonal matrices Ij and σ j , Hq

I is a diag-
onal matrix with eigenvalues equal to its diagonal en-
tries. Moreover, it is easy to show from the same struc-
ture of (3.1) and (3.2) that the eigenvalues of Hq

I are
actually the 2b values of classical Hamiltonian Hc

I (s),
s ∈ {−1,+1}b. Thus, the system governed by Hq

I be-
haves essentially like a classical system, and finding
the minimal energy of the quantum Ising Hamiltonian
Hq

I is equivalent to finding the minimal energy of the
classical Ising Hamiltonian Hc

I .
Since the original optimization problem described in

Section 3.1 can be formulated in the quantum frame-
work, the computational task for solving the optimiza-
tion problem remains the same as in the classical case
so far. The key in quantum annealing is to engineer
a magnetic field orthogonal to the Ising axis and ob-
tain the Hamiltonian of the Ising model in the trans-
verse field. With Hq

I representing a potential energy,
the transverse field stands for a kinetic energy that does
not commute with Hq

I , thus it induces transitions be-
tween the up and down states of each single spin, and
turns the model behavior from classical to quantum.
Specifically, assume that the transverse magnetic field
is governed by a quantum Hamiltonian

(3.3) HX = − ∑
j∈V(G)

σ x
j ,

where we again follow the quantum convention that σ x
j

stands for tensor products of b matrices of size 2, that
is,

σ x
j ≡ I1 ⊗ · · · ⊗ Ij−1 ⊗σ x

j⊗︸ ︷︷ ︸
vertex j

Ij+1 ⊗ · · · ⊗ Ib,

which does not commute with σ z
j in Hq

I . Since σ x
j has

two eigenvalues ±1 with corresponding eigenvectors
|vj,±1〉 = (1,±1)†, HX has simple eigenvector |v+〉 =
|v1,+1〉 ⊗ |v2,+1〉 ⊗ · · · ⊗ |vb,+1〉 corresponding to its
smallest eigenvalue, namely, |v+〉 is the ground state
of HX .

The quantum annealing procedure starts with a quan-
tum system driven by the transverse magnetic field HX

and initialized in its ground state. During the process
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of quantum annealing, the system is evolved gradually
from initial Hamiltonian HX to the final target Hamil-
tonian Hq

I . For such Hamiltonian changes, the quan-
tum adiabatic theorem indicates that the system tends
to remain in ground states of the instantaneous Hamil-
tonian through quantum tunneling (Farhi et al., 2000,
2001, 2002, and McGeoch, 2014). At the end of quan-
tum annealing, if the system is in a ground state of
the final Hamiltonian Hq

I , an optimal solution is ob-
tained by measuring the system. Specifically, quantum
annealing is realized by an instantaneous Hamiltonian
for the Ising model in the transverse field as follows:

(3.4) HD(t) = A(t)HX + B(t)Hq
I , t ∈ [0, tf ],

where A(t) and B(t) are time-dependent smooth func-
tions controlling the annealing schedules, and tf is
the total annealing time. Typically, A(tf ) = B(0) = 0,
A(t) is decreasing and B(t) is increasing. The grad-
ual move of the Hamiltonian from HD(0) to HD(tf ) is
achieved through controlling the annealing schedules
A(t) and B(t). At initial time t = 0, HD(0) = A(0)HX ,
at the final time t = tf , HD(tf ) = B(tf )Hq

I , and A(0)

and B(tf ) are known scalars, then HD(t) has the same
eigenvectors as HX at the initial time and as Hq

I at the
final time, where the corresponding eigenvalues differ
by factors of A(0) and B(tf ), respectively. Therefore,
the quantum annealing evolution driven by HD(t) es-
sentially moves the system HX initialized at its ground
state to the final system Hq

I . According to the quantum
adiabatic theorem (Aharonov et al., 2007, Born and
Fock, 1928, Farhi et al., 2000, 2001, 2002, McGeoch,
2014, and Morita and Nishimori, 2008), for appropri-
ately chosen A(t) and B(t) we can measure the quan-
tum system at the final annealing time tf to find a
ground state of Hq

I with sufficiently high probability.
Thus, with certain probability the quantum annealing
procedure driven by (3.4) can obtain the global min-
imum of the objective function Hc

I (s) and solve the
minimization problem.

In quantum annealing, the move from the initial sim-
ple system HX to the final complex system Hq

I is often
realized through engineering magnetic fields. For ex-
ample, we may manufacture the move from the initial
system to the final system by turning magnetic fields
on and then off adiabatically, like the physical imple-
mentation by D-Wave devices that initializes its sys-
tem in the ground state of HX by chilling the sys-
tem to a near absolute zero temperature and turning
on the transverse magnetic field. Quantum annealing
induces quantum fluctuations by introducing artificial

degrees of freedom of quantum nature, and then inge-
niously controls the strength of these quantum fluctua-
tions via annealing schedules A(t) and B(t) in order to
make the system finally reach a ground state of Hq

I , just
like the slow reduction of temperature in classical an-
nealing. Initially, the strength of quantum fluctuations
is set to be relatively high for the system to search
for the global structure of the configuration space,
corresponding to the initial high-temperature situation
in SA, and then the strength is slowly decreased to
finally vanish to recover the original target system
hopefully in the lowest-energy state. Quantum anneal-
ing differs from the classical annealing in terms of
quantum-mechanical fluctuations in quantum anneal-
ing instead of thermal fluctuations in SA. While clas-
sical annealing relies on thermal fluctuations to make
the system hop from state to state over intermediate en-
ergy barriers and search for the desired lowest-energy
state, quantum annealing replaces thermal hopping by
quantum-mechanical fluctuations for state transitions.
The quantum fluctuations in quantum annealing are re-
alized via quantum tunneling that allows the anneal-
ing process to explore the different states by traveling
directly through energy barriers, rather than climbing
over them thermally. Quantum tunneling refers to the
quantum phenomenon where particles tunnel through
a barrier in the circumstance that could not be possible
by classical physics. The tunneling process cannot be
directly observed nor adequately explained by classi-
cal physics. Quantum tunneling is often explained us-
ing the Heisenberg uncertainty principle and the wave-
particle duality of matter in quantum physics (Sakurai
and Napolitano, 2010 and Shankar, 1994). Here, we try
to provide some heuristic explanation. To facilitate our
understanding of the phenomenon, we may compare
particles attempting to travel between barriers to balls
trying to roll over a hill or balls trying to penetrate
a wall. Classical physics indicates that balls without
sufficient energy to surmount the hill would roll back
down, and balls which do not have enough energy to
penetrate the wall would either bounce back or bury
themselves inside the wall. In both cases, balls will not
be able to reach the other sides of the hill and wall.
While these particles without enough energy to classi-
cally surmount a barrier cannot get to the other side
of the barrier by classical physics, quantum physics
predicts that the particles can, with some probability,
cross the barrier and reach the other side, thus tunnel-
ing through the barrier. Figure 1 provides some car-
toon illustrations of thermal hopping versus quantum
tunneling. The illustrations may indicate that if energy
barriers are high and thin, quantum tunneling may be
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FIG. 1. A cartoon illustration of quantum tunneling vs. thermal climbing on the top panel with annealing elucidations of quantum tunneling
on the left bottom panel and thermal climbing on the right bottom panel.

more efficient than thermal hopping, and quantum an-
nealing may be faster than classical thermal annealing
to reach the equilibrium distribution. In fact, research
has shown that it can be more efficient to explore the
state space quantum mechanically, and quantum an-
nealing may have advantages over thermal annealing
(Brooke et al., 1999, Denchev et al., 2016, Farhi et al.,
2000, 2001, 2002, Kechedzhi and Smelyanskiy, 2015
and McGeoch, 2014).

Quantum annealing may be implemented by phys-
ical devices or MCMC simulations. We will illus-
trate in next two sections D-Wave physical devices
to implement the unitary dynamic evolution of quan-
tum annealing by natural Schrödingier dynamics and
MCMC methods to approximate the dynamic evolu-
tion of quantum annealing by artificial time evolutions
of Monte Carlo dynamics.

3.3 Physical Implementation of Quantum
Annealing by the D-Wave Quantum Computer

The D-Wave quantum computer is a commercially
available computing hardware device designed to im-
plement quantum annealing. As illustrated in Fig-
ure 2, it includes a quantum processor, a magnetically
shielded box and a cooling equipment housed inside
a ten square meter shielded room. The quantum pro-
cessor consists of superconducting flux qubits based
on niobium superconducting quantum interference de-
vices, and the shielded box and the cooling equipment
protect the system from coupling to the environment
and maintain the system at near absolute zero temper-
ature to keep superconducting flux qubits in quantum
states. D-Wave One “Rainier” device of 128 qubits and
D-Wave Two “Vesuvius” device of 512 qubits were re-
leased in May 2011 and May 2013, respectively, while
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FIG. 2. The D-Wave quantum computer in the top panel, its inside structural illustration in the middle panel, and 128 and 512 qubit
quantum chips of D-Wave One and Two devices, respectively, in the bottom panel (Courtesy of D-Wave Systems Inc.).

D-Wave’s 2X processor with over 1000 qubits was
made available in 2015.

The quantum annealing implemented by D-Wave de-
vices is to evolve the quantum Ising system of super-
conducting flux qubits subject to a transverse field, and
the quantum evolution is described by the Schrödinger
equation (2.1) via the Ising Hamiltonian Hq

I in (3.2),
the transverse field HX in (3.3), and the instantaneous

Hamiltonian HD(t) in (3.4) for the quantum Ising
model in the transverse field, where Figure 3 displays
the graph G employed by the D-Wave One device to
describe qubits and their couplings, and plots anneal-
ing schedules A(t) and B(t) used by the D-Wave de-
vice for carrying out quantum annealing. The graph
in Figure 3 is a subgraph of the so-called Chimera
graph, where each vertex represents a qubit in the D-
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FIG. 3. The Chimera graph in the left panel and the annealing schedules in the right panel used by D-Wave One quantum computer, which
are adopted from Figures 1 and 3 in Supplementary Information of Boixo et al. (2014a, 2014b).

