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It is increasingly important in financial economics to estimate volatilities of asset returns. However, most of the available methods are
not directly applicable when the number of assets involved is large, due to the lack of accuracy in estimating high-dimensional matrices.
Therefore it is pertinent to reduce the effective size of volatility matrices in order to produce adequate estimates and forecasts. Furthermore,
since high-frequency financial data for different assets are typically not recorded at the same time points, conventional dimension-reduction
techniques are not directly applicable. To overcome those difficulties we explore a novel approach that combines high-frequency volatility
matrix estimation together with low-frequency dynamic models. The proposed methodology consists of three steps: (i) estimate daily
realized covolatility matrices directly based on high-frequency data, (ii) fit a matrix factor model to the estimated daily covolatility matrices,
and (iii) fit a vector autoregressive model to the estimated volatility factors. We establish the asymptotic theory for the proposed methodology
in the framework that allows sample size, number of assets, and number of days go to infinity together. Our theory shows that the relevant
eigenvalues and eigenvectors can be consistently estimated. We illustrate the methodology with the high-frequency price data on several
hundreds of stocks traded in Shenzhen and Shanghai Stock Exchanges over a period of 177 days in 2003. Our approach pools together the
strengths of modeling and estimation at both intra-daily (high-frequency) and inter-daily (low-frequency) levels.
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1. INTRODUCTION

Modeling and forecasting the volatilities of financial returns
are vibrant research areas in econometrics and statistics. For fi-
nancial data at daily or longer time horizons, which are often re-
ferred to as low-frequency data, there exists extensive literature
on direct volatility modeling using GARCH, discrete stochastic
volatility, and diffusive stochastic volatility models as well as
indirect modeling using implied volatility obtained from option
pricing models. See Wang (2002).

With the availability of intraday financial data, which are
called high-frequency data, there is an surging interest on es-
timating volatilities using high-frequency returns directly. The
field of high-frequency finance has experienced a rapid evolve-
ment in past several years. One of the focus points at present
is to estimate integrated volatility over a period of time, say,
a day. Estimation methods for univariate volatilities include
realized volatility (RV), bi-power realized variation (BPRV),
two-time scale realized volatility (TSRV), wavelet realized
volatility (WRV), realized kernel volatility (KRV), preaverag-
ing realized volatility, and Fourier realized volatility (FRV).
For the cases with multiple assets, a so-called nonsynchro-
nized problem arises, which refers to the fact that transac-
tions for different assets often occur at distinct times, and the
high-frequency prices of different assets are recorded at mis-
matched time points. Hayashi and Yoshida (2005) and Zhang
(2011) proposed to estimate integrated covolatility of the two
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assets based on overlap intervals and previous ticks, respec-
tively. Barndorff-Nielsen et al. (2010) employed a refresh time
scheme to synchronize the data and then applied a realized ker-
nel to the synchronized data for estimating integrated covolatil-
ity. Christensen, Kinnebrock, and Podolskij (2010) studied in-
tegrated covolatility estimation by the preaveraging approach.
Nevertheless most existing works on volatility estimation using
high-frequency data are for a single asset or a small number of
assets, and therefore are only directly applicable when the inte-
grated volatility concerned is either a scalar or a small matrix.

In reality we often face with scenarios involving a large num-
ber of assets. The integrated volatility concerned then is a ma-
trix of a large size. In principle, a large volatility matrix may
be estimated as follows: estimating each diagonal element; rep-
resenting an integrated volatility of a single asset; by univari-
ate methods such as RV and BPRV; and estimating each off-
diagonal element, representing an integrated covolatility of two
assets, by the method of Hayashi and Yoshida (2005) or Zhang
(2011). However, due to the large number of elements in the
volatility matrix, such a naive estimator often behaves poorly. It
is widely known that as dimension (or matrix size) goes to infin-
ity, the estimators such as sample covariance matrix and usual
realized covolatility estimators are inconsistent in the sense that
the eigenvalues and eigenvectors of the matrix estimators are far
from the true targets (Johnstone 2001; Johnstone and Lu 2009;
and Wang and Zou 2010). Banding and tresholding are pro-
posed by Bickel and Levina (2008a, 2008b) to yield consistent
estimators of large covariance matrices, and a factor model ap-
proach is used in Fan, Fan, and Lv (2008) to estimate large co-
variance matrices. To illustrate this point, we conduct a simula-
tion as follows: consider p assets over unit time interval with all
log prices following independent standard Brownian motions.
Observations were taken without noise at the same time grids
ti = i/n for i = 0,1, . . . ,n. Then the true integrated volatility
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Figure 1. Plots of eigenvalues V̂ from a simulation with 50 repetitions. (a) Each of the 50 curves represents the ordered 100 eigenvalues of
each sampled V̂. (b) The minimum and maximum eigenvalues of V̂ across 50 repetitions.

matrix V is the identity matrix Ip. The estimator for V based on
the RV and the co-RV methods is

V̂ = (V̂jk), with V̂jk = 1

n

n∑
i=1

Zij Zik for 1 ≤ j, k ≤ p,

where Zij, i = 1, . . . ,n, j = 1, . . . ,p, are effectively independent
N(0,1) random variables. Setting p = 100, we drew 50 sam-
ples of size n = 100. For each of 50 samples, we computed the
100 eigenvalues of V̂ and evaluated their maximum and mini-
mum eigenvalues. Of the 50 sets of 100 eigenvalues, we found
that all sets range approximately from zero to four with an av-
erage minimum eigenvalue 0.0001 and an average maximum
eigenvalue 3.9. This clearly indicates the serious lack of accu-
racy in estimating V since all its eigenvalues are equal to 1. The
inaccuracy of the estimator V̂ is further manifested by the wide
range of its eigenvalues displayed in Figure 1. This numerical
experiment indicates that it is essential to reduce the number of
estimated parameters in such a high-dimensional problem.

This article considers high-frequency prices observed on a
large number of assets over many days. We propose a matrix
factor model for daily integrated volatility matrix processes.
The matrix factor model facilitates combining high-frequency
volatility estimation with low-frequency dynamic models as
well as reducing an effective dimension in large volatility ma-
trices. It is important to note that the proposed matrix factor

model is directly for integrated volatility matrices. Since prices
for different assets are typically observed at different times, it is
often impossible to apply an ordinary factor model to the origi-
nal price data directly. Nevertheless the available abundance of
the information in high-frequency data should make modeling
daily volatilities easier. Indeed the inference for our matrix fac-
tor model is more direct than that for the ordinary factor volatil-
ity models for price data.

Our estimation procedure consists of three steps. First we es-
timate integrated volatility matrix for each day by threshold-
ing average realized volatility matrix (TARVM) estimators. We
then perform an eigenanalysis to fit a matrix factor model for
the estimated daily integrated volatility matrices and obtain es-
timated daily factor matrices. Finally we fit a vector autore-
gressive (VAR) model for the estimated daily volatility factor
matrices. The proposed methodology pools together strengths
in modeling and estimation at both low-frequency and high-
frequency levels. In the univariate case where dimension reduc-
tion is not an issue, Andersen, Bollerslev, and Diebold (2003)
and Corsi (2009) demonstrated that the forecasting for volatil-
ities may be improved from fitting a heterogeneous AR model
to RV and BPRV based estimators of integrated volatilities. The
approach is termed as the HAR–RV model. Our proposal may
be viewed as a high-dimensional version of the HAR–RV ap-
proach based on new idea on matrix factor modeling.
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We have established novel asymptotic theory for the pro-
posed methodology in the framework that allows p (number of
assets), n (average sample size), and L (number of days) all go
to infinity. The established convergence rates for TARVM esti-
mators and the matrix factor model under matrix norm provide
a theoretical justification for the proposed methodology. These
results indicate that the relevant eigenvalues and eigenvectors in
the proposed factor modeling can be consistently estimated for
large p. We also show that fitting the VAR model with the esti-
mated daily volatility factor matrices from high-frequency data
is asymptotically as efficient as that with true daily volatility
factor matrices.

