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SPARSE LINEAR DISCRIMINANT ANALYSIS BY THRESHOLDING
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East China Normal University and University of Wisconsin

In many social, economical, biological and medical studies, one objec-
tive is to classify a subject into one of several classes based on a set of vari-
ables observed from the subject. Because the probability distribution of the
variables is usually unknown, the rule of classification is constructed using a
training sample. The well-known linear discriminant analysis (LDA) works
well for the situation where the number of variables used for classification is
much smaller than the training sample size. Because of the advance in tech-
nologies, modern statistical studies often face classification problems with
the number of variables much larger than the sample size, and the LDA may
perform poorly. We explore when and why the LDA has poor performance
and propose a sparse LDA that is asymptotically optimal under some sparsity
conditions on the unknown parameters. For illustration of application, we
discuss an example of classifying human cancer into two classes of leukemia
based on a set of 7,129 genes and a training sample of size 72. A simulation
is also conducted to check the performance of the proposed method.

1. Introduction. The objective of a classification problem is to classify a sub-
ject to one of several classes based on a p-dimensional vector x of characteristics
observed from the subject. In most applications, variability exists, and hence x is
random. If the distribution of x is known, then we can construct an optimal clas-
sification rule that has the smallest possible misclassification rate. However, the
distribution of x is usually unknown, and a classification rule has to be constructed
using a training sample. A statistical issue is how to use the training sample to
construct a classification rule that has a misclassification rate close to that of the
optimal rule.

In traditional applications, the dimension p of x is fixed while the training sam-
ple size n is large. Because of the advance in technologies, nowadays a much
larger amount of information can be collected, and the resulting x is of a high di-
mension. In many recent applications, p is much larger than the training sample
size, which is referred to as the large-p-small-n problem or ultra-high dimension
problem when p = O(enβ

) for some β ∈ (0,1). An example is a study with genetic

Received February 2010; revised September 2010.
1Supported in part by the NSF Grant SES-0705033.
2Supported in part by the NSF Grant DMS-10-05635.
MSC2010 subject classifications. Primary 62H30; secondary 62F12, 62G12.
Key words and phrases. Classification, high dimensionality, misclassification rate, normality, op-

timal classification rule, sparse estimates.

1241

http://www.imstat.org/aos/
http://dx.doi.org/10.1214/10-AOS870
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


1242 SHAO, WANG, DENG AND WANG

or microarray data. In our example presented in Section 5, for instance, a crucial
step for a successful chemotherapy treatment is to classify human cancer into two
classes of leukemia, acute myeloid leukemia and acute lymphoblastic leukemia,
based on p = 7,129 genes and a training sample of 72 patients. Other examples
include data from radiology, biomedical imaging, signal processing, climate and
finance. Although more information is better when the distribution of x is known,
a larger dimension p produces more uncertainty when the distribution of x is un-
known and, hence, results in a greater challenge for data analysis since the training
sample size n cannot increase as fast as p.

The well-known linear discriminant analysis (LDA) works well for fixed-p-
large-n situations and is asymptotically optimal in the sense that, when n increases
to infinity, its misclassification rate over that of the optimal rule converges to one.
In fact, we show in this paper that the LDA is still asymptotically optimal when
p diverges to infinity at a rate slower than

√
n. On the other hand, Bickel and

Levina (2004) showed that the LDA is asymptotically as bad as random guessing
when p > n; some similar results are also given in this paper. The main purpose
of this paper is to construct a sparse LDA and show it is asymptotically optimal
under some sparsity conditions on unknown parameters and some condition on
the divergence rate of p (e.g., n−1 logp → 0 as n → ∞). Our proposed sparse
LDA is based on the thresholding methodology, which was developed in wavelet
shrinkage for function estimation [Donoho and Johnstone (1994), Donoho et al.
(1995)] and covariance matrix estimation [Bickel and Levina (2008)]. There exist
a few other sparse LDA methods, for example, Guo, Hastie and Tibshirani (2007),
Clemmensen, Hastie and Ersbøll (2008) and Qiao, Zhou and Huang (2009). The
key differences between the existing methods and ours are the conditions on spar-
sity and the construction of sparse estimators of parameters. However, no asymp-
totic results were established in the existing papers.

For high-dimensional x in regression, there exist some variable selection meth-
ods [see a recent review by Fan and Lv (2010)]. For constructing a classification
rule using variable selection, we must identify not only components of x having
mean effects for classification, but also components of x having effects for clas-
sification through their correlations with other components [see, e.g., Kohavi and
John (1997), Zhang and Wang (2010)]. This may be a very difficult task when p is
much larger than n, such as p = 7,129 and n = 72 in the leukemia example in Sec-
tion 5. Ignoring the correlation, Fan and Fan (2008) proposed the features annealed
independence rule (FAIR), which first selects m components of x having mean ef-
fects for classification and then applies the naive Bayes rule (obtained by assuming
that components of x are independent) using the selected m components of x only.
Although no sparsity condition on the covariance matrix of x is required, the FAIR
is not asymptotically optimal because the correlation between components of x
is ignored. Our approach is not a variable selection approach, that is, we do not
try to identify a subset of components of x with a size smaller than n. We use
thresholding estimators of the mean effects as well as Bickel and Levina’s (2008)
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thresholding estimator of the covariance matrix of x, but we allow the number of
nonzero estimators (for the mean differences or covariances) to be much larger
than n to ensure the asymptotic optimality of the resulting classification rule.

The rest of this paper is organized as follows. In Section 2, after introducing
some notation and terminology, we establish a sufficient condition on the diver-
gence of p under which the LDA is still asymptotically close to the optimal rule.
We also show that, when p is large compared with n (p/n → ∞), the performance
of the LDA is not good even if we know the covariance matrix of x, which indi-
cates the need of sparse estimators for both the mean difference and covariance
matrix. Our main result is given in Section 3, along with some discussions about
various sparsity conditions and divergence rates of p for which the proposed sparse
LDA performs well asymptotically. Extensions of the main result are discussed in
Section 4. In Section 5, the proposed sparse LDA is illustrated in the example of
classifying human cancer into two classes of leukemia, along with some simula-
tion results for examining misclassification rates. All technical proofs are given in
Section 6.

2. The optimal rule and linear discriminant analysis. We focus on the clas-
sification problem with two classes. The general case with three or more classes is
discussed in Section 4. Let x be a p-dimensional normal random vector belonging
to class k if x ∼ Np(μk,�), k = 1,2, where μ1 �= μ2, and � is positive definite.
The misclassification rate of any classification rule is the average of the proba-
bilities of making two types of misclassification: classifying x to class 1 when
x ∼ Np(μ2,�) and classifying x to class 2 when x ∼ Np(μ1,�).