Wave One device, and each edge corresponds to the
coupler (or interaction) between the two incident ver-
tices with coupling Jij for the edge weight between
vertices i and j . The Chimera graph illustrates 128
qubits in the system of the D-Wave One device, and
of the 128 qubits on the device, 108 were fully func-
tioning and used in our experiments. In the graph, the
working qubits are shown in green, and the couplers
between them are marked as black lines. This graph is
built from unit cells containing eight vertices each, and
within each unit cell the qubits and couplers realize a
complete bipartite graph, where within a unit cell each
of the four qubits on the left is coupled to all of the
four on the right and vice versa; each right qubit in a
unit cell is horizontally coupled with the corresponding
right qubits in the cells immediately to the right and left
of the unit cell, with each left qubit vertically coupled
to the corresponding left qubits in the cells immedi-
ately above and below the unit cell. There are 16 cells
in D-Wave One device, with 64 and 144 cells in the D-
Wave Two device and D-Wave 2X device, respectively.

Data used were collected from a computing exper-
iment performed on the D-Wave One device owned
by the Lockheed-Martin Corporation and housed at
Center for Quantum Information Science & Technol-
ogy at the University of Southern California (USC)
and USC-Lockheed-Martin Quantum Computing Cen-
ter (Boixo et al., 2014a, 2014b, Albash et al., 2014,
and Wang et al., 2013). As the Ising model with lo-
cal field hj tends to make corresponding optimization

problems easier, the experiment took external magnetic
field hj = 0, and we consider the Ising model with-
out external magnetic field hj in the rest of the paper.
In the experiment, we randomly assigned each cou-
pler Jij in the device a value of either +1 or −1 to
obtain an instance {Jij , (i, j) ∈ E(G)}. The same pro-
cedure was repeated to select 1000 sets of different
random couplings Jij = ±1, and thus obtain 1000 dif-
ferent instances. The random selection may result in
rough energy landscapes for the quantum system, and
this and next two sections apply annealing methods to
solve the optimization problem of finding the minimum
of Hc

I (s), and adopt the following procedure to deter-
mine if a run of an annealing algorithm finds a ground
state: First, some brute force methods can be used
to obtain the global minimum of Hc

I (s) for each se-
lected instance (Dechter, 1999 and Boixo et al., 2014a,
2014b); second, with the known global minimum value
of Hc

I (s) for each selected instance, we declare that a
particular run of an annealing algorithm finds a ground
state if the annealing run yields a minimum value of
Hc

I (s) equal to its global minimum value. For each of
the 1000 selected instances, after its couplings were
programmed, 1000 annealing runs were performed on
the device to determine whether the system reached
a ground state during each run and compute the fre-
quency of finding the ground states among the 1000
runs to estimate the ground state success probability for
the instance. Each annealing operation was carried out
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FIG. 4. Histogram plots of ground state success probability data for DW, SA, SQA and SSSV in (a)–(d), respectively.

at a temperature of 20 milli-Kelvin, with an annealing
time tf = 5 microseconds. While the transverse field
starts initially at A(0) ≈ 3 GHz and decreases to zero
during the annealing process, the couplings field in-
creases from near zero to about B(tf ) ≈ 5 GHz at the
end of the annealing process.

For each of the 1000 selected instances, we com-
puted the frequency of finding the ground states among
the 1000 runs, and the obtained 1000 frequencies con-
sist of the ground state success probability data from
the D-Wave (DW) experiment. Figure 4(a) displays the
histogram of the DW ground state success probabil-
ity data. We plotted in Figure 4(b) the histogram of
ground state success probability data generated from
SA described in Section 3.1, where the same Chimera
graph and 1000 instances as in the DW case were em-
ployed by the classical Ising model in SA with anneal-
ing schedule Tk proportional to 1

k
, 1000 runs were used

to obtain the ground state success probability data for
each instance, and each annealing run was carried out
with 10,000 sweeps. One striking difference between
the two histograms in Figure 4(a), (b) is the bimodal
vs. unimodal phenomenon that the DW histogram ex-
hibits a U-shape pattern, while the SA histogram shows
a unimodal (including monotone) pattern. In fact, we

ran SA under the same set-up except for different an-
nealing times with various sweeps and plotted the his-
tograms of ground state success probability data in Fig-
ure 6. The plots show that the SA data exhibit unimodal
histogram patterns for all sweeps, and as the number
of sweeps increases, the mode shifts toward the larger
success probability side and gets stronger. We illus-
trated in Figure 5(a) the scatter plot of DW against SA
data displayed in Figure 4(a), (b), and found their cor-
relation to be 0.84.

3.4 Classical MCMC Simulations to Approximate
Quantum Annealing

It is extremely difficult to simulate quantum anneal-
ing by classical computers. The matrix size of Hamil-
tonians in quantum annealing exponentially increases
with its system size, and the simulations require to
exponentiate such exponentially large noncommutable
matrices, which is not feasible by classical computers.
In this section, we introduce two classical MCMC sim-
ulation methods, simulated quantum annealing (SQA)
and the SSSV annealing method in Shin et al. (2014),
to approximate quantum annealing and provide pos-
sible candidate models for the D-Wave experimen-
tal data. Like SA they are classical MCMC meth-
ods. However, there are some intrinsic differences.
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FIG. 5. Ground state success probability data scatter plots of DW against SA, SQA, SSSV in (a)–(c), respectively, along with scatter plot of
SQA vs SSSV in (d).

SA solves the minimization problem of an objective
function by starting with a random initial spin con-
figuration and flipping spins at random at each time
step, we always accept a new spin configuration if it
lowers the energy and accept it probabilistically us-
ing the Metropolis rule otherwise, and we gradually
lower the temperature to reduce the escape probabil-
ity of trapping in local minima. It is a pure thermal
annealing. Quantum annealing replaces spin flips and
the thermal escape rule by introducing the noncom-
muting transverse field and reducing the escape prob-
ability by turning on and then off this noncommut-
ing field adiabatically to allow quantum tunneling out
of local minima. SQA and SSSV are two classical
MCMC simulations to approximate quantum anneal-
ing by path-integral formulation and mean field ap-
proximation, respectively. These two annealing meth-
ods employ the same schedules in quantum annealing
to mimic some effect of generating the Ising system
with quantum fluctuations based on magnetic fields,
and to make the system to ultimately end up in its low-
est energy configuration, which represents the solution
to the optimization problem. The MCMC methods bear

important practical significance as they can treat prac-
tical large-size problems on classical computers.

3.4.1 Simulated quantum annealing. For quantum
annealing Hamiltonian HD(t) in (3.4), to find the
Boltzmann state of the quantum system we need to
evaluate canonical partition function tr[e−HD(t)/T ] of
the transverse field quantum Ising model. However, we
can not analytically exponentiate e−HD(t)/T to evaluate
the partition function, since the two matrices in HD(t),
Ising Hamiltonian Hq

I and transverse field Hamilto-
nian HX , do not commute. As described in Martoňák,
Santoro and Tosatti (2002), the basic idea of SQA is
to apply the path-integral technique to the canonical
partition by using the Trotter formula (Kato, 1978,
Suzuki, 1976 and Trotter, 1959) to obtain an approx-
imation of the partition function for the quantum an-
nealing Hamiltonian HD(t). Specifically substituting
T/B(t) for temperature parameter and A(t)/B(t) for
transverse field parameter in Martoňák et al. (2002),
equations (2)–(6), we obtain an approximation of the
partition function for the quantum annealing Hamilto-
nian HD(t) with temperature T that maps the trans-
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FIG. 6. Histogram plots of ground state success probability data for SA with different annealing sweeps.

verse quantum Ising model to a classical (2 + 1)-
dimensional anisotropic Ising model with temperature
τT and Hamiltonian

Hc
aI (s) = −

τ∑

=1

[
B(t)

∑
(i,j)∈E(G)

Jij si
sj


(3.5)

+ J (t)
∑

j∈V(G)

sj
sj,
+1

]
,

where sj
 are random variables taking values in {+1,

−1}, τ is an integer, 
 is the index for an extra di-
mension that is often referred to as the imaginary-time
dimension, Jij are the couplings along the original 2-
dimensional direction of the Ising model described by
(3.1) on graph G,

J (t) = −τT

2
ln

[
tanh

(
A(t)

τT

)]
is the coupling along the imaginary-time dimension,
and A(t) and B(t) are the same annealing schedules
as in quantum annealing.

Let s
 = {si
, i = 1, . . . , b} denote a configuration
of b spins that is called the 
th Trotter slice, here

1 ≤ 
 ≤ τ , and b is the total number of the vertices
in graph G. The classical anisotropic Ising model has
two directions, one along the original 2-dimensions de-
scribed by graph G and another along the imaginary-
time dimension. In the original 2-dimensional graph
direction the model has coupling Jij and annealing
schedule B(t), where the couplings are the same for
all τ Trotter slices, and in the imaginary-time direction
the model has a finite length τ and uniform coupling,
with annealing schedule J (t).

Since Hc
aI is a classical anisotropic Ising Hamilto-

nian, the path-integral representation of the transverse
field quantum Ising model allows approximate simula-
tions of the quantum system by classical MCMC sam-
pling from the classical anisotropic Ising model. Be-
cause of the extra dimension in the classical anisotropic
Ising model, the MCMC simulation method needs to
employ a standard Metropolis algorithm with both lo-
cal and global moves to sample the system. For the
local moves, we perform usual independent spin flips
at all sites in all Trotter slices, while each global
move attempts to flip simultaneously all the replicas
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of the same spin in all Trotter slices. It is clear that in
the Metropolis procedure, the acceptance ratio of the
global moves is free of the transverse field J (t), be-
cause we always flip at the same time both replicas of
the same spin in neighboring Trotter slices, which in-
teract via J (t), and thus depend on A(t). To choose
the initial configuration, we may assume that there
is little interactions between the neighboring Trotter
slices, and the (2 + 1)-dimensional anisotropic Ising
system behaves like a collection of noninteracting two-
dimensional systems, and an appropriate choice of the
initial configuration may be to set all Trotter slices
equal to spin configurations corresponding to the equi-
librium Boltzmann distribution, which can be achieved
with some burn-in simulations.