The rest of the article is organized as follows. The proposed
methodology is presented in Section 2. Its asymptotic theory is
established in Section 3. Numerical illustration is reported in
Section 4. Section 5 features conclusions. All proofs are col-
lected in the Appendix.

2. METHODOLOGY

2.1 Price Model and Observed Data

Suppose that there are p assets and their log price process
X(t) = {X1(t), . . . ,Xp(t)}T obeys an Itô process governed by

dX(t) = μt dt + σ t dWt, t ∈ [0,L], (1)

where L is an integer, Wt is a p-dimensional standard Brownian
motion, μt is a drift taking values in R

p, and σ t is a p×p matrix.
Both μt and σ t are assumed to be continuous in t. Let a day be
a unit time. The integrated volatility matrix for the �th day is
defined as

�x(�) =
∫ �

�−1
σ sσ

T
s ds, � = 1, . . . ,L.

Suppose that high-frequency prices for the ith asset on the
�th day are observed at times tij ∈ (� − 1, �], � = 1, . . . ,L.
We denote by Yi(tij) the observed log price of the ith asset at
time tij. Due to the so-called nonsynchronized problem, typi-
cally ti1j �= ti2j for any i1 �= i2. Furthermore the high-frequency
prices are typically masked by some microstructure noise in the
sense that the observed log price Yi(tij) is a noisy version of the
corresponding true log price Xi(tij). A common practice is to
assume

Yi(tij) = Xi(tij) + εi(tij), (2)

where εi(tij) are iid noise with mean zero and variance ηi, and
εi(·) and Xi(·) are independent with each other.

Let ni(�) be the sample size for asset i on the �th day, that
is, ni(�) = the number of tij ∈ (� − 1, �], n(�) = ∑p

i=1 ni(�)/p,
the average sample size of the p assets on the �th day, and n =∑L

�=1 n(�)/L, the average sample size across the p assets and
over all L days.

2.2 Realized Volatility Matrix Estimator

To highlight the basic idea in realized volatility matrix es-
timation, we first consider estimating �x(1), the integrated
volatility matrix on day one, by averaging realized volatility
matrix (ARVM) estimator proposed in Wang and Zou (2010).
Suppose that τ = {τr, r = 1, . . . ,m} is a predetermined sam-
pling frequency. For asset i, define previous-tick times

τi,r = max{tij ≤ τr, j = 1, . . . ,ni(1)}, r = 1, . . . ,m.

Based on τ we define realized covolatility between assets i1 and
i2 by

�̃y(1,τ )[i1, i2] =
m∑

r=1

[
Yi1

(
τi1,r

) − Yi1

(
τi1,r−1

)]
× [

Yi2

(
τi2,r

) − Yi2

(
τi2,r−1

)]
, (3)

and realized volatility matrix by

�̃y(1,τ ) = (�̃y(1,τ )[i1, i2])1≤i1,i2≤p. (4)

We take the predetermined sampling frequency τ as the fol-
lowing regular grids. Given a fixed m, there are K = [n(1)/m]
classes of nonoverlap regular grids given by

τ k = {(r − 1)/m, r = 1, . . . ,m} + (k − 1)/n(1)

= {(r − 1)/m + (k − 1)/n(1), r = 1, . . . ,m}, (5)

where k = 1, . . . ,K, and n(1) is the average sample size on
day one. For each τ k, using (3) and (4) we define realized co-
volatility �̃y(1,τ k)[i1, i2] between assets i1 and i2 and realized
volatility matrix �̃y(1,τ k). The ARVM estimator is given by

�̃y(1)[i1, i2] = 1

K

K∑
k=1

�̃y(1,τ k)[i1, i2] − 2mη̂i11(i1 = i2), (6)

�̃y(1) = (�̃y(1)[i1, i2]) = 1

K

K∑
k=1

�̃y(1,τ k) − 2mη̂, (7)

where

η̂i = 1

2ni(1)

ni(1)∑
j=1

[Yi(ti,j) − Yi(ti,j−1)]2, (8)

are estimators of noise variances ηi, and η̂ = diag(̂η1, . . . , η̂p)

is the estimator of η = diag(η1, . . . , ηp). The averaging in
(6) and (7) is to reduce the impact of microstructure noise on
realized volatility matrices �̃y(1,τ k) and yield a better ARVM
estimator.

When p is small, �̃y(1) provides a good estimator for �x(1).
But for large p, it is well known that �̃y(1) is inconsistent. In
fact, statistics theory for small n and large p or large n but much
larger p problems shows that the eigenvalues and the eigenvec-
tors of, for example, a sample covariance matrix or a realized
volatility matrix are inconsistent estimators for the correspond-
ing true eigenvalues and eigenvectors. The proposed methodol-
ogy in this article relies on consistent estimation of eigenvalues
and eigenvectors of large volatility matrices. To estimate �x(1)

consistently for large p, we need impose some sparsity structure
on �x(1) [see (18) in Section 3] and threshold �̃y(1) by retain-
ing its elements whose absolute values exceed a given value
and replacing others by zero. See Bickel and Levina (2008a,
2008b), Johnstone and Lu (2009), Wang and Zou (2010). We
threshold �̃y(1) and obtain an estimator

�̂y(1) = T� [�̃y(1)] = (
�̃y(1)[i1, i2]1(|�̃y[i1,i2]|≥�)

)
, (9)

where � is a threshold. The (i1, i2)th element of �̂y(1) is equal
to �̃y(1)[i1, i2] if its absolute value is greater than or equal to �

and zero otherwise. The threshold ARVM estimator �̂y(1) is
called TARVM estimator.
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Similarly, based on high-frequency data on the �th day we
construct ARVM estimator �̃y(�) and define TARVM estimator
�̂y(�) to provide an estimator for the integrated volatility matrix
�x(�), � = 2, . . . ,L.

2.3 A Matrix Factor Model

To reduce the effective number of entries in �x(�) and
connect high-frequency volatility matrix estimation with low-
frequency volatility dynamic models, we propose a factor
model as follows:

�x(�) = A�f (�)AT + �0, � = 1, . . . ,L, (10)

where r is a fixed small integer (much smaller than p), �0 is
a p × p positive definite constant matrix, �f (�) are r × r pos-
itive definite matrices and treated as factor volatility process,
and A is a p × r factor loading matrix. This effectively assumes
that the daily dynamical structure of the matrix process �x(�)

is driven by that of a lower-dimensional latent process �f (�),
while �0 represents the static part of �x(�). Although the form
of the above model is similar to the factor volatility models pro-
posed by, for example, Engle, Ng, and Rothschild (1990), the
key difference here is that we have the “observations” �̂y(·) di-
rectly on the volatility process �x(·). Since the high-frequency
prices are measured at the different times for different assets,
we cannot apply a factor model directly to the observed high-
frequency data Yi(tij).

The availability of the estimators for �x(·) from high-
frequency data makes it easier to estimate both the factor load-
ing matrix A and the factor volatility �f (·). In fact the estima-
tion problem now reduces to a standard eigenanalysis and can
be easily performed for p as large as a few thousands. This is
in marked contrast to the more standard circumstances when
only the observations on Xt are available; see, for example, Pan
and Yao (2008). To fix the idea, let us temporarily assume that
we observe �x(�). Note that there is no loss of generality in
assuming A in (10) satisfying the condition ATA = Ir . In fact,
A is still not completely identifiable even under this constraint,
however the linear space spanned by the columns of A is. Note
that there exists a p × (p − r) matrix B for which BTA = 0 and
BTB = Ip−r , that is, (A,B) is a p × p orthogonal matrix. Now
multiplying BT on both sides of (10), we obtain that

BT�x(�) = BT�0. (11)

Put

�̄x = 1

L

L∑
�=1

�x(�), S̄x = 1

L

L∑
�=1

{�x(�) − �̄x}2. (12)

Equation (11) implies that for all � = 1, . . . ,L, BT�x(�) =
BT�̄x, and

BT S̄xB = 1

L

L∑
�=1

{BT�x(�) − BT�̄x}{�x(�)B − �̄xB}

= 0. (13)

This suggests that the columns of B are the p − r orthonormal
eigenvectors of S̄x, corresponding to the (p − r)-fold eigen-
value 0. The other r orthonormal eigenvectors of S̄x, corre-
sponding to the r nonzero eigenvalues, may be taken as the
columns of the factor loading matrix A.