If μ1, μ2 and � are known, then the optimal classification rule, that is, the
rule with the smallest misclassification rate, classifies x to class 1 if and only if
δ′�−1(x − μ̄) ≥ 0, where μ̄ = (μ1 + μ2)/2, δ = μ1 − μ2, and a′ denotes the
transpose of the vector a. This rule is also the Bayes rule with equal prior proba-
bilities for two classes. Let ROPT denote the misclassification rate of the optimal
rule. Using the normal distribution, we can show that

ROPT = �(−�p/2), �p =
√

δ′�−1δ,(1)

where � is the standard normal distribution function. Although 0 < ROPT < 1/2,
ROPT → 0 if �p → ∞ as p → ∞ and ROPT → 1/2 if �p → 0. Since 1/2 is
the misclassification rate of random guessing, we assume the following regularity
conditions: there is a constant c0 (not depending on p) such that

c−1
0 ≤ all eigenvalues of � ≤ c0(2)

and

c−1
0 ≤ max

j≤p
δ2
j ≤ c0,(3)
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where δj is the j th component of δ. Under (2)–(3), �p ≥ c−1
0 , and hence ROPT ≤

�(−(2c0)
−1) < 1/2. Also, �2

p = O(‖δ‖2) and ‖δ‖2 = O(�2
p) so that the rate of

‖δ‖2 → ∞ is the same as the rate of �2
p → ∞, where ‖a‖ is the L2-norm of the

vector a.
In practice, μk and � are typically unknown, and we have a training sample

X = {xki, i = 1, . . . , nk, k = 1,2}, where nk is the sample size for class k, xki ∼
Np(μk,�), k = 1,2, all xki’s are independent and X is independent of x to be
classified. The limiting process considered in this paper is the one with n = n1 +
n2 → ∞. We assume that n1/n converges to a constant strictly between 0 and 1;
p is a function of n, but the subscript n is omitted for simplicity. When n → ∞, p

may diverge to ∞, and the limit of p/n may be 0, a positive constant, or ∞.
For a classification rule T constructed using the training sample, its performance

can be assessed by the conditional misclassification rate RT (X) defined as the av-
erage of the conditional probabilities of making two types of misclassification,
where the conditional probabilities are with respect to x, given the training sam-
ple X. The unconditional misclassification rate is RT = E[RT (X)]. The asymptotic
performance of T refers to the limiting behavior of RT (X) or RT as n → ∞. Since
0 ≤ RT (X) ≤ 1, by the dominated convergence theorem, if RT (X) →P c, where
c is a constant and →P denotes convergence in probability, then RT → c. Hence,
in this paper we focus on the limiting behavior of the conditional misclassification
rate RT (X).

We hope to find a rule T such that RT (X) converges in probability to the same
limit as ROPT, the misclassification rate of the optimal rule. If ROPT → 0, how-
ever, we hope not only RT (X) →P 0, but also RT (X) and ROPT have the same
convergence rate. This leads to the following definition.

DEFINITION 1. Let T be a classification rule with conditional misclassifica-
tion rate RT (X), given the training sample X.

(i) T is asymptotically optimal if RT (X)/ROPT →P 1.
(ii) T is asymptotically sub-optimal if RT (X) − ROPT →P 0.

(iii) T is asymptotically worst if RT (X) →P 1/2.

If limn→∞ ROPT > 0 [i.e., �p in (1) is bounded], then the asymptotic sub-
optimality is the same as the asymptotic optimality. Part (iii) of Definition 1 comes
from the fact that 1/2 is the misclassification rate of random guessing.

In this paper we focus on the classification rules of the form

classifying x to class 1 if and only if δ̂′�̂−1(x − ˆ̄μ) ≥ 0,(4)

where δ̂, ˆ̄μ and �̂−1 are estimators of δ, μ̄ and �−1, respectively, constructed
using the training sample X.
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The well-known linear discriminant analysis (LDA) uses the maximum likeli-
hood estimators x̄1, x̄2 and S, where

x̄k = 1

nk

nk∑
i=1

xki, k = 1,2, S = 1

n

2∑
k=1

nk∑
i=1

(xki − x̄k)(xki − x̄k)
′.

The LDA is given by (4) with δ̂ = x̄1 − x̄2, ˆ̄μ = x̄ = (x̄1 + x̄2)/2, �̂−1 = S−1 when
S−1 exists, and �̂−1 = a generalized inverse S− when S−1 does not exist (e.g.,
when p > n). A straightforward calculation shows that, given X, the conditional
misclassification rate of the LDA is

1

2

2∑
k=1

�

(
(−1)k δ̂′�̂−1(μk − x̄k) − δ̂′�̂−1δ̂/2√

δ̂′S−1��̂−1δ̂

)
.(5)

Is the LDA asymptotically optimal or sub-optimal according to Definition 1?
Bickel and Levina [(2004), Theorem 1] showed that, if p > n and p/n → ∞, then
the unconditional misclassification rate of the LDA converges to 1/2 so that the
LDA is asymptotically worst. A natural question is, for what kind of p (which may
diverge to ∞), is the LDA asymptotically optimal or sub-optimal. The following
result provides an answer.

THEOREM 1. Suppose that (2)–(3) hold and sn = p
√

logp/
√

n → 0.

(i) The conditional misclassification rate of the LDA is equal to

RLDA(X) = �
(−[1 + OP (sn)]�p/2

)
.

(ii) If �p is bounded, then the LDA is asymptotically optimal and

RLDA(X)

ROPT
− 1 = OP (sn).

(iii) If �p → ∞, then the LDA is asymptotically sub-optimal.
(iv) If �p → ∞ and sn�

2
p = (p

√
logp/

√
n)�2

p → 0, then the LDA is asymp-
totically optimal.

REMARK 1. Since �p �→ 0 under conditions (2) and (3), when �p is
bounded, sn�

2
p → 0 is the same as sn → 0, which is satisfied if p = O(nλ) with

0 ≤ λ < 1/2. When �p → ∞, sn�
2
p → 0 is stronger than sn → 0. Under (2)–(3),

�2
p = O(p). Hence, the extreme case is �2

p is a constant times p, and the condi-
tion in part (iv) becomes p2√logp/

√
n → 0, which holds when p = O(nλ) with

0 ≤ λ < 1/4. In the traditional applications with a fixed p, �p is bounded, sn → 0
as n → ∞ and thus Theorem 1 proves that the LDA is asymptotically optimal.

The proof of part (iv) of Theorem 1 (see Section 6) utilizes the following lemma,
which is also used in the proofs of other results in this paper.
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LEMMA 1. Let ξn and τn be two sequences of positive numbers such that
ξn → ∞ and τn → 0 as n → ∞. If limn→∞ τnξn = γ , where γ may be 0, positive,
or ∞, then

lim
n→∞

�(−√
ξn(1 − τn))

�(−√
ξn)

= eγ .

Since the LDA uses S− to estimate �−1 when p > n and is asymptotically worst
as Bickel and Levina (2004) showed, one may think that the bad performance of
the LDA is caused by the fact that S− is not a good estimator of �−1. Our following
result shows that the LDA may still be asymptotically worst even if we can estimate
�−1 perfectly.

THEOREM 2. Suppose that (2)–(3) hold, p/n → ∞ and that � is known so
that the LDA is given by (4) with �̂−1 = �−1, δ̂ = x̄1 − x̄2 and ˆ̄μ = x̄.