The SQA algorithm starts with random initialization:
initiate spins in all Trotter slices with −1 and +1 at ran-
dom and independent among spins and Trotter slices
to obtain initial spin configuration s(0) = {s(0)

j
 , j ∈
G(V), 
 = 1, . . . , τ }. We update spins one by one for lo-
cal move and spin replicas site by site for global move.
Each complete updating all spins locally and globally
constitutes one sweep. Denote by R the total number
of sweeps in SQA, and let tk = k/R, k = 1, . . . ,R. At
the kth sweep, in the case of local move, for spin i in
the 
th Trotter slice, we attempt to flip state s

(k−1)
i
 to

new state s
(k)
i
 = −s

(k−1)
i
 while keeping all others un-

changed, and calculate energy change between its orig-
inal state s

(k−1)
i
 and newly flipped state s

(k)
i
 ,

�E
(k)
1i
 = −B(tk)

[
i−1∑
j=1

Jij s
(k)
j


(
s
(k)
i
 − s

(k−1)
i


)

+
b∑

j=i+1

Jij s
(k−1)
j


(
s
(k)
i
 − s

(k−1)
i


)]

− J (tk)
[
s
(k)
i
 s

(k)
i,
+1 + s

(k)
i,
−1s

(k)
i


− s
(k−1)
i
 s

(k−1)
i,
+1 − s

(k−1)
i,
−1 s

(k−1)
i


]
.

The local move accepts the new state s
(k)
i
 with proba-

bility min{1, exp[−�E
(k)
1i
/(τT )]}. At the kth sweep, in

the case of global move, for spins at site i of all Trotter
slices, we attempt to flip states {s(k−1)

i
 , 
 = 1, . . . , τ } to

new states {s(k)
i
 = −s

(k−1)
i
 , 
 = 1, . . . , τ } while keep-

ing all others unchanged, and calculate energy change
between its original states {s(k−1)

i
 , 
 = 1, . . . , τ } and

newly flipped states {s(k)
i
 , 
 = 1, . . . , τ },

�E
(k)
2i = −

τ∑

=1

B(tk)

[
i−1∑
j=1

Jij s
(k)
j


(
s
(k)
i
 − s

(k−1)
i


)

+
b∑

j=i+1

Jij s
(k−1)
j


(
s
(k)
i
 − s

(k−1)
i


)]
.

The global move accepts the new states {s(k)
i
 , 
 =

1, . . . , τ } with probability min{1, exp [−�E
(k)
2i /

(τT )]}. Finally, to evaluate the original classical Ha-
miltonian Hc

I (s), we simply use the first Trotter slice at

the k = Rth sweep by taking s
(k)
i = s

(k)
i1 , and then ob-

tain s(k) = {s(k)
i , i ∈ V(G)} and evaluate Hc

I (s
(k)) given

by (3.1) with hj = 0.
The path-integral formulation maps quantum anneal-

ing to a classical (2 + 1)-dimensional anisotropic Ising
model, where the model in the imaginary-time direc-
tion is made completely decoupled and identical, and
SQA is a MCMC based method to perform a path-
integral simulation of a transverse field quantum Ising
model, where the system is brought into the equilib-
rium state at each MCMC sweep and then a small
change is made in the Hamiltonian, after which the sys-
tem is again brought into the equilibrium state and so
on so forth (Martoňák, Santoro and Tosatti, 2002, and
Morita and Nishimori, 2008).

Using the same Chimera graph and 1000 instances
along with their corresponding global minima of Hc

I (s)
as in DW, and taking the following annealing schedules
close to the DW annealing schedule curves displayed in
Figure 3,

A(t) =
{

8t2 − 9.6t + 2.88, if 0 ≤ t ≤ 0.6,

0, if 0.6 < t ≤ 1,
(3.6)

B(t) = 5.2t2 + 0.2t, t ∈ [0,1],
we ran the SQA algorithm with up to 10,000 sweeps,
temperature 0.1 ≤ T ≤ 1 and various Trotter slices τ .
For each run of the SQA algorithm on a selected in-
stance, as in the DW case we determined whether the
run found a ground state of Hc

I (s) by comparing the
minimum value yielded from the run of the SQA algo-
rithm with the known global minimum value of Hc

I (s)
corresponding to the instance, and for each instance we
repeatedly ran the SQA algorithm 1000 times to com-
pute the frequency of finding the ground states over
the 1000 times. We displayed in Figure 4(c) the his-
togram of ground state success probability data gener-
ated by the SQA algorithm with τ = 30, T = 0.1 and



378 Y. WANG, S. WU AND J. ZOU

FIG. 7. Histogram plots of ground state success probability data for SQA with temperature T = 0.1 and different annealing sweeps.

10,000 sweeps. The histogram exhibits a U-shape pat-
tern similar to the DW case. We also ran the SQA algo-
rithm with different temperatures and various sweeps
and plotted the histograms of ground success probabil-
ity data in Figures 7–8. The plots show that at T = 0.1,
the SQA data exhibit U-shape histogram patterns for
all sweeps, and as the number of sweeps increases, the
patterns grow stronger; as the temperature T increases
when the number of sweeps is fixed to be 10,000, the
U-shape patterns get weaker, eventually disappear and
become unimodal patterns. This indicates that as tem-
perature increases, thermal effects tend to dominate
quantum effects, and the SQA histogram patterns ap-
proach to the SA histogram patterns. We illustrated in
Figure 5(b) the scatter plot of DW against SQA data
displayed in Figure 4(c), and found their correlation to
be 0.85.

3.4.2 The SSSV annealing. The SSSV model is a
MCMC simulation model proposed by Shin et al.
(2014) and Smolin and Smith (2014). It replaces qubits
at the Chimera graph by planar rotors with angles
θi ∈ [0,2π ] and Pauli matrices σ x

i and σ z
i in quan-

tum Hamiltonian HD(t) in (3.4) by sin θi and cos θi ,

respectively. The resulted rotor system is governed by
Hamiltonian

HS(t) = −A(t)
∑

j∈V(G)

sin θj

(3.7) − B(t)
∑

(i,j)∈E(G)

Jij cos θi cos θj ,

where graph G, couplings Jij , and annealing sched-
ules A(t) and B(t) are the same as in quantum an-
nealing such as those used by DW and SQA. The time
evolution of the system can be generated by standard
MCMC algorithms with a Metropolis scheme to up-
date rotor angles as follows. Starting with initial values
θi , i = 1, . . . , b, each selected at random from [0,2π ],
one variable at a time we generate angle θi from the
uniform distribution on [0,2π ]. The generated angle
is accepted if it does not increase the energy given
by HS(t). If the generated angle increases the energy,
it is accepted with probability exp(−�E/T ), where
�E > 0 is the change in energy. A sweep is referred
to as each complete update of all b rotors during the
entire annealing schedule. After each sweep, the time
t in Hamiltonian HS(t) is increased by one time unit
until the final annealing time.
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FIG. 8. Histogram plots of ground state success probability data for SQA with 10,000 sweeps and different temperatures.

Specifically, as in SQA, denote by R the total num-
ber of sweeps and tk = k/R the time step at the kth
sweep, k = 1, . . . ,R. We perform the Metropolis up-
dating scheme one variable at a time in each time step
as follows. Starting with random initial values θ

(0)
i se-

lected independently from the uniform distribution on
[0,2π ], we generate an angle θ

(k)
i from the uniform

distribution on [0,2π ] for vertex i at the kth sweep.

1. For rotor i, compute the change in energy be-
tween its original state θ

(k−1)
i and the newly generated

state θ
(k)
i ,

�E
(k)
i = −A(tk)

(
sin θ

(k)
i − sin θ

(k−1)
i

)
− B(tk)

[
i−1∑
j=1

Jij cos θ
(k)
j

(
cos θ

(k)
i

− cos θ
(k−1)
i

)
·

b∑
j=i+1

Jij cos θ
(k−1)
j

(
cos θ

(k)
i − cos θ

(k−1)
i

)]
,

where θ
(k)
1 , . . . , θ

(k)
i−1, θ

(k−1)
i+1 , . . . , θ

(k−1)
b denote the

states of the other rotors when updating rotor i.
2. Change rotor i’s state from θ

(k−1)
i to new state

θ
(k)
i if �E

(k)
i ≤ 0 and otherwise update its state with

probability exp(−�E
(k)
i /T ), where T is the tempera-

ture of the system which is kept constant throughout
the simulation.

As each complete time evolution following the en-
tire annealing schedule constitutes one sweep, the
kth sweep corresponds to a set of angles {θ(k)

j , j =
1, . . . , b}. We interpret angles in terms of states in the
computational basis according to the signs of cos(θ(k)

j ),
that is, define vertex variables sj , j ∈ V(G), at the kth

sweep according their corresponding angles θ
(k)
j as fol-

lows:

s
(k)
j = sign

(
cos θ

(k)
j

)
, s(k) = {

s
(k)
j , j ∈ V(G)

}
.

We plug the obtained configuration s(k) into the origi-
nal classical Ising Hamiltonian Hc

I given by (3.1) with
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FIG. 9. Histogram plots of ground state success probability data for SSSV with temperature T = 0.1 and different annealing sweeps.

hj = 0 to evaluate

Hc
I

(
s(k)) = − ∑

(i,j)∈E(G)

Jij s
(k)
i s

(k)
j .

Similar to the SA procedure we can find the global
minimum of Hc

I (s) with enough repetitions.
Both SSSV and SQA are classical MCMC simu-

lation methods to approximate quantum annealing by
following the same annealing schedules as in quantum
annealing. While SQA uses the path-integral formula-
tion to obtain an approximation of the quantum anneal-
ing by a classical (2+1)-dimensional anisotropic Ising
model, the SSSV model may be understood as approxi-
mating quantum annealing by a mean-field approxima-
tion of the path-integral formulation.