Of course �x(�) is unknown in practice. We use �̂y(�) as a
proxy. Let

�̄y = 1

L

L∑
�=1

�̂y(�), S̄y = 1

L

L∑
�=1

{�̂y(�) − �̄y}2, (14)

where �̂y(�) are TARVM estimators computed from high-
frequency data; see Section 2.2 above. Then the estimator Â
is obtained using the r orthonormal eigenvectors of S̄y, corre-
sponding to the r largest eigenvalues, as its columns. Conse-
quently the estimated factor volatilities are

�̂f (�) = ÂT�̂y(�)Â, � = 1, . . . ,L, (15)

and the estimator for �0 in model (10) may be taken as

�̂0 = �̄y − ÂÂT�̄yÂÂT . (16)

2.4 VAR Modeling for Factor Volatilities

With estimated factor volatility matrices in (15), we build up
the dynamical structure of �x(�) by fitting a VAR model to
�̂f (�). One alternative is to adopt more sophisticated multivari-

ate volatility models to fit �̂f (�) or �̂
1/2
f (�) (see Wang and Yao

2005 and Remark A.1 after Lemma A.6 in the Appendix). We
opt to a simple VAR model in the spirit of the HAR–RV ap-
proach advocated by Andersen, Bollerslev, and Diebold (2003)
and Corsi (2009). They demonstrate that fitting an AR model to
realized (one-dimensional) volatilities may lead to significant
improvement in volatility forecasting.

For a r × r matrix �, let vech(�) be the r(r + 1)/2 × 1 vec-
tor obtained by stacking together the truncated column vectors
of �, where the truncating means to remove all the elements
above the main diagonal. Then the VAR model for �f (�) is of
the form

vech{�f (�)} = α0 +
q∑

j=1

αj vech{�f (� − j)} + e�, (17)

where q ≥ 1 is an integer, α0 is a vector, α1, . . . ,αq are square
matrices, and e� is a vector white noise process with zero mean
and finite fourth moments. Since �f (�) are estimated by �̂f (�),
with a fixed q, we adopt the least squares estimators α̂j for the
coefficients αj, which are the minimizer of

L∑
�=q+1

∥∥∥∥∥vech{�̂f (�)} − α0 −
q∑

j=1

αi vech{�̂f (� − j)}
∥∥∥∥∥

2

,

where ‖ · ‖ denotes the Euclidean norm of a vector. The order q
may be determined by, for example, the standard criteria such
as AIC or BIC.

3. ASYMPTOTIC THEORY

First we introduce some notations. Given a p-dimensional
vector x = (x1, . . . , xp)

T and a p by p matrix U = (Uij), define
matrix norm as follows,

‖U‖2 = sup{‖Ux‖2,‖x‖2 = 1}, ‖x‖2 =
( p∑

i=1

|xi|2
)1/2

.

Then ‖U‖2 is equal to the square root of the largest eigenvalue
of UTU, where UT is the transpose of U, and for symmetric U,
‖U‖2 is equal to its largest absolute eigenvalue.
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Second we state the following assumptions for the asymp-
totic analysis.

(A1) We assume all row vectors of AT and �0 in factor
model (10) obey the sparsity condition (18) below. For
a p-dimensional vector x = (x1, . . . , xp)

T , we say it is
sparse if it satisfies

p∑
i=1

|xi|δ ≤ Cπ(p), (18)

where δ ∈ [0,1), C is a positive constant, and π(p) is a
deterministic function of p that grows slowly in p with
typical examples π(p) = 1 or log p.

(A2) Assume factor model (10) has fixed r factors, with
ATA = Ir , and matrices �0 and �f in (10) satisfy

‖�0‖2 < ∞, max
1≤�≤L

|�f (�)[j, j]| = OP(log L),

j = 1, . . . , r.

(A3) We impose the following moment conditions on diffu-
sion drift μt = (μ1(t), . . . ,μp(t))T and diffusion vari-
ance σ t = (σij(t))1≤i,j≤p in price model (1) and mi-
crostructure noise εi(tij) in data model (2): for some
β ≥ 4,

max
1≤i≤p

max
0≤t≤L

E
[|σii(t)|β

]
< ∞,

max
1≤i≤p

max
0≤t≤L

E
[|μi(t)|2β

]
< ∞,

max
1≤i≤p

max
0≤tij≤L

E
[|εi(tij)|2β

]
< ∞.

(A4) Each of p assets has at least one observation between
τ k

r and τ k
r+1. That is, in the construction of ARVM es-

timator we assume m = o(n), and

C1 ≤ min
1≤i≤p

min
1≤�≤L

ni(�)

n
≤ max

1≤i≤p
max

1≤�≤L

ni(�)

n
≤ C2,

max
1≤i≤p

max
1≤�≤L

max
1≤j≤ni(�)

|tij − ti,j−1| = O(n−1).

(A5) The characteristic polynomial of VAR model (17) has
no roots in the unit circle so that it is a casual VAR
model.

Remark 1. Condition (A1) together with factor model (10)
imply that �x(�) are sparse, which is required to consistently
estimate �x(�) for large p and will be shown by Lemma A.2
in the Appendix. When δ = 0 in (18), sparsity refers to that
there are at most Cπ(p) number of nonzero coordinates in
x = (x1, . . . , xp)

T , and matrix sparsity means that each row has
at most Cπ(p) number of nonzero elements. Sparsity is often
a reasonable assumption for large volatility matrices. We may
further improve sparsity for the volatility matrices by trans-
formations such as removing the overall market effect and the
sector effect. Condition (A2) imposes realistic bounded eigen-
values on �0 and a logarithm temporal growth on �f (�) over
[0,L]. As �0 is a constant matrix and �f (�) are small matrices
of fixed size r, Condition (A2) together with factor model (10)
guarantee that the maximum eigenvalue of �x(�) is free of p
and has only order log L, which will be proved in Lemma A.1
in the Appendix. The logarithm rate in (A2) is rather weak and

reasonable, as the maxima of sequences of independent and typ-
ically dependent random variables are of a logarithm order. The
assumption is to relieve from specifying temporal and cross-
section dependence structures on the volatilities over time and
across assets. Condition (A3) is the minimal moment require-
ments for the price process and microstructure noise. Condi-
tion (A4) is a technical condition that ensures adequate number
of observations between grids and establishes the asymptotic
theory for the proposed methodology. Condition (A5) is a stan-
dard condition for stationary AR time series.

We establish the asymptotic theory for the proposed models
and the associated estimation methods. Since p, n, and L stand
for dimension (number of assets), average daily observations,
and the number of days, we let p, n, and L all go to infinity in the
asymptotics. The two theorems below give the eigenvalue and
eigenvector convergence for the difference between S̄x and S̄y

defined in (12) and (14), respectively.

Theorem 1. Suppose models (1), (2) and (10) satisfy Condi-
tions (A1)–(A4). As n,p,L all go to infinity, we have

‖S̄y − S̄x‖2 = OP
(
π(p)

[
en(p

2L)1/β
]1−δ log2 L

)
,

where en ∼ n−1/6 for the noise case and en ∼ n−1/3 for the no
noise case [i.e., εi(tij) = 0 in (2)], and threshold � used in (9)
is of order en(p2L)1/β log L.

Theorem 2. Suppose models (1), (2), and (10) satisfy Condi-
tions (A1)–(A4). Denote the ordered eigenvalues of S̄x by λ1 ≥
· · · ≥ λp. Assume that there is a positive constant c such that
λj − λj+1 ≥ c for j = 1, . . . , r. Let a1, . . . ,ar be the eigenvec-
tors of S̄x corresponding to the r largest eigenvalues λ1, . . . , λr .
Also set λ̂1 ≥ · · · ≥ λ̂r be the r largest eigenvalues of S̄y and
â1, . . . , âr the corresponding eigenvectors. Let A = (a1, . . . ,ar)

and Â = (̂a1, . . . , âr). Then as n,p,L go to infinity, we have

ATÂ − Ir = OP
(
π(p)

[
en(p

2L)1/β
]1−δ log2 L

)
,

�̂f (�) − �f − AT�0A = OP
(
π(p)

[
en(p

2L)1/β
]1−δ log2 L

)
,

where en and � are the same as in Theorem 1, and since the
matrices are of fixed size r, the convergence holds under any
matrix norms.