(i) If �2
p/

√
p/n → 0 (which is true if �p �→ ∞), then RLDA(X) →P 1/2.

(ii) If �2
p/

√
p/n → c with 0 < c < ∞, then RLDA(X) →P a constant strictly

between 0 and 1/2 and RLDA(X)/ROPT →P ∞.
(iii) If �2

p/
√

p/n → ∞, then RLDA(X) →P 0 but RLDA(X)/ROPT →P ∞.

Theorem 2 shows that even if � is known, the LDA may be asymptotically
worst and the best we can hope is that the LDA is asymptotically sub-optimal.
It can also be shown that, when μ1 and μ2 are known and we apply the LDA
with δ̂ = δ and ˆ̄μ = (μ1 + μ2)/2, the LDA is still not asymptotically optimal
when ‖δ‖2 − ‖δn‖2 �→ 0, where δn is any sub-vector of δ with dimension n. This
indicates that, in order to obtain an asymptotically optimal classification rule when
p is much larger than n, we need sparsity conditions on � and δ when both of
them are unknown. For bounded �p (in which case the asymptotic optimality is
the same as the asymptotic sub-optimality), by imposing sparsity conditions on
�, μ1 and μ2, Theorem 2 of Bickel and Levina (2004) shows the existence of an
asymptotically optimal classification rule. In the next section, we obtain a result by
relaxing the boundedness of �p and by imposing sparsity conditions on � and δ.
Since the difference of the two normal distributions is in δ, imposing a sparsity
condition on δ is weaker and more reasonable than imposing sparsity conditions
on both μ1 and μ2.

3. Sparse linear discriminant analysis. We focus on the situation where the
limit of p/n is positive or ∞. The following sparsity measure on � is considered
in Bickel and Levina (2008):

Ch,p = max
j≤p

p∑
l=1

|σjl|h,(6)
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where σjl is the (j, l)th element of �, h is a constant not depending on p, 0 ≤
h < 1 and 00 is defined to be 0. In the special case of h = 0, C0,p in (6) is the
maximum of the numbers of nonzero elements of rows of � so that a C0,p much
smaller than p implies many elements of � are equal to 0. If Ch,p is much smaller
than p for a constant h ∈ (0,1), then � is sparse in the sense that many elements
of � are very small. An example of Ch,p much smaller than p is Ch,p = O(1) or
Ch,p = O(logp).

Under conditions (2) and

logp

n
→ 0,(7)

Bickel and Levina (2008) showed that

‖�̃ − �‖ = OP (dn) and ‖�̃−1 − �−1‖ = OP (dn),(8)

where dn = Ch,p(n−1 logp)(1−h)/2, �̃ is S thresholded at tn = M1
√

logp/
√

n

with a positive constant M1; that is, the (j, l)th element of �̃ is σ̂j lI (|σ̂j l| > tn),
σ̂j l is the (j, l)th element of S and I (A) is the indicator function of the set A. We
consider a slight modification, that is, only off-diagonal elements of S are thresh-
olded. The resulting estimator is still denoted by �̃ and it has property (8) under
conditions (2) and (7).

We now turn to the sparsity of δ. On one hand, a large �p results in a large
difference between Np(μ1,�) and Np(μ2,�) so that the optimal rule has a small
misclassification rate. On the other hand, a larger divergence rate of �p results
in a more difficult task of constructing a good classification rule, since δ has to
be estimated based on the training sample X of a size much smaller than p. We
consider the following sparsity measure on δ that is similar to the sparsity measure
Ch,p on �:

Dg,p =
p∑

j=1

δ
2g
j ,(9)

where δj is the j th component of δ, g is a constant not depending on p and 0 ≤
g < 1. If Dg,p is much smaller than p for a g ∈ [0,1), then δ is sparse. For �2

p

defined in (1), under (2)–(3), �2
p ≤ c0‖δ‖2 ≤ c

1+2(1−g)
0 Dg,p . Hence, the rate of

divergence of �2
p is always smaller than that of Dg,p and, in particular, �p is

bounded when Dg,p is bounded for a g ∈ [0,1).
We consider the sparse estimator δ̃ that is δ̂ thresholded at

an = M2

(
logp

n

)α

(10)

with constants M2 > 0 and α ∈ (0,1/2), that is, the j th component of δ̃ is
δ̂j I (|δ̂j | > an), where δ̂j is the j th component of δ̂. The following result is useful.
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LEMMA 2. Let δj be the j th component of δ, δ̂j be the j th component of δ̂,
an be given by (10) and r > 1 be a fixed constant.

(i) If (7) holds, then

P

( ⋂
1≤j≤p,|δj |≤an/r

{|δ̂j | ≤ an}
)

→ 1(11)

and

P

( ⋂
1≤j≤p,|δj |>ran

{|δ̂j | > an}
)

→ 1.(12)

(ii) Let qn0 = the number of j ’s with |δj | > ran, qn = the number of j ’s with
|δj | > an/r and q̂ = the number of j ’s with |δ̂j | > an. If (7) holds, then

P(qn0 ≤ q̂ ≤ qn) → 1.

We propose a sparse linear discriminant analysis (SLDA) for high-dimension p,
which is given by (4) with δ̂ = δ̃, �̂ = �̃ and ˆ̄μ = x̄. The following result estab-
lishes the asymptotic optimality of the SLDA under some conditions on the rate of
divergence of p, Ch,p , Dg,p , qn and �2

p .

THEOREM 3. Let Ch,p be given by (6), Dg,p be given by (9), an be given by
(10), qn be as defined in Lemma 2 and dn = Ch,p(n−1 logp)(1−h)/2. Assume that
conditions (2), (3) and (7) hold and

bn = max
{
dn,

a
1−g
n

√
Dg,p

�p

,

√
Ch,pqn

�p

√
n

}
→ 0.(13)

(i) The conditional misclassification rate of the SLDA is equal to

RSLDA(X) = �
(−[1 + OP (bn)]�p/2

)
.

(ii) If �p is bounded, then the SLDA is asymptotically optimal and

RSLDA(X)

ROPT
− 1 = OP (bn).

(iii) If �p → ∞, then the SLDA is asymptotically sub-optimal.
(iv) If �p → ∞ and bn�

2
p → 0, then the SLDA is asymptotically optimal.

REMARK 2. Condition (13) may be achieved by an appropriate choice of α in
an, given the divergence rates of Ch,p , Dg,p , qn and �p .
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REMARK 3. When �p is bounded and (2)–(3) hold, condition (13) is the same
as

dn → 0, Dg,pa2(1−g)
n → 0 and Ch,pqn/n → 0.(14)

REMARK 4. When �p → ∞, condition (13), which is sufficient for the

asymptotic sub-optimality of the SLDA, is implied by dn → 0, Dg,pa
2(1−g)
n =

O(1) and Ch,pqn/n = O(1). When �p → ∞, the condition bn�
2
p → 0, which is

sufficient for the asymptotic optimality of the SLDA, is the same as

�2
pdn → 0, �2

pDg,pa2(1−g)
n → 0 and �2

pCh,pqn/n → 0.(15)

We now study when condition (13) holds and when bn�
2
p → 0 with �p → ∞.