As in Shin et al. (2014), similar to the SQA case, we
ran the SSSV algorithm by using the same Chimera
graph, 1000 instances and annealing schedules A(t)

and B(t) as in DW and SQA, where we set temperature
0.1 ≤ T ≤ 1 and sweeps up to 150,000. For each com-
bination of instance, temperature and sweep set-up, we
repeatedly ran the SSSV algorithm 1000 times to com-
pute the frequency of successfully finding the ground

states over the 1000 times. We displayed in Figure 4(d)
the histogram of ground state success probability data
generated by the SSSV algorithm with 150,000 sweeps
and T = 0.1. The histogram exhibits a U-shape pattern
similar to the DW and SQA cases. We ran the SSSV
algorithm with various sweeps and temperatures and
plotted the histograms of ground state success prob-
ability data in Figures 9–10. At temperature T = 0.1,
the SSSV data initially exhibit decreasing patterns, and
as the number of sweeps increases, the decreasing pat-
terns become weaker, the histograms at two ends get
larger, and eventually the histograms display strong
U-shape patterns similar to the DW and SQA cases.
When the number of sweeps is fixed to be 150,000,
as the temperature increases, the U-shape patterns get
weaker, finally fade away and turn into monotone pat-
terns. We illustrated in Figure 5(c)–(d) the scatter plots
of DW against SSSV data and of SQA against SSSV
data displayed in Figure 4(c)–(d), and computed their
correlations to be 0.86 and 0.94, respectively. The sim-
ilar behaviors of SQA and SSSV may be explained by
their extremely high correlation.
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FIG. 10. Histogram plots of ground state success probability data for SSSV with 150,000 sweeps and different temperatures.

4. STATISTICAL INFERENCE FOR GROUND STATE
SUCCESS PROBABILITY DATA

Our motivation and goal are to develop statistical
methodologies to analyze annealing data described in
Section 3. First, we introduce notation and state sta-
tistical problems. Suppose that we have selected n in-
stances for the Ising model, and for a given instance,
we run each of the DW, SQA, SSSV and SA algo-
rithms to find the ground states with the same parame-
ter set-up repeatedly for m times, and their frequencies
of successfully finding the ground states are obtained
for the instance. For the r th instance, r = 1, . . . , n, de-
note by p̂0,m,r , p̂1,m,r , p̂2,m,r and p̂3,m,r the ground
state success frequencies among m repeated runs for
DW, SA, SQA and SSSV, respectively, and also denote
by p0,∞,r , p1,∞,r , p2,∞,r and p3,∞,r the true proba-
bility of successfully finding the ground states by the
DW, SA, SQA and SSSV algorithms, respectively. The
true ground state success probabilities may be viewed
as the frequency limits of running the algorithms an in-
finite number of times. With ground state success prob-

ability data, we may develop statistical tests to detect if
there is any difference between two methods with re-
spect to probability distributions and their patterns over
the instances.

4.1 Statistical Tests of Ground State Success
Probability

4.1.1 Methodologies and theory. For any two an-
nealing methods, we may test whether they yield the
same ground state success probabilities for each in-
stance or all instances. In particular, we are interested
in testing the equality of ground state success proba-
bilities between DW and one of the MCMC based an-
nealing methods. First, consider instance based mul-
tiple tests. For the r th instance define null hypothesis
H0 : pk,∞,r = p
,∞,r against alternative Ha : pk,∞,r �=
p
,∞,r , where k �= 
 and k, 
 = 0,1,2,3. It is easy
to see that mp̂k,m,r follows a binomial distribution
Bin(m,pk,∞,r ). Applying the two sample binomial
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proportion test, we define a test statistic

Trm = m(p̂k,m,r − p̂
,m,r )
2

p̂k,m,r (1 − p̂k,m,r ) + p̂
,m,r (1 − p̂
,m,r )
.(4.1)

For each r , when m is large, the null distribution of Trm

can be approximated by a χ2 distribution with one de-
gree of freedom. We may use the variance stabilization
transformation arcsin to transform the frequency data
and define

T0rm = 2m
[
arcsin(

√
p̂k,m,r )

(4.2)
− arcsin(

√
p̂
,m,r )

]2
.

Again for each r , for large m the null distribution of
T0rm can be approximated by a χ2 distribution with
one degree of freedom. Since there are n hypotheses,
for large n we need the following uniform convergence
over r = 1, . . . , n to provide asymptotic justifications
for carrying out the multiple tests.

THEOREM 1. Assume that pk,∞,r , k = 0,1,2,3,
r = 1, . . . , n, are bounded away from 0 and 1. Then
given k �= 
, as m,n → ∞,

sup
1≤r≤n

sup
−∞<x<∞

∣∣�rm(x) − �(x)
∣∣ → 0,

sup
1≤r≤n

sup
−∞<x<∞

∣∣�0rm(x) − �(x)
∣∣ → 0,

where � is the distribution function of χ2
1 , �rm and

�0rm are the distribution functions of Trm and T0rm un-
der the null hypotheses H0 : pk,∞,r = p
,∞,r , respec-
tively.

Theorem 1 provides asymptotic justifications for
uniform approximations of the p-values for all n

hypotheses by their corresponding large sample p-
values. For testing H0 : pk,∞,r = p
,∞,r against Ha :
pk,∞,r �= p
,∞,r , the p-values for the tests based
on Trm and T0rm are equal to 1 − �rm(|Trm|) and
1 − �0rm(|T0rm|), respectively. By Theorem 1, we
can use χ2

1 distribution to approximate the p-values
by 1 − �(|Trm|) and 1 − �(|T0rm|) uniformly over
r = 1, . . . , n. The obtained p-values can be used to
carry out the FDR procedure in the multiple hypothe-
sis testing.

Now we consider the goodness-of-fit test for all
instances. For testing null hypothesis H0 : pk,∞,r =
p
,∞,r for all instances r = 1, . . . , n against alterna-
tive Ha : pk,∞,r �= p
,∞,r for some r , where k �= 
 and
k, 
 = 0,1,2,3, we define test statistics based on Trm

and T0rm as follows:

Umn =
n∑

r=1

Trm − 1√
2n

= (2n)−1/2

(4.3)

·
{

n∑
r=1

(
m(p̂k,m,r − p̂
,m,r )

2)
/
(
p̂k,m,r (1

− p̂k,m,r ) + p̂
,m,r (1 − p̂
,m,r )
) − n

}
,

U0mn =
n∑

r=1

T0rm − 1√
2n

= (2n)−1/2

{
2m

n∑
r=1

[
arcsin(

√
p̂k,m,r )(4.4)

− arcsin(
√

p̂
,m,r )
]2 − n

}
,

where k and 
 denote any two of the four methods. Al-
though the null distributions of Trm and T0rm can be
approximated by χ2

1 with an error of order m−1/2, the
naive calculations immediately show that the null dis-
tribution of Umn may be approximated by a standard
normal distribution with an error of order (n/m)1/2,
which renders a difficulty in justifying applications of
the large sample tests to the D-Wave data with m =
n = 1000. Delicate asymptotic analysis reveals that the
normal approximation actually has an error order of
n1/2/m, which provides asymptotic justifications for
the D-Wave testing problem. The result is given in the
following theorem.

THEOREM 2. Assume that pk,∞,r , k = 0,1,2,3,
r = 1, . . . , n, are bounded away from 0 and 1, and
as n,m → ∞,

√
n/m → 0. Then given k �= 
, under

the null hypothesis that pk,∞,r = p
,∞,r for 1 ≤ r ≤ n,
Umn and U0mn converge in distribution to a standard
normal distribution as n,m → ∞.

For large sample by Theorem 2, we may approxi-
mate the p-values of the goodness-of-fit tests based on
Umn and U0mn by 1 − �(Umn) and 1 − �(U0mn), re-
spectively, where � is the standard normal distribution
function.

4.1.2 Simulations. Our statistical tests are based on
large sample theory where the null limiting distribu-
tions require the numbers of runs and/or instances to
go to infinity. We need to assess how good are the
approximations of the finite sample null distributions
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by the null limiting distributions for the experimen-
tal data with m = 1000 runs and n = 1000 instances
described in Section 3. A statistical simulation study
was conducted to carry out the assessment of the fi-
nite sample performances of the approximations. First,
we need to set some plausible true success probabil-
ity scenarios for the simulation study. We explored
the success probability scenarios by taking the com-
mon true success probability for the two methods un-
der consideration to be the success frequency obtained
from each of DW, SA, SQA and SSSV and displayed
in Figure 4. Specifically, we took the true common
success probability as the ground state success fre-
quencies of DW, SA with 10,000 sweeps, SQA with
T = 0.1 and 10,000 sweeps and SSSV with T = 0.1
and 150,000 sweeps. For each of the four scenarios,
denote by pr , r = 1, . . . ,1000, the true common suc-
cess probabilities for the 1000 instances. We simulated
1000p̂1r and 1000p̂2r from the binomial distribution
Bin(1000,pr), r = 1, . . . ,1000, and used (p̂1r , p̂2r ) to
substitute (p̂k,m,r , p̂
,m,r ) in (4.1)–(4.4) and evaluate
a value set for (Trm,T0rm,Umn,U0mn). We repeated
the procedure 500 times to obtain 500 value sets for
(Trm,T0rm,Umn,U0mn), and used them to compute the
empirical distribution functions of Trm, T0rm, Umn and
U0mn. We compared the empirical distribution func-
tions of Trm and T0rm with the χ2

1 distribution func-
tion and the empirical distribution functions of Umn

and U0mn with the standard normal distribution func-
tion.

Figures 11–12 plot the null empirical distribution
functions of Trm, T0rm, Umn and U0mn and their cor-
responding null limiting distribution functions for the
four true success probability scenarios. The simula-
tions show that for m = 1000 runs and n = 1000 in-
stances, the empirical distribution functions of Trm,
T0rm, Umn and U0mn under the null hypotheses are well
approximated by their corresponding null limiting dis-
tributions under the four true success probability sce-
narios considered, except for the cases of Umn under
the SQA and SSSV success probability scenarios. The
approximations for T0rm and U0mn are much better for
SQA and SSSV and slightly worse for DW and SA
than those for Trm and Umn. The better distribution ap-
proximations for T0rm and U0mn in the case SQA and
SSSV may be partly due to that the variance stabiliza-
tion transformation is more stable than normalization
especially for hard and easy instances with small or
large success probabilities. The good news is that for
the four success probability scenarios, there is at least
one of test statistics whose null distributions can be
well approximated by their limiting null distributions.