Remark 2. Since en(p2L)1/β is powers of n,p,L while
π(p) log2 L depends on p and L through logarithm and thus
is negligible in comparison with [en(p2L)1/β ]1−δ . So the con-
vergence rate is nearly equal to [en(p2L)1/β ]1−δ . To consis-
tently estimate the r largest eigenvalues and their corresponding
eigenvectors of S̄x we need to make en(p2L)1/β go to zero. As
en ∼ n−1/3 for the noiseless case and n ∼ n−1/6 for the noise
case, en(p2L)1/β goes to zero if p2L grows more slowly than
nβ/3 for the noiseless case and nβ/6 for the noise case. For rea-
sonably large β in moment Assumption (A3), the consistent
requirement can accommodate the scenario when p is compa-
rable to or larger than n. Thus, Theorems 1 and 2 establish
the valid theoretical foundation for the proposed methodology
in the sense that it yields consistent estimators of the r largest
eigenvalues and their corresponding eigenvectors for the factor-
based analysis under the large p scenario.
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Next we establish asymptotic theory for parameter estimation
in the VAR model (17) based on high-frequency data.

Theorem 3. Suppose that α̂i are least squares estimators of
αi based on data �̂f (�) from the VAR model (17) and we de-
note by α̃i the least squares estimators of αi based on oracle
data �f (�) from the same VAR model (17). Then under Condi-
tions (A1)–(A5) and the eigenvalue assumption of Theorem 2,

α̂0 − α̃0 − vech{AT�0A} = OP
(
π(p)

[
en(p

2L)1/β
]1−δ log2 L

)
,

α̂i − α̃i = OP
(
π(p)

[
en(p

2L)1/β
]1−δ log2 L

)
, i = 1, . . . ,q.

In particular, as n,p,L → ∞, if π(p)[en(p2L)1/β ]1−δL1/2 ×
log2 L → 0, then

L1/2{̂α0 − α0 − vech(AT�0A), α̂1 − α1, . . . , α̂q − αq}
has the same limiting distribution as L1/2(α̃0 − α0, α̃1 − α1,

. . . , α̃q − αq).

Remark 3. Theorem 3 shows that the proposed data-driven
method of model fitting based on �̂f (�) estimated from high-
frequency data can asymptotically achieve the same result as
an oracle that uses true �f (�) for model fitting. In other words,
fitting the VAR model with the estimated daily volatility fac-
tor matrices from high-frequency data can be asymptotically as
efficient as that with true daily volatility factor matrices.

Remark 4. We may replace the ARVM estimator used in
the first stage by other volatility matrix estimators, for ex-
ample, in Barndorff-Nielsen et al. (2008, 2010), Christensen,
Kinnebrock, and Podolskij (2010), Griffin and Oomen (2011),
Hautsch, Kyj, and Oomen (2009), and Zhang (2011). However,
these estimators enjoy good properties only for the fixed ma-
trix size p that is very small relative to sample size. When
p is allowed to grow with sample size and its magnitude is
comparable to sample size, all the estimators become inconsis-
tent. Regularization adjustment such as thresholding is needed
to make them consistent. For example, to improve the conver-
gence rate of the ARVM estimator we may use the multiscale
scheme in Fan and Wang (2007, section 4.3) and Zhang (2006)
to construct the following multiscale realized volatility matrix
(MRVM) estimator,

�̃∗
y(1) =

κ∑
m=1

am�̂Km + ζ(�̂K1 − �̂Kκ ),

where κ is the integer part of
√

n, �̂Km is defined via (3) and (4)
as follows:

�̂Km = 1

Km

Km∑
k=1

�̃y(1,τ k)

=
(

1

Km

Km∑
k=1

�̃y(1,τ k)[i1, i2]
)

1≤i1,i2≤p

,

Km = m + κ, am = 12(m + κ)(m − κ/2 − 1/2)

κ(κ2 − 1)
,

ζ = (2κ)(κ + 1)

(n + 1)(κ − 1)
.

For fixed p and noisy data, the ARVM estimator �̃y(1) in (7)
has convergence rate n−1/6, while the MRVM estimator �̃∗

y(1)

can achieve the optimal convergence rate n−1/4 (Tao, Wang,
and Chen 2011). However, as p goes to infinity and p and n
are comparable, �̃∗

y(1) becomes inconsistent. Similar to (9) we

need to threshold �̃∗
y(1) and obtain

�̂∗
y(1) = T� [�̃∗

y(1)] = (
�̃∗

y (1)[i1, i2]1(|�̃∗
y [i1,i2]|≥�)

)
,

where � is a threshold. Similarly we can define �̂∗
y(�) for

� = 2, . . . ,L. If daily integrated volatility matrices �x(�) are
estimated by �̂∗

y(�) instead of �̂y(�) for performing eigenanal-
ysis and fitting the matrix factor and VAR models described in
Sections 2.3 and 2.4, we expect to obtain the same conclusions
as in Theorems 1–3 but with en ∼ n−1/4 for the noisy data case.

4. NUMERICAL EXAMPLES

We illustrate the proposed methodology with two sets of
high-frequency data, the tick by tick prices of the 410 stocks
traded in Shenzhen Stock Exchange and the 630 stocks traded
in Shanghai Stock Exchange over a period of 177 days in 2003.
The daily average intraday observations over the 177 days range
from 194 to 1384 with overall average 578 for the stocks traded
in the Shenzhen market and from 210 to 1620 with overall av-
erage 575 for the stocks traded in the Shanghai market.

4.1 Eigenanalysis Based on Estimated Daily Integrated
Volatility Matrices

For each of the 177 days, we compute the estimated daily in-
tegrated volatility matrices using TARVM estimator in (9) with
grids being selected in accord of 5 minute returns and thresh-
olds being the top 5% of the largest absolute entries. This yields
a sequence of 177 matrices of �̂y(�), � = 1, . . . ,L = 177, where
the daily integrated volatility matrices for Shenzhen and Shang-
hai datasets are of sizes 410 by 410 and 630 by 630, respec-
tively. The eigenvalues and eigenvectors of the sample variance
matrix S̄y are then evaluated, and the 20 largest eigenvalues,
multiplied by 1000, are plotted in Figures 2 and 3 for Shen-
zhen and Shanghai datasets, respectively. The plots show that
the largest eigenvalue for the Shenzhen data and the two largest
eigenvalues for the Shanghai data are much larger than the
corresponding other eigenvalues, which are in a much smaller
magnitude and decrease slowly.

4.2 A Simulation Study on Volatility Factor Selection

Theorems 1 and 2 imply that the eigenvalue difference be-
tween S̄y and S̄x converges in probability to zero, where S̄x

has r positive eigenvalues and p − r zero eigenvalues. Thus we
may select r such that the smallest p − r eigenvalues of S̄y are
close to 0 while the r largest eigenvalues are significantly larger.
Figures 2 and 3 suggest r = 1 and r = 2 for the datasets from
the Shenzhen and Shanghai Exchanges, respectively. We con-
duct a simulation study below to provide some support for such
empirical selection of r.

In the simulation study we consider two scenarios with r = 1
and r = 2, where p = 410 and L = 177. The simulation pro-
ceeds as follows. For the case of r = 1, we generate �f (�)

from an AR(1) model with mean, AR coefficient and noise
variance being (6,0.65,0.3) and then simulate �x(�) from the
matrix factor model (10) with loading matrix A formed by the
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(a)

(b)

Figure 2. Plots of the 20 largest eigenvalues of S̄y for the dataset from Shenzhen Stock Exchange. (a) The plot of all 20 largest eigenvalues.
(b) The plot of the second largest to 20th largest eigenvalues.

eigenvector corresponding to the largest eigenvalue of S̄y ob-
tained from the Shenzhen data. For the case of r = 2, we take
�f (�)[1,2] = �f (�)[2,1] = 0, and generate �f (�)[1,1] and
�f (�)[2,2] from two AR(1) models with mean, AR coefficient
and noise variance being (6,0.65,0.3) and (4,0.5,0.3), respec-
tively, and we simulate �x(�) from the matrix factor model (10)
with loading matrix A formed by the two eigenvectors corre-
sponding to the two largest eigenvalues of S̄y obtained from the
Shenzhen data.