By Remarks 3 and 4, (13) is the same as condition (14) when �p is bounded, and
bn�

2
p → 0 is the same as condition (15) when �p → ∞.

1. If there are two constants c1 and c2 such that 0 < c1 ≤ |δj | ≤ c2 for any nonzero
δj , then qn is exactly the number of nonzero δj ’s. Under condition (3), �2

p and
D0,p have exactly the order qn.
(a) If qn is bounded (e.g., there are only finitely many nonzero δj ’s), then

�p is bounded and condition (13) is the same as condition (14). The last
two convergence requirements in (14) are implied by dn = Ch,p(n−1 ×
logp)(1−h)/2 → 0, which is the condition for the consistency of �̃ pro-
posed by Bickel and Levina (2008).

(b) When qn → ∞ (�p → ∞), we assume that qn = O(nη) and Ch,p =
O(nγ ) with η ∈ (0,1) and γ ∈ [0,1). Then, condition (15) is implied by

nη+γ (n−1 logp)(1−h)/2 → 0, n2η(n−1 logp)2α → 0,
(16)

n2η+γ−1 → 0.

If we choose α = (1 − h)/4, then condition (16) holds when 2η + γ <

1 and nη+γ (n−1 logp)(1−h)/2 → 0. To achieve (16) we need to know the
divergence rate of p. If p = O(nκ) for a κ ≥ 1, then (n−1 logp)(1−h)/2 =
O((n−1 logn)(1−h)/2), and thus condition (16) holds when η + γ < (1 −
h)/2 and η < (1 + h)/2. If p = O(enβ

) for a β ∈ (0,1), which is referred
to as an ultra-high dimension, then (n−1 logp)(1−h)/2 = (nβ−1)(1−h)/2, and
condition (16) holds if η + γ < (1 − h)(1 − β)/2 and η < 1 − (1 − h)(1 −
β)/2.

2. Since

�2
p ≥ ∑

j :|δj |>an/r

δ2
j ≥ qn(an/r)2

and

Dg,p ≥ ∑
j :|δj |>an/r

δ
2g
j ≥ qn(an/r)2(1−g),
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we conclude that

qn = O

(
min

{
�2

p

a2
n

,
Dg,p

a
2(1−g)
n

})
.(17)

The right-hand side of (17) can be used as a bound of the divergence rate of
qn when qn → ∞, although it may not be a tight bound. For example, if �2

p =
O(logp) and the right-hand side of (17) is used as a bound for qn, then the
last convergence requirement in (14) or (15) is implied by the first convergence
requirement in (14) or (15) when α ≤ (1 + h)/4.

3. If Dg,p = O(Ch,p), then the second convergence requirement in (14) or (15) is
implied by the first convergence requirement in (14) or (15) when α ≥ (1 −h)/

[4(1 − g)].
4. Consider the case where Ch,p = O(logp), Dg,p = O(logp) and an ultra-high

dimension, that is, p = O(enβ
) for a β ∈ (0,1). From the previous discussion,

condition (14) holds if dn → 0, and (15) holds if dn logp → 0. Since logp =
O(nβ), dn = O(nβ+(β−1)(1−h)/2), which converges to 0 if β < (1−h)/(3−h).
If �p is bounded, then dn → 0 is sufficient for condition (13). If �p → ∞, then
the largest divergence rate of �2

p is O(logp) = O(nβ) and �2
pdn → 0 (i.e., the

SLDA is asymptotically optimal) when β < (1 − h)/(5 − h). When h = 0, this
means β < 1/5.

5. If the divergence rate of p is smaller than O(enβ
) then we can afford to have

a larger than O(logp) divergence rate for Ch,p and Dg,p . For example, if
p = O(nκ) for a κ ≥ 1 and max{Ch,p,Dg,p} = cnγ for a γ ∈ (0,1) and a pos-
itive constant c, then logp = O(logn) diverges to ∞ at a rate slower than nγ .
We now study when condition (14) holds. First, dn = Ch,p(n−1 logp)(1−h)/2 =
O(nγ−(1−h)/2(logn)(1−h)/2), which converges to 0 if γ < (1 − h)/2 ≤ 1/2.
Second, a2(1−g)Dg,p = O(nγ−2(1−g)α(logn)2(1−g)α), which converges to 0 if
α is chosen so that α > γ/[2(1 − g)]. Finally, if we use the right-hand side
of (17) as a bound for qn, then Ch,pqn/n = O(n2(1−g)α+γ−1/(logn)2(1−g)α),
which converges to 0 if α ≤ (1 − γ )/[2(1 − g)]. Thus, condition (14) holds
if γ < (1 − h)/2 and γ /[2(1 − g)] < α ≤ (1 − γ )/[2(1 − g)]. For condi-
tion (15), we assume that �2

p = O(nργ ) with a ρ ∈ [0,1] (ρ = 0 corresponds
to a bounded �p). Then, a similar analysis leads to the conclusion that con-
dition (15) holds if (1 + ρ)γ ≤ (1 − h)/2 and (1 + ρ)γ /[2(1 − g)] < α ≤
[1 − (1 + ρ)γ ]/[2(1 − g)].
To apply the SLDA, we need to choose two constants, M1 in the thresholding

estimator �̃ and M2 in the thresholding estimator δ̃. We suggest a data-driven
method via a cross-validation procedure. Let Xki be the data set containing the
entire training sample but with xki deleted, and let Tki be the SLDA rule based on
Xki , i = 1, . . . , nk , k = 1,2. The leave-one-out cross-validation estimator of the
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misclassification rate of the SLDA is

R̂SLDA = 1

n

2∑
k=1

nk∑
i=1

rki,

where rki is the indicator function of whether Tki classifies xki incorrectly. Let
R(n1, n2) denote RSLDA when the sample sizes are n1 and n2. Then

E(R̂SLDA) = 1

n

2∑
k=1

nk∑
i=1

E(rki) = n1R(n1 − 1, n2) + n2R(n1, n2 − 1)

n
,

which is close to R(n1, n2) = RSLDA for large nk . Let R̂SLDA(M1,M2) be the
cross-validation estimator when (M1,M2) is used in thresholding Ŝ and δ̂. Then,
a data-driven method of selecting (M1,M2) is to minimize R̂SLDA(M1,M2) over
a suitable range of (M1,M2). The resulting R̂SLDA can also be used as an estimate
of the misclassification rate of the SLDA.

4. Extensions. We first consider an extension of the main result in Section 3
to nonnormal x and xki’s. For nonnormal x, the LDA with known μk and �, that
is, the rule classifying x to class 1 if and only if δ′�−1(x − μ̄) ≥ 0, is still optimal
when x has an elliptical distribution [see, e.g., Fang and Anderson (1990)] with
density

cp|�|−1/2f
(
(x − μ)′�−1(x − μ)

)
,(18)

where μ is either μ1 or μ2, f is a monotone function on [0,∞), and cp is a nor-
malizing constant. Special cases of (18) are the multivariate t-distribution and the
multivariate double-exponential distribution. Although this rule is not necessarily
optimal when the distribution of x is not of the form (18), it is still a reasonably
good rule when μk and � are known. Thus, when μk and � are unknown, we
study whether the misclassification rate of the SLDA defined in Section 3 is close
to that of the LDA with known μk and �.