4.1.3 Applications. As described in Section 3, we
have explored the MCMC annealing methods and gen-
erated data with various sweeps and different tempera-
tures. This section applies the statistical methodologies
developed in Section 4.1.1 to these data. As in Boixo
et al. (2014a, 2014b) and Shin et al. (2014), we have
selected the MCMC annealing data displayed in Fig-
ures 4 and 5 to match the overall patterns of the DW
data. Below we present statistical analysis regarding
fitting MCMC based annealing models to the DW data.

We applied the tests based on Trm, T0rm, Umn and
U0mn in Section 4.1.1 to ground state success proba-
bility data displayed in Figures 4–5 for testing whether
the DW device yields the same success probability as
any of SA, SQA and SSSV. For the multiple tests based
on Trm and T0rm, we computed the p-values corre-
sponding to the 1000 instances for each pair of the an-
nealing methods. Figure 13(a)–(c) plots the 1000 p-
values of the T0rm test against the DW ground state
success frequencies for testing DW against one of SA,
SQA and SSSV, with Figure 13(d) for the case of SQA
against SSSV. The plots show many p-values are very
close to zero. Using the FDR procedure (Benjamini
and Hochberg, 1995 and Benjamini, 2010), we found
that the q-values are essentially zero for all six pairs
of the four annealing methods. The results indicate
that there is statistical evidence to suggest that the DW
data are not compatible with data generated from any
of the MCMC based annealing procedures. In fact,
the ground state success probability data provide very
strong statistical evidence to indicate significant pair-
wise differences in the instance distributions among the
four annealing data displayed in Figure 4.

For the goodness-of-fit tests based on Umn and U0mn,
again we found that the p-values are essentially zero
for the six pairs of the four annealing methods, and the
testing results provide statistical evidence to indicate
significant pairwise differences in the instance distribu-
tions among the four annealing data displayed in Fig-
ure 4. In particular, they suggest that neither SQA nor
SSSV data in Figure 4 have the same distribution as the
DW data. The conclusions are not in agreement with
the implications of the findings in Boixo et al. (2014a,
2014b) and Shin et al. (2014) based on the correlation
and histogram pattern results. As the high correlations
of DW and SQA or SSSV suggest only statistical as-
sociation among the data generated from the annealing
models, they do not imply they yield the same success
probability. In fact, subsequent investigations were car-
ried out to distinguish SQA and SSSV from the DW de-
vice through much more complicated physical experi-
mental studies on isolated and clustered ground states
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FIG. 11. Plots of typical null empirical distribution functions (solid line) and the null limiting chi-square distribution function (dash line)
for the multiple test statistics Trm and T0rm under four true success probability scenarios. The plot pairs (a, b), (c, d), (e, f) and (g, h)
correspond to (Trm,T0rm) with true success probabilities equal to the success frequencies of DW, SA, SQA and SSSV, respectively.

(Vinci et al., 2014) and on ground state degeneracy and
excited states (Albash et al., 2014). However, our anal-
ysis shows that through proper statistical analysis of
data on the probability of successfully finding ground
states we can distinguish SQA and SSSV from the D-
Wave device, rather than supporting the agreement be-
tween DW and SQA or SSSV. In fact, our test results
provide statistical evidence to indicate that SSSV and
SQA do not yield the same ground state success proba-
bility over all instances, in spite of extremely high cor-
relation between the SQA and SSSV data.

4.2 Shape Pattern Analysis for Ground State
Success Probability

4.2.1 Statistical tests. From the histogram plots in
Figure 4 for the ground state success probability data,

we have observed some shape patterns. For example,
there are U-shape histogram patterns in the DW, SQA
and SSSV data, and unimodal (including monotone)
histogram patterns in the SA data. Since these his-
tograms may be viewed as some “density estimators”
of distributions of the underlying ground state suc-
cess probabilities over instances, a unimodal distribu-
tion implies that the corresponding distribution func-
tion has a convex and then concave shape, while the
U-shape pattern is a upside down flip over of the uni-
modal pattern with a concave and then convex distri-
bution function. We applied the dip test (Hartigan and
Hartigan, 1985) to the ground state success probabil-
ity data for checking the distributional shape patterns.
Consider the null hypothesis that the underlying dis-
tribution of the success probability data is unimodal
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FIG. 12. Plots of the null empirical distribution functions (solid line) and the null limiting standard normal distribution function (dash
line) for the goodness-of-fit test statistics Umn and U0mn under four true success probability scenarios. The plot pairs (a, b), (c, d), (e, f) and
(g, h) correspond to (Umn,U0mn) with true success probabilities equal to the success frequencies of DW, SA, SQA and SSSV, respectively.

against alternative that the underlying distribution is
not unimodal. For a given success probability data set
of sample size n, denote by Fn its empirical distribu-
tion function. The dip test statistic D(Fn) for testing
unimodality is defined to be the maximum difference
between the empirical distribution function of the data
and the unimodal distribution function that minimizes
the maximum difference over all unimodal distribu-
tion functions. Order restricted statistical inferences
show that D(Fn) is equal to the maximum distance
between Fn(p) and the unimodal distribution function
estimator F̂n(p), which turns out to be the largest con-
vex minorant of Fn(p) on [0, p̂] and then least con-
cave majorant of Fn(p) on [p̂,1], where the turning
point p̂ is selected to minimize the maximum distance
sup0≤p≤1 |Fn(p) − F̂n(p)|, the largest convex mino-

rant of Fn on an interval is the largest convex func-
tion bounded from above by Fn on the interval, and
the least concave majorant of Fn on an interval is the
smallest concave function bounded from below by Fn

on the interval (Robertson, Wright and Dykstra, 1988
and Wang, 1995).

When the underlying null distribution is the uniform
distribution on [0,1], which is the asymptotic least fa-
vorable unimodal distribution,

√
nD(Fn) converges in

distribution to D(W) as n → ∞, where W is a standard
Brownian bridge on [0,1], and D(W) is the maximum
difference between W and the convex and then concave
function on [0,1] that minimizes the maximum differ-
ence over all such convex-concave functions on [0,1]
(Hartigan and Hartigan, 1985). For testing unimodality
for each of the DW, SA, SQA and SSSV data displayed
in Figures 4 and 5, we computed its dip test statistic
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FIG. 13. The plots of p-values against DW success probability for testing DW vs SA, SQA and SSSV in (a)–(c), respectively, along with the
plot of p-values against SSSV success probability for testing SSSV vs. SQA in (d).

D(Fn). We numerically evaluated the limiting distribu-
tion of D(W) and found the p-values to be 0.006 for
DW, 0.998 for SA and 0.000 for both SQA and SSSV.
The test results provide statistical evidence to confirm
the unimodal histogram pattern exhibited only in the
SA data.

Now we consider testing for the U-shape pattern,
that is, the null hypothesis is that the underlying dis-
tribution of the success probability data has a U-shape
pattern against the alternative that the underlying dis-
tribution does not exhibit a U-shape pattern. Although
the dip test was designed for testing unimodality, since
the U-shape pattern is a upside-down flip-over of the
unimodal pattern, we define the dip test statistic D0 to
be the maximum difference between the empirical dis-
tribution function and the U-shape distribution func-
tion that minimizes the maximum difference over all
U-shape distribution functions. The results for the U-
shape case are essentially the same as in the unimodal
case except for switching between convexity and con-
cavity and between minorant and majorant.

THEOREM 3. Given the empirical distribution
function Fn of a success probability data set, the dip

test statistic D0(Fn) is equal to the maximum distance
between the empirical distribution function Fn and
the U-shape distribution function estimator F̃n, which
is equal to the least concave majorant and then the
largest convex minorant of Fn with the turning point
chosen to minimize the maximum distance between Fn

and F̃n; when the underlying distribution is the uniform
distribution on [0,1], then as n → ∞,

√
nD0(Fn) con-

verges in distribution to the same limiting distribution
as in the unimodal case.

For each of the DW, SQA and SSSV data displayed
in Figures 4 and 5, we evaluated the dip test statis-
tics D0(Fn) and computed the p-values to be 0.000 for
DW, 0.996 for SQA and 0.322 for SSSV. The test re-
sults indicate strong statistical evidence to support the
U-shape pattern for SQA and SSSV but not for DW. We
further explored the same ground state success proba-
bility data displayed in Figure 4 and checked their his-
tograms by varying the numbers of bins. Figure 14 fea-
tures histogram plots for the data with a larger number
of bins than that used in Figure 4. The DW histogram
plotted in Figure 14 seems to reveal a possible mode
near 0.92 and indicate that the DW distribution may
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FIG. 14. Histogram plots of the same ground state success probability data as in Figure 4 for a larger number of bins than that used in
Figure 4. Again plots (a)–(d) are for DW, SA, SQA and SSSV, respectively.

be bimodal instead of a U-shape pattern. On the other
hand, histogram plots for the SQA and SSSV data with
different numbers of bins all point to the U-shape pat-
tern.

4.2.2 Exploratory shape pattern analysis by regres-
sion. Quantum mechanics indicates that for the Ising
model, the ground state success probability may relate
to the ground states, the first excited states and the en-
ergy gap between the two types of states, where with
the ground states corresponding to the smallest energy
value, the first excited states correspond to the second
smallest energy value. For the MCMC annealing meth-
ods, for each instance we repeatedly ran m = 1000
times to compute ground state success frequency. Of
the m runs, some reached the ground states, and others
did not. For those runs that did not reach any ground
states, we used their minimal energy and the associated
configurations as the proxies for the second smallest
energy and the first excited states, respectively. Using
the proxies, we defined the energy gap as the difference
between the proxy energy of the first excited states and
the energy of the ground states and the Hamming dis-

tance between the two types of states as the minimum
of the Hamming distances between all pairs of con-
figurations with one being a ground state and one be-
ing a proxy of the first excited states, where the Ham-
ming distance between two configurations is equal to
the number of different spins between their configura-
tions.