We simulate high-frequency price data from model (1) with
zero drift by discretizing the diffusion equation

X(tk) = X(tk−1) + σ tk−1

[
Wtk − Wtk−1

]
,

where tk = � − 1 + k/n, k = 1, . . . ,n, n = 200, � = 1, . . . ,

177, during the period of the �th day, we take σtk to be
A[�f (�) + 0.32Zk]1/2AT , Zk = (Zk[j1, j2])1≤j1,j2≤r are r by r
matrices whose entries Zk[j1, j2] are standard normal random
variables with temporal correlation corr(Zk[j1, j2],Zk′ [j1, j2]) =
exp(−|k − k′|), and zero correlation for different entries, that
is, corr(Zk[j1, j2],Zk′ [j′1, j′2]) = 0 for (j1, j2) �= (j′1, j′2). Finally,
data Yi(tk) are obtained from model (2) by adding to X(tk)
iid normal noise with mean zero and standard deviation 0.064.
We calculate ARVM estimator �̃y(�) based on the data in the
�th day and the threshold estimator �̂y(�) as described in Sec-
tion 2.2. According to the description in Section 2.3 we com-
pute S̄y from �̂y(�) and then the eigenvalues and eigenvectors

of S̄y. We repeat the whole simulation procedure 100 times. As
in Wang and Zou (2010), estimators �̂y(�) are tuned to mini-
mize its estimated mean squares error based on 100 repetitions.
Figure 4 plots the 20 largest eigenvalues of S̄y over the 100 sim-
ulated samples for the cases of r = 1 and r = 2. The plots show
that for the case of r = 1, the largest eigenvalues are clustered
around 0.5, and for the case of r = 2, the two largest eigenval-
ues are fluctuated around 0.5 and 0.4, respectively, and these
large eigenvalues are much larger than other eigenvalues in the
corresponding cases, where these small eigenvalues are close to
zero. Moreover, the clusters in Figure 4 for the 100 simulated
samples are apparently quite tight and separate. The simulation
results indicate that the largest eigenvalue and the two largest
eigenvalues for the respective cases of r = 1 and r = 2 are sig-
nificant and hence the selection of volatility factors based on
large eigenvalues matches very well with the true values of r in
the corresponding cases.

The daily average intraday observations over the 177 days
for the stocks traded in the Shenzhen and Shanghai markets are
from around 200 to over 1000. As the simulation results re-
ported above are for the case with 200 intraday observations,
we have tried to increase intraday observations from 200 to 600
and 1000 in the simulation study and found the similar cluster
patterns for the eigenvalues. In fact, the eigenvalue clusters be-
come tighter as the number of intraday observations increases.

The procedure in Hansen and Lunde (2006) is used to cal-
culate the noise to signal ratios for the simulated and real
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(a)

(b)

Figure 3. Plots of the 20 largest eigenvalues of S̄y for the dataset from Shanghai Stock Exchange. (a) The plot of all 20 largest eigenvalues.
(b) The plot of the third largest to 20th largest eigenvalues.

(a)

(b)

Figure 4. Plots of the 20 largest eigenvalues of S̄y over 100 sim-
ulated samples. The horizontal axis indicates 100 simulated samples,
and the 20 largest eigenvalues of S̄y for each sample are plotted ver-
tically as 20 points. (a) and (b) correspond to the cases of r = 1 and
r = 2, respectively.

data. The average noise to signal ratio over 177 days is found
to be 0.009 and 0.002 for the stocks traded in the Shenzhen
and Shanghai markets, respectively. Noise standard deviation
0.064 used in the simulation amounts to average noise to signal
ratio 0.009. To replicate the noise to signal ratio scenarios in
the real data, we reduce the noise to signal ratio in the simula-
tion study by decreasing noise standard deviation from 0.064 to
0.02, which corresponds to average noise to signal ratio from
0.009 to 0.001. Again we have discovered that the eigenval-
ues exhibit the resembling patterns. Moreover, we find that the
smaller the noise standard deviations are, the tighter the eigen-
value clusters are.

We propose a data-dependent method to select m for ARVM
estimator defined in (6) and (7) as follows. Let m be the grid
number of presampling frequencies τ k in (5). To denote the
dependence on m, we add superscript m to daily ARVM es-
timators given by (6) and (7) and denote them by �̃

m
y (�) =

(�̃m
y (�)[i1, i2]) for the �th day, � = 1, . . . ,L. Since for each

(i1, i2), �̃m
y (�)[i1, i2] is a daily realized covolatility between as-

sets i1 and i2, we predict one day ahead daily realized covolatil-
ity by current daily realized covolatility and use predication er-
rors as a criterion to select m. Let

�(m) = 1

p2L

p∑
i1=1

p∑
i2=1

L∑
�=2

{�̃m
y (� − 1)[i1, i2] − �̃m

y (�)[i1, i2]}2.
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The value of m is selected by minimizing �(m), and then used
for ARVM estimator �̃

m
y (�) defined in (6) and (7).

4.3 Matrix Factor Model and VAR Model Fitting

The patterns exhibited in Figures 2 and 3 and the simula-
tion study lead us to select r = 1 and r = 2 for the Shenzhen
and Shanghai datasets, respectively. We proceed our analysis
for the Shenzhen Stock Exchange data with r = 1. Let Â be the
eigenvector of S̄y corresponding to the largest eigenvalue. We
then evaluate the factor volatility sequence �̂f (�) = ÂT�̂y(�)Â,
� = 1, . . . ,L = 177, which is now a univariate time series. An
AR(3) model, selected from PACF together with AIC and BIC,
is fitted to the time series �̂f (�). Figure 5 displays the time
series plots and the ACF plots of both the original time se-
ries �̂f (�) and the residuals resulted from the AR(3) fitting.
It shows that the factor model and also the AR(3) model for
factors provide reasonably good fittings to the data.

Now we move to the analysis of the Shanghai Stock Ex-
change data with r = 2. The estimator Â of factor loadings A is
taken to be the 2 × 630 matrix consisting of the two eigenvec-
tors of S̄y corresponding to the two largest eigenvalues. Now

the daily factor volatilities �̂f (�) = ÂT�̂y(�)Â, � = 1, . . . ,L =
177, is a series of 2 × 2 matrices.

Take the two diagonal elements and one off-diagonal element
from �̂f (�) to form trivariate time series vech{�̂f (�)}, which is
plotted in Figure 6. We fit vech{�̂f (�)} to the VAR model and
use AIC and BIC criteria to select its order q.

The fitting yields a VAR model of order q = 2 with the esti-
mated coefficients

α̂0 =
(0.008

0.003
0.008

)
, α̂1 =

( 0.016 0.099 0.162
−0.232 −0.396 0.822
−0.407 −0.747 1.218

)
,

α̂2 =
(0.523 1.295 −0.981

0.109 0.262 −0.203
0.387 0.961 −0.649

)

and the estimated innovation covariance matrix( 0.0045 −0.0011 0.0010
−0.0011 0.0006 0.0002
0.0010 0.0002 0.0007

)
.

(a) (b)

(c) (d)

(e) (f)

Figure 5. Fitting Shenzhen data: (a) time plot of factor volatility series, (b) ACF of factor volatility series, (c) PACF of factor volatility series,
(d) time plot of the residuals from the AR(3) fitting, (d) ACF of the residuals, and (e) PACF of the residuals. The online version of this figure is
in color.
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(a)

(b)

(c)

Figure 6. Time plots for vech(�̂f ) for the Shanghai Stock Exchange data. (a) and (b) correspond to the first and second diagonal elements
of �̂f , respectively, with (c) for the off-diagonal element of �̂f .