From the proofs for the asymptotic properties of the SLDA in Section 3, the
results depending on the normality assumption are:

(i) result (8), the consistency of �̃;
(ii) results (11) and (12) in Lemma 2;

(iii) the form of the optimal misclassification rate given by (1);
(iv) the result in Lemma 1.

Thus, if we relax the normality assumption, we need to address (i)–(iv). For (i),
it was discussed in Section 2.3 of Bickel and Levina (2008) that result (8) still holds
when the normality assumption is replaced by one of the following two conditions.
The first condition is

sup
k,j

E(e
tx2

kij ) < ∞ for all |t | ≤ t0(19)



1252 SHAO, WANG, DENG AND WANG

for a constant t0 > 0, where xkij is the j th component of xki . Under condition (19),
result (8) holds without any modification. The second condition is

sup
k,j

E|xkij |2ν < ∞(20)

for a constant ν > 0. Under condition (20), result (8) holds with n−1 logp changed
to n−1p4/ν . The same argument can be used to address (ii), that is, results (11)
and (12) hold under condition (19) or condition (20) with n−1 logp replaced by
n−1p4/ν . For (iii), the normality of x can be relaxed to that, for any p-dimensional
nonrandom vector l with ‖l‖ = 1 and any real number t ,

P
(
l′�−1/2(x − μ) ≤ t

) = �(t),(21)

where � is an unknown distribution function symmetric about 0 but it does not
depend on l. Distributions satisfying (21) include elliptical distributions [e.g., a
distribution of the form (18)] and the multivariate scale mixture of normals [Fang
and Anderson (1990)]. Under (21), when μk and � are known, the LDA has mis-
classification rate �(−�p/2) with �p given by (1). It remains to address (iv).
Note that the following result,

x

1 + x2 e−x2/2 ≤ �(−x) ≤ 1

x
e−x2/2, x > 0,(22)

is the key for Lemma 1. Without assuming normality, we consider the condition

0 < lim
x→∞

xωe−cxϕ

�(−x)
< ∞,(23)

where ϕ is a constant, 0 ≤ ϕ ≤ 2, ω is a constant and c is a positive constant. For
the case where � is standard normal, condition (23) holds with ϕ = 2, ω = −1
and c = 1/2. Under condition (23), we can show that the result in Lemma holds
for the case of γ = 0, which is needed to extend the result in Theorem 3(iv). This
leads to the following extension.

THEOREM 4. Assume condition (21) and either condition (19) or (20). When
condition (19) holds, let bn be defined by (13). When condition (20) holds, let
an and bn be defined by (10) and (13), respectively, with n−1 logp replaced by
n−1p4/ν . Assume that an → 0 and bn → 0.

(i) The conditional misclassification rate of the SLDA is

RSLDA(X) = �
(−[1 + OP (bn)]�p/2

)
.

(ii) If �p is bounded, then

RSLDA(X)

�(−�p/2)
− 1 = OP (bn),

where �(−�p/2) is the misclassification rate of the LDA when μk and � are
known.
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(iii) If �p → ∞, then RSLDA(X) →P 0.
(iv) If �p → ∞ and bn�

2
p → 0, then

RSLDA(X)

�(−�p/2)
→P 1.

We next consider extending the results in Sections 2 and 3 to the classification
problem with K ≥ 3 classes. Let x be a p-dimensional normal random vector
belonging to class k if x ∼ Np(μk,�), k = 1, . . . ,K , and the training sample be
X = {xki, i = 1, . . . , nk, k = 1, . . . ,K}, where nk is the sample size for class k,
xki ∼ Np(μk,�), k = 1, . . . ,K , and all xki ’s are independent. The LDA classifies
x to class k if and only if δ̂′

kl�̂
−1(x − ˆ̄μkl) ≥ 0 for all l �= k, l = 1, . . . ,K , where

δ̂kl = x̄k − x̄l , ˆ̄μkl = (x̄k + x̄l)/2, x̄k = n−1
k

∑nk

i=1 xki and �̂−1 is an inverse or a
generalized inverse of S = n−1 ∑K

k=1
∑nk

i=1(xki − x̄k)(xki − x̄k)
′, and n = n1 +

· · · + nK . The conditional misclassification rate of the LDA is

1

K

K∑
k=1

∑
j �=k

Pk

(
δ̂′
j l�̂

−1(x − ˆ̄μj l) ≥ 0, l �= j
)
,

where Pk is the probability with respect to x ∼ Np(μk,�), k = 1, . . . ,K . The
SLDA and its conditional misclassification rate can be obtained by simply replac-
ing �̂ and δ̂kl by their thresholding estimators �̃ and δ̃kl , respectively. For sim-
plicity of computation, we suggest the use of the same thresholding constant (10)
for all δ̃kl’s.

The optimal rate can be calculated as

ROPT = 1

K

K∑
k=1

∑
j �=k

Pk

(
δ′
j l�

−1(x − μ̄j l) ≥ 0, l �= j
)
,(24)

where δj l = μj − μl and μ̄j l = (μj + μl)/2, j, l = 1, . . . ,K , j �= l. Asymptotic
properties of the LDA and SLDA can be obtained, under the asymptotic setting
with n → ∞ and nk/n → a constant in (0,1) for each k. Sparsity conditions
should be imposed to each δkl . If the probabilities in expression (24) do not con-
verge to 0, then the asymptotic optimality of the LDA (under the conditions in
Theorem 1) or the SLDA (under the conditions in Theorem 3) can be established
using the same proofs as those in Section 6. When ROPT in (24) converges to 0,
to consider convergence rates, the proof of the asymptotic optimality of the LDA
or SLDA requires an extension of Lemma 1. Specifically, we need an extension
of result (22) to the case of multivariate normal distributions. This technical issue,
together with empirical properties of the SLDA with K ≥ 3, will be investigated
in our future research.
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5. Numerical studies. Golub et al. (1999) applied gene expression mi-
croarray techniques to study human acute leukemia and discovered the distinc-
tion between acute myeloid leukemia (AML) and acute lymphoblastic leukemia
(ALL). Distinguishing ALL from AML is crucial for successful treatment, since
chemotherapy regimens for ALL can be harmful for AML patients. An accurate
classification based solely on gene expression monitoring independent of previous
biological knowledge is desired as a general strategy for discovering and predict-
ing cancer classes.

We considered a dataset that was used by many researchers [see, e.g., Fan and
Fan (2008)]. It contains the expression levels of p = 7,129 genes for n = 72
patients. Patients in the sample are known to come from two distinct classes of
leukemia: n1 = 47 are from the ALL class, and n2 = 25 are from the AML class.

Figure 1 displays the cumulative proportions defined as
∑l

j=1 δ̂2
(j)/‖δ̂‖2, l =

1, . . . , p, where δ̂2
(j) is the j th largest value among the squared components of δ̂.