Figure 15 displays scatter plots of ground state suc-
cess frequency versus energy gap or Hamming distance
for SA, SQA and SSSV. The scatter plots indicate that
while SA, SQA and SSSV all have similar positive
associations between ground state success probability
and energy gap, they exhibit different patterns in the
scatter plots of success probability versus Hamming
distance. For SQA and SSSV, as Hamming distance in-
creases, the ground state success probability data tend
to cluster around zero and one, but the SA scatter plot
does not exhibit such a pattern. To further explore the
bi-cluster tendency of ground state success probabil-
ity data associated with Hamming distance, we divided
the 1000 ground state success probability data into two
subsets according to whether the Hamming distances
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FIG. 15. Plots of ground state success probability data against energy gap and Hamming distance for SA, SQA and SSSV.

for the corresponding instances exceed 5 or not, and
illustrated in Figure 16 the histogram plots for the sub-
set data. The figure shows that while SA histograms
display a consistent monotone tendency regardless of
the Hamming distance, both SQA and SSSV exhibit a

strong U-shape pattern for the subset data with Ham-
ming distance at least 5 and a clear monotone pattern
for the subset data with Hamming distance less than 5.
This reveals that the U-shape pattern in the ground state
success probability data of SQA and SSSV may be
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FIG. 16. Histograms of ground state success probability data of SA, SQA and SSSV classified according to whether Hamming distance
exceeds 5 or not.

largely due to the instances with large Hamming dis-
tances. The findings point to the direction for further
exploring the bimodal phenomenon displayed in the
ground state success probability data from D-Wave de-
vices as well as MCMC based annealing methods.

We may fit the data to a logistic regression model.
For method k and instance r , we obtained ground
state success frequency p̂k,m,r , energy gap �k,m,r

and the Hamming distance Dk,m,r . Since mp̂k,m,r

are independent and follow Bin(m,pk,∞,r ), treating
(�k,m,r ,Dk,m,r) as covariates and p̂k,m,r as a depen-
dent variable, we fit the data to a logistic regression
model with link function

log
(

pk,∞,r

1 − pk,∞,r

)
= β0 + β1�k,m,r + β2Dk,m,r ,

where (β0, β1, β2) are model parameters. We estimated
the model parameters (β0, β1, β2) by the standard max-
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TABLE 1
Parameter estimates with standard errors for the logistic

regression model

̂β0 se
̂β0

̂β1 se
̂β1

̂β2 se
̂β2

SA 0.340 0.0135 0.410 0.0069 −0.056 0.0006
SQA −0.070 0.0053 0.209 0.0024 −0.006 0.0003
SSSV 0.161 0.0048 0.169 0.0021 −0.012 0.0002

imum likelihood estimation for the generalized linear
model and reported the results in Table 1.

For each annealing method, we conducted statisti-
cal tests to check whether covariates �k,m,r and Dk,m,r

have any significant effects on the ground state success
probability pk,∞,r by considering hypotheses that ei-
ther one of β1 and β2 or both are equal to zero. For SA,
SQA and SSSV, all the tests resulted in essentially zero
p-values, and both energy gap and Hamming distance
are highly significant. Again the obtained distinct mod-
els for SA, SQA and SSSV point out that they behave
differently.

5. CONCLUDING REMARKS

This paper reviews quantum annealing and its imple-
mentations by D-Wave devices and by MCMC based
annealing methods. We describe computing experi-
ments by D-Wave devices and carry out simulation
experiments by MCMC based annealing algorithms
on classical computers to generate ground state suc-
cess probability data and compare quantum annealing
with classical annealing. Using the experiment data,
we illustrate the consistence or inconsistence claims
in the quantum literature regarding the studies of the
D-Wave devices along with MCMC based annealing
methods. We propose statistical methodologies to ana-
lyze computing experimental data from a D-Wave de-
vice and simulated data from SA, SQA, and SSSV
annealing. We develop asymptotic theory for the pro-
posed methodologies and conduct simulation studies
to check their finite sample performances. Our hy-
pothesis test results show bimodal histogram patterns
displayed in input–output data from the D-Wave de-
vice, U-shape histogram patterns shown in the data
from SQA and SSSV methods and unimodal (includ-
ing monotone) histogram patterns exhibited in the data
from SA method. Our statistical analysis discovers that
the U-shape histogram patterns may be possibly due to
the large Hamming distance between the ground states
and the excited states for some instances and that the

sampling tends to be around ground states and high en-
ergy states. Our test results supply statistical evidence
to imply that none of SA, SQA and SSSV models fit to
input–output data from the D-Wave device.

Quantum computing is the development of computer
technology based on the principles of quantum physics,
and this highly interdisciplinary field is of great current
interest in frontier sciences. This is an exciting time,
and we stand at the edge of quantum era where many
quantum technologies are being developed, and quan-
tum devices are being built with capabilities exceeding
classical computer based devices. Statistics and quan-
tum computing are a two-way street. On the one hand,
quantum science may yield quantum computing de-
vices to revolutionize statistical computing and infer-
ences, and on the other hand, quantum theory is of
stochastic nature, and quantum procedures and quan-
tum devices are based on random phenomena, there-
fore, frontier research and technological developments
of quantum computing encounter complex data and
face many statistical challenges.

This paper may serve as a stepping stone to the in-
terface between quantum computing and statistics. It
opens new research directions by raising many statis-
tical issues and lots of open problems for the future
study. We may study statistical properties of quan-
tum annealing and investigate the probability lower
bound for successfully solving combinatorial opti-
mization problems by quantum annealing. We may
study MCMC based annealing methods such as the
statistical properties of SQA and SSSV approaches.
For example, in comparison with SA, SQA is very
slow, and SSSV requires an extremely large number
of sweeps to get bimodal histogram patterns for the
ground state success probability data. We need to in-
vestigate their convergence properties and study the
relationships between sweeps and patterns for these
MCMC based annealing methods. We may develop
statistical methods to analyze computing experimen-
tal data from D-Wave devices and simulated data from
SA, SQA and SSSV annealing. We need to study bi-
modal histogram patterns displayed in input–output
data from the D-Wave devices, U-shape histogram pat-
terns shown in the data from SQA and SSSV meth-
ods, and unimodal (including monotone) histogram
patterns exhibited in the data from SA and uncover
the sources for these patterns. It is very interesting to
find out what cause the bimodal (or U-shape) vs. uni-
modal (or monotone) patterns in ground state success
probability data for these methods. Moreover, quantum
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annealing and D-Wave devices solve combinatorial op-
timization problems by performing some sort of Monte
Carlo sampling, but we know little about their sam-
pling properties and their usefulness for certain com-
putational tasks in particular for machine learning and
other statistical computing problems. It is challenging
to study random errors in the qubits of D-Wave devices
and their computational impact on the ground state
success probability. It is critical to investigate quan-
tum states of D-Wave devices by quantum tomography
(Cai et al., 2016). It is extremely important to find ap-
propriate models for quantum devices such as D-Wave
devices and use experimental data to test whether they
work according to the claims and/or specifications.

APPENDIX: PROOFS

Denote by C’s generic constants whose values are
free of (m,n,M,d) and may change from appearance
to appearance.

A.1 Proof of Theorem 1

Because of similarity, we give the proof argument
only for Trm. Define

Ťrm = m(p̂k,m,r − p̂
,m,r )
2

pk,∞,r (1 − pk,∞,r ) + p
,∞,r (1 − p
,∞,r )
.

For each r , as m → ∞, Ťrm → χ2
1 , where χ2

1 is a chi-
square distribution with one degree of freedom. Since
for x ≥ 0,

P(Ťrm ≤ x)

= P

(
− x1/2

≤ m1/2(p̂k,m,r − p̂
,m,r )

[pk,∞,r (1 − pk,∞,r ) + p
,∞,r (1 − p
,∞,r )]1/2

≤ x1/2
)
,

applying the Berry–Esseen theorem we obtain

sup
−∞<x<∞

∣∣P(Ťrm ≤ x) − P
(
χ2

1 ≤ x
)∣∣ ≤ Cm−1/2.

As the right-hand side of above inequality is free of r ,
we have

sup
1≤r≤n

sup
−∞<x<∞

∣∣P(Ťrm ≤ x) − P
(
χ2

1 ≤ x
)∣∣

(A.1)
≤ Cm−1/2.

The Bernstein inequality shows that there exists a con-
stant C free of (r, n,m) such that for any x ≥ 0 and
k = 0,1,2,3,

(A.2) P
(|p̂k,m,r − pk,∞,r | ≥ x

) ≤ e−Cmx2
.

Let

wrm = p̂k,m,r (1 − p̂k,m,r ) + p̂
,m,r (1 − p̂
,m,r )

pk,∞,r (1 − pk,∞,r ) + p
,∞,r (1 − pl,∞,r )
.

Then

P
(|wrm − 1| ≥ a

)
≤ P

(∣∣(p̂k,m,r − pk,m,r)(1 + p̂k,m,r + pk,∞,r )
∣∣

≥ pk,∞,r (1 − pk,∞,r )a
)

+ P
(∣∣(p̂
,m,r − p
,m,r )(1 + p̂
,m,r + p
,∞,r )

∣∣
≥ pk,∞,r (1 − pk,∞,r )a

)
(A.3)

≤ P
(|p̂k,m,r − pk,m,r | ≥ pk,∞,r (1 − pk,∞,r )a/3

)
+ P

(|p̂
,m,r − p
,m,r |
≥ pk,∞,r (1 − pk,∞,r )a/3

)
≤ e−C0ma2

,

where the last inequality is due to (A.2). Take a =√
2/C0m

−1/2 log1/2 m, where C0 is taken to be the
same constant as in (A.3) so that e−C0ma2 = m−2. Then
for 1 ≤ r ≤ n and any x ≥ 0,

P(Trm ≤ x)

≤ P
(
Trm ≤ x, |wrm − 1| < a

) + P
(|wrm − 1| ≥ a

)
≤ P

(
Ťrm ≤ (1 + a)x

) + P
(|wrm − 1| ≥ a

)
,

P (Trm ≤ x)

≥ P(Trm ≤ x, |wrm − 1| < a) − P(|wrm − 1| ≥ a)

≥ P
(
Ťrm ≤ (1 − a)x

) − P(|wrm − 1| ≥ a),

and∣∣P(Trm ≤ x) − P(Ťrm ≤ x)
∣∣

≤ P
(
Ťrm ≤ (1 + a)x

) − P
(
Ťrm ≤ (1 − a)x

)
+ 2P

(|wrm − 1| ≥ a
)

(A.4)
≤ P

(
χ2

1 ≤ (1 + a)x
) − P

(
χ2

1 ≤ (1 − a)x
)

+ 2Cm−1/2 + 2P
(|wrm − 1| ≥ a

)
≤ C1

√
2/C0m

−1/2 log1/2 m + 2Cm−1/2 + 2m−2,

where the second to last inequality is from (A.1), and
the last inequality is due to (A.3), a = √

2/C0m
−1/2 ·
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log1/2 m, and 0 ≤ P(χ2
1 ≤ (1 + a)x) − P(χ2

1 ≤ (1 −
a)x) ≤ C1a for all x ≥ 0. Finally, the theorem is a con-
sequence of (A.1) and (A.4).