The ACFs of vech{�̂f (�)} plotted in Figure 7 show that the
factor volatility series are highly correlated. Figure 8(a)–(c) dis-
plays the residuals resulted from above model fitting, whose
ACFs are plotted in Figure 9. These plots indicate that the
VAR(2) model provides adequate fit to the data.

5. CONCLUSIONS

In this article, we have proposed a novel approach to model
the volatility and covolatility dynamics of daily returns for a
large number of financial assets based on high-frequency intra-
day data. The core of the proposed method is to impose a matrix
form of factor model on the sparse versions of realized volatil-
ity estimators obtained via thresholding. The fitting of the factor
model boils down to an eigen-analysis for a nonnegative defi-
nite matrix, and therefore is feasible with an ordinary PC when
the number of assets is in the order of a few thousands. The
asymptotic theory is developed in the manner that the number of
assets, the numbers of intraday observations and the number of
days concerned go to infinity all together. Numerical illustration
with intraday prices from both Shenzhen and Shanghai markets
indicates that the factor modeling strategy works effectively as

the daily volatility dynamics of all the assets in those two mar-
kets was driven by one (for Shenzhen) or two (for Shanghai)
common factors.

As far as we are aware, this work represents the first at-
tempt to use high-frequency data to model ultra-high dimen-
sional volatility matrices and combine high-frequency volatility
matrix estimation with low-frequency volatility dynamic mod-
els. While the approach yields new volatility estimation and
prediction procedures that are better than methods only based
on either high-frequency volatility estimation or low-frequency
volatility dynamic modeling, we leave some open issues as well
as a number of important future research topics. For example,
volatility factors are important both statistically and economi-
cally, it is desirable to have data-driven methods to select the
number of significant factors for fitting the VAR model. The
ARVM estimator is used to estimate daily volatility matrices
and perform eigen-analysis in Sections 2.2 and 2.3, it is very
interesting and challenging to investigate the performance of
the methodology when other volatility matrix estimators in-
stead of the ARVM estimator are employed. Large volatility
matrix prediction is another important research topic. For ex-
ample, the fitted matrix factor and VAR(2) models obtained
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Figure 7. ACF plots of the corresponding factor volatility vech(�̂f ) displayed in Figure 6 for the dataset from Shanghai Stock Exchange. The
three plots on diagonal correspond to the ACFs of three factor volatility components with off-diagonal plots for their cross ACFs. The online
version of this figure is in color.

from Shanghai market data can be used to forecast future in-
tegrated volatility matrix by first predicting h-step ahead factor
volatility �f (L + h) from the derived VAR(2) model and then
using matrix factor model (10) to evaluate h-step ahead forecast
of integrated volatility matrix �x(L + h). However, for the pre-
diction of large volatility matrices, we need to properly gauge
the predict error and investigate the impact of matrix size on the
prediction.

APPENDIX: PROOFS OF THEOREMS

Besides matrix norm, we need other two �d norms. Given a
p-dimensional vector x = (x1, . . . , xp)T and a p by p matrix U = (Uij),
define their �d-norms as follows:

‖x‖d =
( p∑

i=1

|xi|d
)1/d

,

‖U‖d = sup{‖Ux‖d,‖x‖d = 1}, d = 1,2,∞.

Note the facts that ‖U‖2 is equal to the square root of the largest eigen-
value of UT U,

‖U‖1 = max
1≤j≤p

p∑
i=1

|Uij|, ‖U‖∞ = max
1≤i≤p

p∑
j=1

|Uij|,

and

‖U‖2
2 ≤ ‖U‖1‖U‖∞.

For symmetric U, ‖U‖2 is equal to its largest absolute eigenvalue, and
‖U‖2 ≤ ‖U‖1 = ‖U‖∞. Denote by C generic constant whose value
may change from appearance to appearance.

Before proving theorems we need to establish six lemmas. Lemmas
A.1 and A.2 show that Condition (A2) gives an order for ‖�x(�)‖2
while Condition (A1) together with (A2) guarantee sparsity for all
�x(�).

Lemma A.1. Assumption (A2) implies that the maximum eigen-
value of �x(�) are bounded uniformly over � = 1, . . . ,L, that is,

max
1≤�≤L

‖�x(�)‖2 = OP(log L).
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(a)

(b)

(c)

Figure 8. Time plots of the residuals resulted from a VAR(2) fitting to vech(�̂f ) for the Shanghai Stock Exchange data. (a) and (b) correspond
to the first and second diagonal elements of �̂f , respectively, and (c) to the off-diagonal element of �̂f .

Proof. From factor model (10) and submultiplicative property of
norm ‖ · ‖2 (i.e., ‖UV‖2 ≤ ‖U‖2‖V‖2 for matrices U and V), we have

‖�x(�)‖2 ≤ ‖A�f (�)A
T + �0‖2 ≤ ‖A‖2‖�f (�)‖2‖AT‖2 + ‖�0‖2

≤ r2
r∑

j=1

�f (�)[j, j] + ‖�0‖2,

where we use the facts that since ‖AT‖2,‖A‖2 ≤ trace(AAT ) =
trace(AT A) = r, and ‖�f (�)‖2 ≤ trace(�f (�)) = ∑r

j=1 �f (�)[j, j].
The lemma is a direct consequence of Assumption (A2).

Lemma A.2. Assumptions (A1) and (A2) imply sparsity for �x(�)

uniformly over � = 1, . . . ,L, that is,

p∑
j=1

|�x(�)[i, j]|δ ≤ Mπ(p,L), i = 1, . . . ,p, � = 1, . . . ,L, (A.1)

where M is a positive random variable, π(p,L) = π(p) logδ L, and δ

and π(p) are given as in Assumption (A1).

Proof. First we give an inequality that for any y1, . . . , ym,( m∑
j=1

|yj|
)δ

≤
m∑

j=1

|yj|δ. (A.2)

Take wj = |yj|/
∑m

j=1 |yj|. Then
∑m

j=1 wj = 1, 0 ≤ wj ≤ 1, and wδ
j ≥

wj. The inequality is proved as follows:

m∑
j=1

wδ
j ≥

m∑
j=1

wj = 1.

Inequality (A.2) indicates that the sum of two sparse matrices are also
sparse. Thus with Condition (A1) and (10) it is enough to show that
A�f (�)AT is sparse for � = 1, . . . ,L.

Let A = (aij), �f (�) = (�f (�)[i, j]), U = A�f (�)AT = (uij), and
G = max{|�f (�)[i, j]|, � = 1, . . . ,L, i, j = 1, . . . , r}. Since �f (�) are
positive definite, (A2) implies that G = OP(log L). Hence,

|uij|δ =
∣∣∣∣∣

r∑
h=1

r∑
k=1

aih�f (�)[h, k]ajk

∣∣∣∣∣
δ

≤
r∑

h=1

r∑
k=1

|aih�f (�)[h, k]ajk|δ

(A.3)

≤ Gδ
r∑

h=1

r∑
k=1

|aihajk|δ,

p∑
j=1

|uij|δ ≤ Gδ
r∑

h=1

r∑
k=1

|aih|δ
p∑

j=1

|ajk|δ ≤ r2CGδπ(p),
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Figure 9. ACF plots of the corresponding three residual components in Figure 8 for the dataset from Shanghai Stock Exchange. The three
plots on diagonal correspond to the ACFs of three residual components with off-diagonal plots for their cross ACFs. The online version of this
figure is in color.

where the last inequality is from the facts that the elements of A
are bounded by 1 and the column vectors of A obey (18). As G =
OP(log L), the bound r2CGδπ(p) on the right-hand side of (A.3) can
be expressed as Mπ(p,L).

The next lemma derives the summation results under the established
sparsity in Lemma A.2.