These proportions indicate the importance of the contribution of each δ̂(j). It can
be seen from Figure 1 that the first 1,000 δ̂(j)’s contribute a cumulative proportion
nearly 98%. Figure 2 plots the absolute values of the off-diagonal elements of the
sample covariance matrix S. It can be seen that many of them are relatively small.
If we ignore a factor of 108, then among a total of 25,407,756 values in Figure 2,
only 0.45% of them vary from 0.35 to 9.7 and the rest of them are under 0.35.

FIG. 1. Cumulative proportions.
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FIG. 2. Plot of off-diagonal elements of S.

For the SLDA, to construct sparse estimates of δ and � by thresholding, we
applied the cross-validation method described in the end of Section 3 to choose
the constants M1 and M2 in the thresholding values tn = M1(n

−1 logp)0.5 and
an = M2(n

−1 logp)0.3. Figure 3 shows the cross validation scores R̂SLDA(M1,M2)

over a range of (M1,M2). The minimum cross validation score is achieved at M1 =
107 and M2 = 300. These thresholding values resulted in a δ̃ with exactly 2,492
nonzero components, which is about 35% of all components of δ̂, and a �̃ with
exactly 227,083 nonzero elements, which is about 0.45% of all elements of S.
Note that the number of nonzero estimates of δ is still much larger than n = 72,
but the SLDA does not require it to be smaller than n. The resulting SLDA has an
estimated (by cross validation) misclassification rate 0.0278. In fact, 1 of the 47
ALL cases and 1 of the 25 AML cases are misclassified under the cross validation
evaluation of the SLDA.

For comparison, we carried out the LDA with a generalized inverse S−. In the
leave-one-out cross-validation evaluation of the LDA, 2 of the 47 ALL cases and
5 of the 25 AML cases are misclassified by the LDA, which results in an esti-
mated misclassification rate 0.0972. Compared with the LDA, the SLDA reduces
the misclassification rate by nearly 70%. From Figure 5 of Fan and Fan (2008), the
misclassification rate of the FAIR method, estimated by the average of 100 ran-
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FIG. 3. Cross-validation score vs (M1,M2).

domly constructed cross validations with πn data points for constructing classifier
and (1 − π)n data points for validation (π = 0.4,0.5 and 0.6), ranges from 5% to
7%, which is smaller than the misclassification rate of the LDA but larger than the
misclassification rate of the SLDA.

We also performed a simulation study on the conditional misclassification rate
of SLDA under a population constructed using estimates from the real data set and
a smaller dimension p = 1,714. The smaller dimension was used to reduce the
computational cost and the 1,714 variables were chosen from the 7,129 variables
with p-values (of the two sample t-tests for the mean effects) smaller than 0.05. In
each of the 100 independently generated data sets, independent {x1i , i = 1, . . . ,47}
and {x2i , i = 1, . . . ,25} were generated from Np(μ̂1, �̃) and Np(μ̂2, �̃), respec-
tively, where p = 1,714 and μ̂k and �̃ are estimates from the real data set. The
sparse estimate �̃ was used instead of the sample covariance matrix S, because S is
not positive definite. Since the population means and covariance matrix are known
in the simulation, we were able to compute the conditional misclassification rate
RSLDA(X) for each generated data set. A boxplot of 100 values of RSLDA(X) in the
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FIG. 4. Boxplots of conditional misclassification rates of SLDA, SCRDA and LDA.

simulation is given in Figure 4(a). The unconditional misclassification rate of the
SLDA can be approximated by averaging over the 100 conditional misclassifica-
tion rates. In this simulation, the unconditional misclassification rate for the SLDA
is 0.069. Since the population is known in simulation, the optimal misclassification
rate ROPT is known to be 0.03.

For comparison, in the simulation we computed the conditional misclassifica-
tion rates, RLDA(X) for the LDA and RSCRDA(X) for the shrunken centroids reg-
ularized discriminant analysis (SCRDA) proposed by Guo, Hastie and Tibshirani
(2007). Since RSCRDA(X) does not have an explicit form, it is approximated by an
independent test data set of size 100 in each simulation run. Boxplots of RLDA(X)

and RSCRDA(X) for 100 simulated data sets are included in Figure 4(a). It can be
seen that the conditional misclassification rate of the LDA varies more than that
of the SLDA. The unconditional misclassification rate for the LDA, approximated
by the 100 simulated RLDA(X) values, is 0.152, which indicates a 53% improve-
ment of the SLDA over the LDA in terms of the unconditional misclassification
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rate. The SCRDA has a simulated unconditional misclassification rate 0.137 and
its performance is better than that of the LDA but worse than that of the SLDA.
In this simulation, we also found that the conditional misclassification rate of the
FAIR method was similar to that of the LDA.

To examine the performance of these classification methods in the case of non-
normal data, we repeated the same simulation with the multivariate normal distri-
bution replaced by the multivariate t-distribution with 3 degrees of freedom. The
boxplots are given in Figure 4(b) and the simulated unconditional misclassification
rates are 0.059, 0.194 and 0.399 for the SLDA, SCRDA and LDA, respectively.
Since the t-distribution has a larger variability than the normal distribution, all
conditional misclassification rates in the t-distribution case vary more than those
in the normal distribution case.

6. Proofs.

PROOF OF THEOREM 1. (i) Let σ̂j,l and σj,l be the (j, l)th elements of S and
�, respectively. From result (10) in Bickel and Levina (2008), maxj,l≤p |σ̂j,l −
σj,l| = OP (

√
logp/

√
n). Then,

‖S − �‖ ≤ max
j≤p

p∑
l=1

|σ̂j,l − σj,l| = OP

(
p

√
logp/

√
n

) = OP (sn),

where ‖A‖ is the norm of the matrix A defined as the maximum of all eigenvalues
of A. By (2)–(3) and sn → 0, S−1 exists and

‖S−1 − �−1‖ = ‖S−1(S − �)�−1‖ ≤ ‖S−1‖‖S − �‖‖�−1‖ = OP (sn).

Consequently,

δ̂′S−1�S−1δ̂ = δ̂′S−1δ̂[1 + OP (sn)] = δ̂′�−1δ̂[1 + OP (sn)].
Since E[(δ̂ − δ)′�−1(δ̂ − δ)] = O(p/n) and E[δ′�−1(δ̂ − δ)]2 ≤ �2

pE[(δ̂ −
δ)′�−1(δ̂ − δ)], we have

δ̂′�−1δ̂ = δ′�−1δ + 2δ′�−1(δ̂ − δ) + (δ̂ − δ)′�−1(δ̂ − δ)

= �2
p + OP

(√
p�p√

n

)
+ OP

(
p

n

)

= �2
p

[
1 + OP

( √
p√

n�p

)
+ OP

(
p

n�2
p

)]

= �2
p[1 + OP (sn)],

where the last equality follows from
√

p/(sn
√

n�p) = 1/(
√

p logp�p) = O(1).
Combining these results, we obtain that

δ̂S−1δ̂ = δ̂′�−1δ̂[1 + OP (sn)] = �2
p[1 + OP (sn)]2

= �2
p[1 + OP (sn)].
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Then

δ̂′S−1(x̄1 − μ1) − δ̂′S−1δ̂/2√
δ̂′S−1�S−1δ̂

= −
√

δ̂′S−1δ̂

2
√

1 + OP (sn)
+ δ̂′S−1(x̄1 − μ1)√

δ̂′S−1�S−1δ̂

= −
√

�2
p[1 + OP (sn)]

2
√

1 + OP (sn)
+ OP

(√
p

n

)

= −�p

2
[1 + OP (sn)] + OP

(√
p

n

)

= −�p

2

[
1 + OP (sn) + OP

( √
p√

n�p

)]

= −�p

2
[1 + OP (sn)].