REMARK 1. If m−1/2 logn → 0 as m,n → ∞,
then we have a stronger uniform convergence result:
sup1≤r≤n |Trm − Ťrm| converges in probability to zero
as m,n → ∞. Indeed, take x = √

2/Cm−1/2 log1/2 n

in (A.2) where C is the same constant as in (A.2) so
that e−Cmx2 = n−2, and

P
(

sup
1≤r≤n

|p̂k,m,r − pk,∞,r | ≥
√

2/Cm−1/2 log1/2 n
)

≤ 1 − (
1 − n−2)n ∼ n−1,

which implies that the difference between the denomi-
nators of Trm and Ťrm converges in probability to zero
uniformly over 1 ≤ r ≤ n, and hence the uniform con-
vergence result.

A.2 Proof of Theorem 2

Given a method and an instance r , the simulation
experiments are independently conducted for m times,
thus p̂k,m,1, . . . , p̂k,m,n, k = 0,1,2,3, are independent,
and mp̂k,m,r ∼ Bin(m,pk,∞,r ). Let

T = m

n∑
r=1

(p̂k,m,r − p̂
,m,r )
2

pk,∞,r (1 − pk,∞,r ) + p
,m,r (1 − p
,∞,r )
,

k �= 
, k, 
 = 0,1,2,3.

First, we show that as m,n → ∞, (T − n)/
√

2n con-
verges in distribution to the standard normal distribu-
tion. We establish it by applying central limit theorem
to T and checking Liapounov’ condition.

mE
{[

(p̂k,m,r − pk,∞,r ) − (p̂
,m,r − p
,∞,r )
]2}

= mE
{
(p̂k,m,r − pk,∞,r )

2}
+ mE

{
(p̂
,m,r − p
,∞,r )

2}
= pk,∞,r (1 − pk,∞,r ) + p
,∞,r (1 − p
,∞,r ),

E

[
m[(p̂k,m,r − pk,∞,r ) − (p̂
,m,r − p
,∞,r )]2

pk,∞,r (1 − pk,∞,r ) + p
,∞,r (1 − p
,∞,r )

]
(A.5)

= 1,

E

[∣∣∣∣m[(p̂k,m,r − pk,∞,r ) − (p̂
,m,r − p
,∞,r )]2

pk,∞,r (1 − pk,∞,r ) + p
,∞,r (1 − p
,∞,r )

∣∣∣∣2]
(A.6)

= m2E{[(p̂k,m,r − pk,∞,r ) − (p̂
,m,r − p
,∞,r )]4}
[pk,∞,r (1 − pk,∞,r ) + p
,∞,r (1 − p
,∞,r )]2

= 3 + O
(
m−1)

,

where the last equality is due to the facts that

m2E
[
(p̂k,m,r − pk,∞,r )

4]
= 1

m2 mpk,∞,r (1 − pk,∞,r )

· [
3pk,∞,r (1 − pk,∞,r )(m − 2) + 1

]
= 3

[
pk,∞,r (1 − pk,∞,r )

]2 + O
(
m−1)

,

m2E
[
(p̂
,m,r − p
,∞,r )

4]
= 3

[
p
,∞,r (1 − p
,∞,r )

]2 + O
(
m−1)

,

mE
[
(p̂k,m,r − pk,∞,r )

2] = pk,∞,r (1 − pk,∞,r ),

mE
[
(p̂
,m,r − p
,∞,r )

2] = p
,∞,r (1 − p
,∞,r ),

and

m2E
{[

(p̂k,m,r − pk,∞,r ) + (p̂
,m,r − p
,∞,r )
]4}

= m2E
[
(p̂k,m,r − pk,∞,r )

4]
+ m2E

[
(p̂k,m,r − pk,∞,r )

4]
+ 6m2E

[
(p̂k,m,r − pk,∞,r )

2]
· E[

(p̂k,m,r − pk,∞,r )
2]

= 3
[
pk,∞,r (1 − pk,∞,r ) + p
,∞,r (1 − p
,∞,r )

]2

+ O
(
m−1)

.

(A.5) and (A.6) together imply

Var
[
m[(p̂k,m,r − pk,∞,r ) − (p̂
,m,r − p
,∞,r )]2

pk,∞,r (1 − pk,∞,r ) + p
,∞,r (1 − p
,∞,r )

]
= 2 + O(1/m),(A.7)

Var(T ) = 2n + O(n/m).

On the other hand,

E

[∣∣∣∣m[(p̂k,m,r − pk,∞,r ) − (p̂
,m,r − p
,∞,r )]2

pk,∞,r (1 − pk,∞,r ) + p
,∞,r (1 − p
,∞,r )

∣∣∣∣3]
≤ (

480
[
p3

k,∞,r (1 − pk,∞,r )
3

+ p3

,∞,r (1 − p
,∞,r )

3] + O(1/m)
)

(A.8)

/
([

pk,∞,r (1 − pk,∞,r ) + p
,∞,r (1 − p
,∞,r )
]3)

≤ 480 + O(1/m),

where the first inequality is due to the facts that

m3E
{[

(p̂k,m,r − pk,∞,r ) − (p̂
,m,r − p
,∞,r )
]6}

≤ 32m3E
[
(p̂k,m,r − pk,∞,r )

6

+ (p̂
,m,r − p
,∞,r )
6]

,
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m3E
[
(p̂k,m,r − pk,∞,r )

6]
= 15p3

k,∞,r (1 − pk,∞,r )
3

+ 5m−1p2
k,∞,r (1 − pk,∞,r )

2(
5 − 26pk,∞,r

+ 26p2
k,∞,r

) + m−2pk,∞,r

(
1 − 31pk,∞,r

+ 180p2
k,∞,r − 390p3

k,∞,r + 360p4
k,∞,r

− 160p5
k,∞,r

)
= 15p3

k,∞,r (1 − pk,∞,r )
3 + O(1/m),

m3E
[
(p̂
,m,r − p
,∞,r )

6]
= 15p3


,∞,r (1 − p
,∞,r )
3 + O(1/m).

From (A.7) and (A.8), we have

[
Var(T )

]−3/2

×
n∑

r=1

E
[∣∣(m[

(p̂k,m,r − pk,∞,r )

− (p̂
,m,r − p
,∞,r )
]2)

/
(
pk,∞,r (1 − pk,∞,r )

+ p
,∞,r (1 − p
,∞,r )
)∣∣3]

≤ 480n + O(n/m)

[2n + O(n/m)]3/2 = 70
√

2n−1/2[
1 + O(1/m)

]
,

and Liapounov’s condition is satisfied. Hence, (T −
n)/

√
2n converges in distribution to the standard nor-

mal distribution. Next, we show that Umn = (T −
n)/

√
2n + OP (

√
n/m).

Let G(u,v) = 1/[u(1 − u) + v(1 − v)], and denote
by Gu and Gv the partial derivatives of G with respect
to u and v, respectively.

m[(p̂k,m,r − pk,∞,r ) − (p̂
,m,r − p
,∞,r )]2

p̂k,∞,r (1 − p̂k,∞,r ) + p̂
,∞,r (1 − p̂
,∞,r )

− m[(p̂k,m,r − pk,∞,r ) − (p̂
,m,r − p
,∞,r )]2

pk,∞,r (1 − pk,∞,r ) + p
,∞,r (1 − p
,∞,r )

= m
[
(p̂k,m,r − pk,∞,r ) − (p̂
,m,r − p
,∞,r )

]2

· [
G(p̂k,m,r , p̂
,m,r ) − G(pk,∞,r , p
,∞,r )

]
,

G(p̂k,m,r , p̂
,m,r ) − G(pk,∞,r , p
,∞,r )

= Gu(pk,∞,r , p
,∞,r )(p̂k,m,r − pk,∞,r )

+ Gv(pk,∞,r , p
,∞,r )(p̂
,m,r − p
,∞,r )

+ OP

(
m−1)

.

Then
√

2nUmn + n − T

=
n∑

r=1

m[(p̂k,m,r − pk,∞,r ) − (p̂
,m,r − p
,∞,r )]2

p̂k,∞,r (1 − p̂k,∞,r ) + p̂
,∞,r (1 − p̂
,∞,r )

−
n∑

r=1

m[(p̂k,m,r − pk,∞,r ) − (p̂
,m,r − p
,∞,r )]2

pk,∞,r (1 − pk,∞,r ) + p
,∞,r (1 − p
,∞,r )

= m

n∑
r=1

Gu(pk,∞,r , p
,∞,r )
[
(p̂k,m,r − pk,∞,r )

(A.9)
− (p̂
,m,r − p
,∞,r )

]2
(p̂k,m,r − pk,∞,r )

+ m

n∑
r=1

Gv(pk,∞,r , p
,∞,r )
[
(p̂k,m,r − pk,∞,r )

− (p̂
,m,r − p
,∞,r )
]2

(p̂
,m,r − p
,∞,r )]
+ OP

(
nm−1)

= A1 + A2 + OP

(
nm−1)

.