Lemma A.3. The sparsity established in Lemma A.2 for all �x(�)

infers that for any fixed a > 0,

max
1≤�≤L

max
1≤i≤p

p∑
j=1

|�x(�)[i, j]|1(|�x(�)[i, j]| ≤ a�
)

(A.4)
= OP(π(p,L)� 1−δ),

max
1≤�≤L

max
1≤i≤p

p∑
j=1

1
(|�x(�)[i, j]| ≥ a�

) = OP(π(p,L)�−δ). (A.5)

Proof. With simple algebraic manipulations we obtain

max
1≤�≤L

max
1≤i≤p

p∑
j=1

|�x(�)[i, j]|1(|�x(�)[i, j]| ≤ a�
)

≤ (a�)1−δ max
1≤�≤L

max
1≤i≤p

p∑
j=1

|�x(�)[i, j]|δ1
(|�x(�)[i, j]| ≤ a�

)

≤ (a�)1−δ max
1≤�≤L

max
1≤i≤p

p∑
j=1

|�x(�)[i, j]|δ ≤ (a�)1−δMπ(p,L)

= OP(π(p,L)� 1−δ),

which proves (A.4). Equation (A.5) is proved as follows:

max
1≤�≤L

max
1≤i≤p

p∑
j=1

1
(|�x(�)[i, j]| ≥ a�

)

≤ max
1≤�≤L

max
1≤i≤p

p∑
j=1

( |�x(�)[i, j]|
a�

)δ

1
(|�x(�)[i, j]| ≥ a�

)
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≤ (a�)−δ max
1≤�≤L

max
1≤i≤p

p∑
j=1

|�x(�)[i, j]|δ

≤ (a�)−δMπ(p,L) = OP(π(p,L)�−δ).

The next two lemmas are results about ARVM estimator �̃y(�) that
we need later to establish a convergence rate for TARVM estimator
�̂y(�).

Lemma A.4. Under models (1)–(2) and Conditions (A3)–(A4) we
have for all 1 ≤ i, j ≤ p and 1 ≤ � ≤ L,

E
(|�̃y(�)[i, j] − �x(�)[i, j]|β) ≤ Ceβ

n , (A.6)

where C is a generic constant free of n, p, and L, and the convergence
rate en is specified as en ∼ n−1/6 for the noise case and en ∼ n−1/3

for the noiseless case [i.e., εi(tij) = 0 in (2)].

Proof. The lemma is a consequence of applying Theorem 1 in
Wang and Zou (2010) to the current set-up.

Lemma A.5. Under Conditions (A1)–(A4), we have

max
1≤�≤L

max
1≤i,j≤p

|�̃y(�)[i, j] − �x(�)[i, j]|

= OP
(
en(p2L)1/β

) = oP(�), (A.7)

P

(
max

1≤�≤L
max

1≤i≤p

p∑
j=1

1
{|�̃y(�)[i, j] − �x(�)[i, j]| ≥ �/2

}
> 0

)

= o(1), (A.8)

max
1≤�≤L

max
1≤i≤p

p∑
j=1

1
(|�̃y(�)[i, j]| ≥ �, |�x(�)[i, j]| < �

)
= OP(π(p)�−δ), (A.9)

where � is as in Theorem 1.

Proof. Taking d = d1en(p2L)1/β and applying Markov inequality
and (A.6), we have

P
(

max
1≤�≤L

max
1≤i,j≤p

|�̃y(�)[i, j] − �x(�)[i, j]| > d
)

≤
L∑

�=1

p∑
i,j=1

P
(|�̃y(�)[i, j] − �x(�)[i, j]| > d

)

≤ Cp2Leβ
n

dβ
= C

dβ
1

→ 0,

as p,n,L → ∞ and then d1 → ∞. This proves (A.7), using which we
can obtain

P

(
max

1≤�≤L
max

1≤i≤p

p∑
j=1

1
{|�̃y(�)[i, j] − �x(�)[i, j]| ≥ �/2

}
> 0

)

≤ P
(

max
1≤�≤L

max
1≤i,j≤p

|�̃y(�)[i, j] − �x(�)[i, j]| ≥ �/2
)

≤ 2βp2LCeβ
n

�β
= 2βC

logβ L
→ 0,

as n,p,L → 0, which proves (A.8). Then we apply (A.5) and (A.8) to
show (A.9) as follows.

max
1≤�≤L

max
1≤i≤p

p∑
j=1

1
(|�̃y(�)[i, j]| ≥ �, |�x(�)[i, j]| < �

)

≤ max
1≤�≤L

max
1≤i≤p

p∑
j=1

1
(|�̃y(�)[i, j]| ≥ �, |�x(�)[i, j]| ≤ �/2

)

+ max
1≤�≤L

max
1≤i≤p

p∑
j=1

1
(|�̃y(�)[i, j]| ≥ �,

�/2 < |�x(�)[i, j]| < �
)

≤ max
1≤�≤L

max
1≤i≤p

p∑
j=1

1
(|�̃y(�)[i, j] − �x(�)[i, j]| ≥ �/2

)

+ max
1≤l≤L

max
1≤i≤p

p∑
j=1

1
(|�x(�)[i, j]| > �/2

)
≤ oP(1) + 2δMπ(p,L)�−δ = OP(π(p,L)�−δ).

The next lemma provides the convergence rate for TARVM estima-
tor �̂y(�) under matrix norm uniformly over all �.

Lemma A.6. Under Conditions (A1)–(A4) we have

max
1≤�≤L

‖�̂y(�) − �x(�)‖2 = OP(π(p,L)� 1−δ)

= OP
(
π(p)

[
en(p2L)1/β

]1−δ log L
)
,

where en and � are as in Theorem 1.

Proof. Using the relationship between �2 and �∞ norms and trian-
gle inequality, we have

max
1≤�≤L

‖�̂y(�) − �x(�)‖2 ≤ max
1≤�≤L

‖�̂y(�) − �x(�)‖∞

≤ max
1≤�≤L

∥∥�̂y(�) − T� [�x(�)]
∥∥∞︸ ︷︷ ︸

I

+ max
1≤�≤L

∥∥T� [�x(�)] − �x(�)
∥∥∞︸ ︷︷ ︸

II

.

Lemma A.3 implies

II = max
1≤�≤L

max
1≤i≤p

p∑
j=1

|�x(�)[i, j]|1(|�x(�)[i, j]| ≤ �
)

= OP(π(p,L)� 1−δ).

This lemma is proved by showing that I is also of order π(p,L)� 1−δ

in probability. Indeed, we have

I ≤ max
1≤�≤L

max
1≤i≤p

p∑
j=1

|�̃y(�)[i, j] − �x(�)[i, j]|

× 1
(|�̃y(�)[i, j]| ≥ �, |�x(�)[i, j]| ≥ �

)
+ max

1≤�≤L
max

1≤i≤p

p∑
j=1

|�̃y(�)[i, j]|

× 1
(|�̃y(�)[i, j]| ≥ �, |�x(�)[i, j]| < �

)
+ max

1≤�≤L
max

1≤i≤p

p∑
j=1

|�x(�)[i, j]|

× 1
(|�̃y(�)[i, j]| < �, |�x(�)[i, j]| ≥ �

)
≤ max

1≤�≤L
max

1≤i,j≤p
|�̃y(�)[i, j] − �x(�)[i, j]|
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× max
1≤�≤L

max
1≤i≤p

p∑
j=1

1
(|�x(�)[i, j]| ≥ �

)

+ max
1≤�≤L

max
1≤i≤p

p∑
j=1

|�x(�)[i, j]|1(|�x(�)[i, j]| < �
)

+ max
1≤�≤L

max
1≤i,j≤p

|�̃y(�)[i, j] − �x(�)[i, j]|

× max
1≤�≤L

max
1≤i≤p

p∑
j=1

1
(|�̃y(�)[i, j]| ≥ �, |�x(�)[i, j]| < �

)

+ � max
1≤�≤L

max
1≤i≤p

p∑
j=1

1
(|�x(�)[i, j]| ≥ �

)
+ max

1≤�≤L
max

1≤i,j≤p
|�̃y(�)[i, j] − �x(�)[i, j]|

× max
1≤�≤L

max
1≤i≤p

p∑
j=1

1
(|�x(�)[i, j]| ≥ �

)
= oP(�)Op(π(p,L)�−δ) + Op(π(p,L)� 1−δ)

+ oP(�)Op(π(p,L)�−δ) + �Op(π(p,L)�−δ)

= Op(π(p,L)� 1−δ) = OP
(
π(p)

[
en(p2L)1/β

]1−δ log L
)
,

where the orders in the second to last equality are due to (A.4), (A.5),
(A.7), and (A.9).