Similarly, we can show that

δ̂′S−1(μ2 − x̄2) − δ̂′S−1δ̂/2√
δ̂′S−1�S−1δ̂

= −�p

2
[1 + OP (sn)].

These results and formula (5) imply the result in (i).
(ii) Let φ be the density of �. By the result in (i),

RLDA(X) − ROPT = φ(ωn)OP (sn),

where ωn is between −�p/2 and −[1 + OP (sn)]�p/2. Since φ(ωn) is bounded
by a constant, the result follows from the fact that ROPT is bounded away from 0
when �p is bounded.

(iii) When �p → ∞, ROPT → 0, and, by the result in (i), RLDA(X) →P 0.
(iv) If �p → ∞, then, by Lemma 1 and the condition sn�

2
p → 0, we conclude

that RLDA(X)/ROPT →P 1. �

PROOF OF LEMMA 1. It follows from result (22) that

ξn(1 − τn)

1 + ξn(1 − τn)2 e[ξn−ξn(1−τn)2]/2 ≤ �(−√
ξn(1 − τn))

�(−√
ξn)

≤ 1 + ξn

ξn(1 − τn)
e[ξn−ξn(1−τn)2]/2.

Since ξn → ∞ and τn → 0,

ξn(1 − τn)

1 + ξn(1 − τn)2 → 1 and
1 + ξn

ξn(1 − τn)
→ 1.

The result follows from [ξn − ξn(1 − τn)
2]/2 = ξnτn(1 − τn/2) → γ regardless of

whether γ is 0, positive, or ∞. �
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PROOF OF THEOREM 2. For simplicity, we prove the case of n1 = n2 = n/2.

(i) The conditional misclassification rate of the LDA in this case is given by
(5) with �̂ replaced by �. Note that �−1/2(x̄k − μk) ∼ Np(0, n−1

1 I), where I is
the identity matrix of order p. Let ζj be the j th component of �−1/2δ. Then,∑p

j=1 ζ 2
j = �2

p and the j th component of �−1/2(x̄k − μk) is n
−1/2
1 εkj , and the

j th component of �−1/2δ̂ is ζj + n
−1/2
1 (ε1j − ε2j ), j = 1, . . . , p, where εkj ,

j = 1, . . . , p, k = 1,2, are independent standard normal random variables. Conse-
quently,

δ̂′�−1(x̄1 − μ1) − δ̂′�−1δ̂/2 =
p∑

j=1

(
−ζ 2

j

2
+ ε2

1j − ε2
2j

n
+ ζj ε2j√

n1

)

= −�2
p

2
+ 1

n

p∑
j=1

(ε2
1j − ε2

2j ) + 1√
n1

p∑
j=1

ζj ε2j

= −�2
p

2
+ OP

(√
p

n

)
+ OP

(
�p√

n

)

and

δ̂′�−1δ̂ =
p∑

j=1

(
ζj + ε1j − ε2j√

n1

)2

= �2
p + 1

n1

p∑
j=1

(ε1j − ε2j )
2 + 2√

n1

p∑
j=1

ζj (ε1j − ε2j )

= �2
p + 4p

n
[1 + oP (1)] + OP

(
�p√

n

)

= �2
p + 4p

n
[1 + oP (1)],

where the last equality follows from �2
p = O(p) under (2)–(3). Combining these

results, we obtain that

δ̂′�−1(x̄1 − μ1) − δ̂′�−1δ̂/2√
δ̂′�−1δ̂

= − �2
p

2
√

�2
p + (4p/n)[1 + oP (1)]

+ oP (1).(25)

Similarly, we can prove that (25) still holds if x̄1 − μ1 is replaced by μ2 − x̄2.
If �2

p/
√

p/n → 0, then the quantity in (25) converges to 0 in probability. Hence,
RLDA(X) →P 1/2.

(ii) Since p/n → ∞, �2
p/(p/n) → 0. Then, the quantity in (25) converges

to −c/4 in probability and, hence, RLDA(X) →P �(−c/4), which is a constant
between 0 and 1/2. Since �p → ∞, ROPT → 0 and, hence, RLDA(X)/ROPT →P

∞.
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(iii) When �2
p/

√
p/n → ∞, it follows from (25) that the quantity on the left-

hand side of (25) diverges to −∞ in probability. This proves that RLDA(X) →P 0.
To show RLDA(X)/ROPT →P ∞, we need a more refined analysis. The quantity
on the left-hand side of (25) is equal to

−�2
p + OP (

√
p/n) + OP (�p/

√
n)

2
√

�2
p + (4p/n)[1 + oP (1)]

= −�p

2
(1 − τn),

where

τn = 1 − �p + OP (
√

p/n)/�p + OP (1/
√

n)√
�2

p + (4p/n)[1 + oP (1)]
and P(0 ≤ τn ≤ 1) → 1. Note that

τ1n = 1 − �p√
�2

p + (4p/n)[1 + oP (1)]

= (4p/n)[1 + oP (1)]
�2

p + (4p/n)[1 + oP (1)] + �p

√
�2

p + (4p/n)[1 + oP (1)]
and

τ2n = OP (
√

p/n)/�p + OP (1/
√

n)√
�2

p + (4p/n)[1 + oP (1)]
= OP (

√
p/n)

�2
p

+ OP (1/
√

n)

�p

= OP (
√

p/n)

�2
p

under (2) and (3). Then

τn�
2
p = τ1n�

2
p + τ2n�

2
p = τ1n�

2
p + OP

(√
p/n

)
.

If �2
p/(p/n) is bounded, then τ1n ≥ c for a constant c > 0 and

τn�
2
p ≥ c�2

p + OP

(√
p/n

)
,

which diverges to ∞ in probability since �2
p/

√
p/n → ∞. If �2

p/(p/n) → ∞,
then τ1n�

2
p ≥ cp/n for a constant c > 0 and

τn�
2
p ≥ cp/n + OP

(√
p/n

)
,

which diverges to ∞ in probability since p/n → ∞. Thus, τn�
2
p → ∞ in proba-

bility, and the result follows from Lemma 1. �
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PROOF OF LEMMA 2. (i) It follows from (22) that, for all t ,

P(|δ̂j − δj | > t) ≤ c1e
−c2nt2

,

where c1 and c2 are positive constants. Then, the probability in (11) is

1 − P

( ⋃
1≤j≤p,|δj |≤an/r

{|δ̂j | > an}
)

≥ 1 −
p∑

j=1

P
(|δ̂j − δj | > an(r − 1)/r

)

≥ 1 − pc1e
−c2na2

n(r−1)2/r2
.