Direct calculations show

E
{
m

[
(p̂k,m,r − pk,∞,r ) − (p̂
,m,r − p
,∞,r )

]2

· (p̂k,m,r − pk,∞,r )
}

= mE
[
(p̂k,m,r − pk,∞,r )

3]
+ mE

[
(p̂
,m,r − p
,∞,r )

2(p̂k,m,r − pk,∞,r )
]

− 2mE
[
(p̂
,m,r − p
,∞,r )(p̂k,m,r − pk,∞,r )

2]
= mE

[
(p̂k,m,r − pk,∞,r )

3]
= m−1pk,∞,r (1 − pk,∞,r )(1 − 2pk,∞,r ),

and E(A1) = O(n/m). Also

E
{
m2[

(p̂k,m,r − pk,∞,r ) − (p̂
,m,r − p
,∞,r )
]4

· (p̂k,m,r − pk,∞,r )
2}

= m2E
[
(p̂k,m,r − pk,∞,r )

6]
− 4m2E

[
(p̂k,m,r − pk,∞,r )

5]
· E[

(p̂
,m,r − p
,∞,r )
]

+ 6m2E
[
(p̂k,m,r − pk,∞,r )

4]
· E[

(p̂
,m,r − p
,∞,r )
2]

− 4m2E
[
(p̂k,m,r − pk,∞,r )

3]
· E[

(p̂
,m,r − p
,∞,r )
3]

+ m2E
[
(p̂k,m,r − pk,∞,r )

2]
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· E[
(p̂
,m,r − p
,∞,r )

4]
= O

(
m−1) + 0 + O

(
m−1) + O

(
m−2) + O

(
m−1)

= O
(
m−1)

,

and

Var(A1/
√

n)

= 1

n
Var(A1)

= 1

n

n∑
r=1

G2
u(pk,∞,r , p
,∞,r )Var

{
m

[
(p̂k,m,r

− pk,∞,r ) − (p̂
,m,r − p
,∞,r )
]2

· (p̂k,m,r − pk,∞,r )
}

≤ 1

n

n∑
r=1

G2
u(pk,∞,r , p
,∞,r )E

{
m2[

(p̂k,m,r

− pk,∞,r ) − (p̂
,m,r − p
,∞,r )
]4

· (p̂k,m,r − pk,∞,r )
2}

= O(1/m).

Applying Chebyshev’s inequality, we obtain

P
(∣∣A1/

√
n − E(A1)/

√
n
∣∣ > am−1/2)

≤ Var(A1/
√

n)

m−1a2 = mVar(A1/
√

n)

a2 ,

which can be arbitrarily small as a → ∞. Hence,

A1/
√

n = E(A1)/
√

n + OP

(
m−1/2)

= O
(
n1/2m−1) + OP

(
m−1/2)

.

Similarly, we can show

A2/
√

n = E(A2)/
√

n + OP

(
m−1/2)

= O
(
n1/2m−1) + OP

(
m−1/2)

.

With the orders of A1 and A2 from (A.9), we arrive at

Umn − (T − n)/
√

2n

= A1/
√

2n + A2/
√

2n + OP

(
n1/2m−1)

= OP

(
n1/2m−1 + m−1/2)

,

which together with n1/2m−1 → 0 implies that Umn

has the same limiting distribution as (T − n)/
√

2n.
Next, we will establish the limiting distribution for

U0mn. Again we need to show

(A.10) U0mn = T − n√
2n

+ OP

(
n1/2m−1 + m−1/2)

.

We have

arcsin(
√

p̂k,m,r ) − arcsin(
√

pk,∞,r )

= [
4pk,∞,r (1 − pk,∞,r )

]−1/2
(p̂k,m,r − pk,∞,r )

− 2−3(2pk,∞,r − 1)
[
pk,∞,r (1 − pk,∞,r )

]−3/2

· (p̂k,m,r − pk,∞,r )
2

+ OP

(
m−3/2)

,

2m
(
arcsin(

√
p̂k,m,r ) − arcsin(

√
pk,∞,r )

)2

= m(p̂k,m,r − pk,∞,r )
2

2pk,∞,r (1 − pk,∞,r )

− 2−3(2pk,∞,r − 1)
[
pk,∞,r (1 − pk,∞,r )

]−2

· m(p̂k,m,r − pk,∞,r )
3 + OP

(
m−1)

= m(p̂k,m,r − pk,∞,r )
2

2pk,∞,r (1 − pk,∞,r )
+ B1r + OP

(
m−1)

.

Similarly,

2m
(
arcsin(

√
p̂
,m,r ) − arcsin(

√
p
,∞,r )

)2

= m(p̂
,m,r − p
,∞,r )
2

2p
,∞,r (1 − p
,∞,r )

− 2−3(2p
,∞,r − 1)
[
p
,∞,r (1 − p
,∞,r )

]−2

· m(p̂
,m,r − p
,∞,r )
3 + OP

(
m−1)

= m(p̂
,m,r − p
,∞,r )
2

2p
,∞,r (1 − p
,∞,r )
+ B2r + OP

(
m−1)

,

and

4m
(
arcsin(

√
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√
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)
· (

arcsin(
√
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√

p
,∞,r )
)

= 4
[
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· [
4p
,∞,r (1 − p
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,∞,r )

− 4
[
4p
,∞,r (1 − p
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]−1/2

· 2−3(2pk,∞,r − 1)
[
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· m(p̂k,m,r − pk,∞,r )
2(p̂
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− 4
[
4pk,∞,r (1 − pk,∞,r )

]−1/22−3(2p
,∞,r − 1)

· [
p
,∞,r (1 − p
,∞,r )

]−3/2
m(p̂k,m,r − pk,∞,r )

· (p̂
,m,r − p
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+ OP

(
m−1)

= [
pk,∞,r (1 − pk,∞,r )p
,∞,r (1 − p
,∞,r )

]−1/2

· m(p̂k,m,r − pk,∞,r )(p̂
,m,r − p
,∞,r )

− B3r − B4r + OP

(
m−1)

.

Then

2m

n∑
r=1

[(
arcsin(

√
p̂k,m,r )

− arcsin(
√

pk,∞,r )
) − (

arcsin(
√

p̂
,m,r )

− arcsin(
√

p
,∞,r )
)]2

· m
n∑

r=1

[
(p̂k,m,r − pk,∞,r )

2

2pk,∞,r (1 − pk,∞,r )

+ (p̂
,m,r − p
,∞,r )
2

2p
,∞,r (1 − p
,∞,r )

− (p̂k,m,r − pk,∞,r )(p̂
,m,r − p
,∞,r )

[pk,∞,r (1 − pk,∞,r )p
,∞,r (1 − p
,∞,r )]1/2

]

+
n∑

r=1

(B1r + B2r − B3r − B4r ) + OP

(
nm−1)

= T +
n∑

r=1

(B1r + B2r − B3r − B4r ) + OP

(
nm−1)

,

U0rm = T − n√
2n

+ (2n)−1/2
n∑

r=1

(B1r + B2r − B3r − B4r )(A.11)

+ OP

(
n1/2m−1)

.

Note that

E
[
m(p̂k,m,r − pk,∞,r )

3] ∼ p(1 − p)(1 − 2p)m−1,

Var
[
m(p̂k,m,r − pk,∞,r )

3]
∼ {

15
[
p(1 − p)

]3 − [
p(1 − p)(1 − 2p)

]2}
m−1,

E
[
m(p̂k,m,r − pk,∞,r )

2(p̂
,m,r − p
,∞,r )
]

= mE
[
(p̂k,m,r − pk,∞,r )

2]
E

[
(p̂
,m,r − p
,∞,r )

]
= 0,

Var
[
m(p̂k,m,r − pk,∞,r )

2(p̂
,m,r − p
,∞,r )
]

= m2 Var
[
(p̂k,m,r − pk,∞,r )

2]
· Var

[
(p̂
,m,r − p
,∞,r )

]
∼ 2

[
pk,∞,r (1 − pk,∞,r )

]2
p
,∞,r (1 − p
,∞,r )m

−1.

We find

E

(
n−1/2

n∑
r=1

B1r

)
= n−1/2

n∑
r=1

E(B1r )

= O
(
n1/2m−1)

,

E

(
n−1/2

n∑
r=1

B3r

)
= n−1/2

n∑
r=1

E(B3r ) = 0,

Var

(
n−1/2

n∑
r=1

B1r

)
=

n∑
r=1

Var(B1r )

n
= O

(
m−1)

,

Var

(
n−1/2

n∑
r=1

B3r

)
=

n∑
r=1

Var(B3r )

n
= O

(
m−1)

.

An application of Chebyshev’s inequality leads to

n−1/2
n∑

r=1

B1r = OP

(
n1/2m−1 + m−1/2)

,

n−1/2
n∑

r=1

B3r = OP

(
n1/2m−1 + m−1/2)

.

Similarly, we can show

n−1/2
n∑

r=1

B2r = OP

(
n1/2m−1 + m−1/2)

,

n−1/2
n∑

r=1

B4r = OP

(
n1/2m−1 + m−1/2)

.

Substituting these results into (A.11) we prove (A.10).

A.3 Proof of Theorem 3

As a U-shape is decreasing and then increasing, a
upside down flip over of a unimodal shape, similar
to Hartigan and Hartigan (1985) using the order re-
stricted inference we can easily show that the U-shape
distribution function estimator F̃n is equal to the least
concave majorant and then the largest convex mino-
rant of Fn(x) with the turning point chosen to mini-
mize the maximum distance between Fn and all pos-
sible least concave majorant and then the largest con-
vex minorant; the dip test statistic D0(Fn) is equal to
the maximum distance between the empirical distribu-
tion function Fn(x) and F̃n; the uniform distribution
on [0,1] is the asymptotic least favorable U-shape dis-
tribution, and as n → ∞, under the uniform distribu-
tion,

√
nD0(Fn) converges in distribution to D0(W),

where W is a standard Brownian bridge on [0,1], and
D0(W) is the maximum difference between W and the
concave and then convex function on [0,1] that mini-
mizes the maximum difference over all such concave-
convex functions on [0,1]. To show D0(W) and D(W)
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have the same distribution, we note that Brownian
bridge W is symmetric about the horizontal axis with
W(0) = W(1) = 0, and −W is also a standard Brow-
nian bridge and has the same probabilistic behavior as
W , thus D0(W) has the same distribution as D0(−W).
On the other hand, the least concave majorant of W

and the largest convex minorant of W are the reflec-
tions about the horizontal axis of the largest convex
minorant of −W and the least concave majortant of
−W , respectively. Therefore, D(W) is identically dis-
tributed as D0(−W), which in turn has the same distri-
bution as D0(W).
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