Remark A.1. As we have discussed in Remark 2 after Theorems
1 and 2 in Section 3, the convergence rate in Lemma A.6 indicates that
for reasonably large β in moment Assumption (A3), �̂y(�) provide
consistent estimators of �x(�) under matrix norm for large p and n.
As a consequence, �̂f (�) defined in (15) are consistent estimators of
�f (�) under the matrix norm and in particular, with probability tending
to one, �̂f (�) are semipositive definite. For finite samples, to ensure
the semipositive definiteness of �̂y we may simply replace the negative
eigenvalues of �̂y by zero, and hence �̂f (�) are semipositive definite.

Thus, we may build a VAR model for �
1/2
f (�) instead of �f (�) and fit

the model to �̂
1/2
f (�).

Proof of Theorem 1

Due to the triangle inequality and submultiplicative property of
norm ‖ · ‖2, we have

‖S̄y − S̄x‖2 =
∥∥∥∥∥ 1

L

L∑
�=1

{�̂y(�) − �̄y}2 − 1

L

L∑
�=1

{�x(�) − �̄x}2

∥∥∥∥∥
2

=
∥∥∥∥∥ 1

L

L∑
�=1

[�̂y(�)]2 − �̄
2
y − 1

L

L∑
�=1

�2
x(�) + �̄

2
x

∥∥∥∥∥
2

≤
∥∥∥∥∥ 1

L

L∑
�=1

[�̂y(�)]2 − 1

L

L∑
�=1

�2
x(�)

∥∥∥∥∥
2

+ ‖�̄2
y − �̄

2
x‖2

≤ 1

L

L∑
�=1

‖�̂y(�) − �x(�)‖2 · {‖�̂y(�)‖2 + ‖�x(�)‖2
}

+
(

1

L

L∑
�=1

‖�̂y(�) − �x(�)‖2

)

×
(

1

L

L∑
�=1

{‖�̂y(�)‖2 + ‖�x(�)‖2
})

,

≤ 2 max
1≤�≤L

|�̂y(�) − �x(�)|2

×
(

max
1≤�≤L

‖�̂y(�) − �x(�)‖2 + 2 max
1≤l≤L

‖�x(�)‖2

)
,

which can be easily shown to have order

π(p,L)� 1−δ log L = π(p)� 1−δ log1+δ L

∼ π(p)
[
en(p2L)1/β

]1−δ log2 L

in probability from an application of Lemmas A.1, A.2, and A.6. The
proof is completed.

Proof of Theorem 2

First we show

max
1≤j≤r

|̂λj − λj| = OP
(
π(p)[en(p2L)1/β ]1−δ log2 L

)
, (A.10)

max
1≤j≤r

‖̂aj − aj‖2 = OP
(
π(p)[en(p2L)1/β ]1−δ log2 L

)
. (A.11)

Since ‖ · ‖2 is equal to the largest absolute eigenvalue, and the top r
eigenvalues of S̄x are separated by a constant c, thus

max
1≤j≤r

|̂λj − λj| ≤ ‖S̄y − S̄x‖2,

and (A.10) is a consequence of Theorem 1. The second result (A.11)
follows directly from Theorem 1 and the same argument in the proof
of theorem 5 in Bickel and Levina (2008a) (or theorem 6.1 of Kato
1966). Now we will use (A.10) and (A.11) to prove the two results in
Theorem 2. From (A.11) we have for diagonal entry j of AT Â,

aT
j âj = 1 − ‖̂aj − aj‖2/2 = 1 + OP

(
π(p)

[
en(p2L)1/β

]1−δ log2 L
)
,

and for off-diagonal entry (k, j) (k �= j),

|aT
k âj| = |aT

k (̂aj − aj)| ≤ ‖aT
k ‖2‖̂aj − aj‖2

= ‖̂aj − aj‖2 = OP
(
π(p)

[
en(p2L)1/β

]1−δ log2 L
)
.

To prove the second result in Theorem 2, we use factor model (10) and
estimator �̂f in (15) to obtain

�̂f (�) − �f (�) − AT�0A

= ÂT {�̂y(�) − �x(�)}Â + ÂT�x(�)Â − �f (�) − AT�0A

= ÂT [�̂y(�) − �x(�)]Â + {(AT Â)T�f (�)A
T Â − �f (�)}

+ {ÂT�0Â − AT�0A}. (A.12)

For the first term on the right-hand side of (A.12), since∥∥ÂT [�̂y(�) − �x(�)]Â
∥∥

2 ≤ ‖ÂT‖2‖�̂y(�) − �x(�)‖2‖Â‖2,

and the columns of Â are orthonormal vectors, we have

‖ÂT‖2
2,‖Â‖2

2 ≤ trace(ÂÂT ) = trace(ÂT Â) = r.

From Theorem 1, we conclude∥∥ÂT [�̂y(�) − �x(�)]Â
∥∥

2 ≤ ‖�̂y(�) − �x(�)‖2

= OP
(
π(p)

[
en(p2L)1/β

]1−δ log2 L
)
.

As ÂT [�̂y(�) − �x(�)]Â is r by r matrix, matrix norm convergence
implies convergence in element, so the first term is proved to be of a
desired order. Note �f (�) are r by r matrices, from Condition (A2) we
easily conclude that the second term on the right-hand side of (A.12)
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is of the order AT Â − Ir , which has the requested order. For the third
term on the right-hand side of (A.12) we have

‖ÂT�0Â − AT�0A‖2

≤ ‖(Â − A)T�0Â + AT�0(Â − A)‖2

≤ ‖(Â − A)T�0Â‖2 + ‖AT�0(Â − A)‖2

≤ ‖(Â − A)T‖2‖�0‖2‖Â‖2 + ‖AT‖2‖�0‖2‖(Â − A)‖2

= ‖Â − A‖2‖�0‖2[‖Â‖2 + ‖A‖2‖].

Condition (A2) guarantees that ‖�0‖2 is bounded, it has been shown
that ‖A‖2 ≤ r and ‖Â‖2 ≤ r, and

‖Â − A‖2
2 ≤ trace(Â − A)(Â − A)T = trace(Â − A)T (Â − A)

= 2 trace(Ir − AT Â) = OP
(
π(p)

[
en(p2L)1/β

]1−δ log2 L
)
.

Therefore, the third term in (A.12) is also of correct order. With all
three terms on the right-hand side of (A.12) of order π(p)[en(p2 ×
L)1/β ]1−δ log2 L in probability, we establish the second result in the
theorem.

Proof of Theorem 3

As α̃i are the standard least squares estimators of αi in the VAR
model (17) based on oracle data �f (�), asymptotic theory for the VAR
model shows that as L → ∞,

L1/2(α̃0 − α0, . . . , α̃q − αq) (A.13)

converges in distribution to a zero mean multivariate normal distribu-
tion. With

�̂f (�) = ÂT �̂y(�)Â,

from Theorem 2, we have

�̂f (�) = �f (�) + AT�0A + OP
(
π(p)

[
en(p2L)1/β

]1−δ log2 L
)
.

Since AT�0A is a constant matrix free of �, �̂f (�) obeys the same
VAR model (17) for �f (�) with an extra constant vech[AT�0A]
adding to α0 and a negligible error term of order π(p)[en(p2 ×
L)1/β ]1−δ log2 L. Plugging �̂f (�) into the expressions of the least
squares estimators of coefficients αi in the VAR model we immedi-
ately show that the least squares estimators based on �̂f (�) and oracle
data �f (�) satisfy

α̂0 − α̃0 − vech(AT�0A) = OP
(
π(p)

[
en(p2L)1/β

]1−δ log2 L
)
,

α̂i − α̃i = OP
(
π(p)

[
en(p2L)1/β

]1−δ log2 L
)
, i = 1, . . . ,q.

The common limiting distribution stated in the theorem is a sequence

of above results and (A.13).

[Received May 2010. Revised February 2011.]
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