Because

na2
n

logp
=

(
n

logp

)1−2α

→ ∞

when α < 1/2, we conclude that pc1e
−c2na2

n(r−1)2/r2 → 0, and thus (11) holds.
The proof of (12) is similar since

1 − P

( ⋃
1≤j≤p,|δj |>ran

{|δ̂j | ≤ an}
)

≥ 1 −
p∑

j=1

P
(|δ̂j − δj | > an(r − 1)

)

≥ 1 − pc1e
−c2na2

n(r−1)2
.

(ii) The result follows from results (11) and (12). �

PROOF OF THEOREM 3. The conditional misclassification rate RSLDA(X) is
given by

1

2

2∑
k=1

�

(
(−1)k δ̃′�̃−1

(μk − x̄k) − δ̂′�̃−1
δ̃/2√

δ̃′�̃−1
��̃

−1
δ̃

)
.

From result (8),

δ̃′�̃−1��̃−1δ̃ = δ̃′�̃−1δ̃[1 + OP (dn)] = δ̃′�−1δ̃[1 + OP (dn)].
Without loss of generality, we assume that δ̃ = (δ̃′

1,0′)′, where δ̃1 is the q̂-vector
containing nonzero components of δ̃. Let δ = (δ′

1, δ
′
0)

′, where δ1 has dimension q̂ .
From Lemma 2(ii), ‖δ̃1 − δ1‖2 = OP (qn/n) and, with probability tending to 1,

‖δ0‖2 = ∑
j :|δ̂j |≤an

δ2
j ≤ ∑

j :|δj |≤ran

δ2
j ≤ (ran)

2(1−g)
∑

j :|δj |≤ran

δ
2g
j = O

(
a2(1−g)
n Dg,p

)
.

Let kn = max{a2(1−g)
n Dg,p, qn/n}. Then ‖δ̃ − δ‖2 = ‖δ̃1 − δ1‖2 + ‖δ0‖2 =

OP (kn). This together with (2)–(3) implies that (δ̃ − δ)′�−1(δ̃ − δ) = OP (kn),
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and hence

δ̃′�−1δ̃ = �2
p + 2δ′�(δ̃ − δ) + (δ̃ − δ)′�−1(δ̃ − δ)

= �2
p

[
1 + OP

(√
kn/�p

) + OP (kn/�
2
p)

]

= �2
p

[
1 + OP

(√
kn/�p

)]
.

Write

� =
(

�1 �12
�′

12 �2

)
, �−1 =

(
C1 C12
C′

12 C2

)
,

�̃ =
(

�̃1 �̃12

�̃
′
12 �̃2

)
, �̃−1 =

(
C̃1 C̃12

C̃′
12 C̃2

)
,

where �1, �̃1, C1 and C̃1 are qn × qn matrices with qn defined in Lemma 2(ii).
Then

C12 = −�−1
1 �12C2 and C̃12 = −�̃

−1
1 �̃12C̃2.

If δ̌1 = (δ̃′
1,0′)′ and x̄1 − μ1 = (ξ ′

1, ξ
′
0)

′, where δ̌1 and ξ1 have dimension qn, then

δ̃′�̃−1(x̄1 − μ1) = δ̌′
1C̃1ξ1 + δ̌′

1C̃12ξ0 = δ̌′
1C̃1ξ1 − δ̌′

1�̃
−1
1 �̃12C̃2ξ0.

Since ξ1 has dimension qn,

(δ̌′
1C̃1ξ1)

2 ≤ (ξ ′
1C̃1ξ1)(δ̌

′
1C̃1δ̌1) = (ξ ′

1C̃1ξ1)(δ̃
′�̃−1δ̃) = OP (qn/n)(δ̃′�̃−1δ̃)

and hence

δ̌′
1C̃1ξ1 = OP

(√
kn

)√
δ̃′�̃−1δ̃.

Since �̃−1
1 ≤ C̃1,

(δ̌′
1�̃

−1
1 �̃12C̃2ξ0)

2 ≤ (δ̌′
1�̃

−1
1 δ̌1)(ξ

′
0C̃2�̃

′
12�̃

−1
1 �̃12C̃2ξ0)

≤ (δ̃′
1C̃1δ̃1)(ξ

′
0C̃2�̃

′
12�̃

−1
1 �̃12C̃2ξ0)

= (δ̃′�̃−1δ̃)(ξ ′
0C̃2�̃

′
12�̃

−1
1 �̃12C̃2ξ0).

From result (8),

ξ ′
0C̃2�̃

′
12�̃

−1
1 �̃12C̃2ξ0 = ξ ′

0C2�
′
12�

−1
1 �12C2ξ0[1 + OP (dn)].

Under condition (2), all eigenvalues of sub-matrices of � and �−1 are bounded
by c0. Repeatedly using condition (2), we obtain that

E(ξ ′
0C2�

′
12�

−1
1 �12C2ξ0) ≤ c0E(ξ ′

0C2�
′
12�12C2ξ0)

= c0n
−1 trace(�12C2�2C2�

′
12)

≤ c4
0n

−1 trace(�12�
′
12)
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= c4
0

n

qn∑
j=1

p∑
l=qn+1

σ 2
j l

≤ c6−h
0 qn

n
max
l≤p

p∑
j=1

|σjl|h

= O(Ch,pqn/n),

where h and Ch,p are given in (6). This proves that

δ̃′�̃−1
(x̄1 − μ1)√

δ̃′�̃−1
��̃

−1
δ̃

= OP (
√

kn) + OP (
√

Ch,pqn/n)√
1 + OP (dn)

,

which also holds when x̄1 − μ1 is replaced by x̄2 − μ2 or δ̂ − δ. Note that

δ̂′�̃−1
δ̃ = δ̃′�̃−1

δ̃ + (δ̂ − δ)′�̃−1
δ̃ + (δ − δ̃)′�̃−1

δ̃

= δ̃′�̃−1
δ̃ + (δ̂ − δ)′�̃−1

δ̃ + �pOP

(√
kn

)
.

Therefore,

(−1)k δ̃′�̃−1
(μk − x̄k) − δ̂′�̃−1

δ̃/2√
δ̃′�̃−1

��̃
−1

δ̃

= OP (
√

kn) + OP (
√

Ch,pqn/n)√
1 + OP (dn)

− �p

√
1 + OP (

√
kn/�p)

2
√

1 + OP (dn)

= OP

(√
kn

) + OP

(√
Ch,pqn/n

)

− �p

2

[
1 + OP

(√
kn/�p

) + OP (dn)
]

= −�p

2

[
1 + OP

(√
Ch,pqn

�p

√
n

)

+ OP

(√
kn

�p

)
+ OP (dn)

]

= −�p

2
[1 + OP (bn)].

This proves the result in (i). The proofs of (ii)–(iv) are the same as the proofs for
Theorem 1(ii)–(iv) with sn replaced by bn. This completes the proof. �
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