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Financial practices often need to estimate an integrated volatility matrix of a large
number of assets using noisy high-frequency data. Many existing estimators of
a volatility matrix of small dimensions become inconsistent when the size of the
matrix is close to or larger than the sample size. This paper introduces a new type
of large volatility matrix estimator based on nonsynchronized high-frequency data,
allowing for the presence of microstructure noise. When both the number of assets
and the sample size go to infinity, we show that our new estimator is consistent and
achieves a fast convergence rate, where the rate is optimal with respect to the sample
size. A simulation study is conducted to check the finite sample performance of the
proposed estimator.

1. INTRODUCTION

High-frequency financial data provide academic researchers and industry prac-
titioners with an incredible experiment for analyzing financial markets, in par-
ticular for understanding market microstructure and estimating market volatility.
With high-frequency data, researchers are able to estimate volatilities directly
from the data and to better model the volatility dynamics. There is already rapidly
growing literature on volatility estimation using high-frequency data. These esti-
mation methods include Kristensen (2010) and Zhang, Mykland, and Aı̈t-Sahalia
(2005) for the single asset case and Ait-Sahalia, Fan, and Xiu (2010), Christensen,
Kinnebrock, and Podolskij (2010), and Zhang (2011) for the multiple asset case.

All these existing volatility estimators perform well for a single asset or a small
number of assets. However, when estimating volatility matrices of a large number
of assets, Wang and Zou (2010) and Tao, Wang, Yao, and Zou (2011) show that
the existing volatility matrix estimators have poor performance and in fact are
inconsistent when both the number of assets and the sample sizes go to infinity.
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To the best of our knowledge, Wang and Zou (2010) is the first to propose a con-
sistent estimator for large integrated volatility matrices using high-frequency data,
allowing for both the number of assets and the sample sizes to go to infinity. Tao
et al. studied the dynamics of volatility matrices for a large number of assets by
combining both high-frequency and low-frequency approaches. The convergence
rates established for the large-matrix estimators in Wang and Zou and in Tao et al.
depend on sample sizes with 1/6-exponent, and hence are suboptimal.

In this paper we propose a new estimator of large integrated volatility ma-
trices using high-frequency data, and we prove that when both the number of
assets and we the sample sizes go to infinity, it can achieve a fast convergence rate
that depends on sample size with 1/4-exponent, which is optimal in the presence
of microstructure noise. Our asymptotic theory is established under the general
diffusion setup with microstructure noise in the data and realistic finite moment
condition on asset prices, instead of the restrictive Gaussian or sub-Gaussian
conditions imposed in the current statistics literature on large covariance matrix
estimation.

The rest of the paper proceeds as follows. Section 2 describes the large dimen-
sional price process and the data structure. Section 3 presents the new estimator.
Section 4 establishes the fast convergence rate for the proposed estimator. Sec-
tion 5 provides numerical results to illustrate the finite-sample performance of the
estimator. All the proofs are given in Section 6.

2. THE MODEL SETUP

Let p be the number of assets in the study and denote by Xi (t) the true log price
at time t of the i th asset, i = 1, . . . , p. Denote by X(t) = (X1(t), . . . , X p(t))T the
vector of the true log prices at time t of p assets. The common approach in finance
assumes that X(t) follows a continuous-time diffusion model,

dX(t) = μt dt +σT
t dBt , t ∈ [0,1], (1)

where μt = (μ1(t), . . . ,μp(t))T is the drift, Bt = (B1t , . . . , Bpt )
T is a standard

p-dimensional Brownian motion, and σt is a p-by-p matrix with γ(t) = σT
t σt

being the volatility matrix of X(t). The parameter of interest is the integrated
volatility matrix

Γ= (
�i j
)

1≤i, j≤p =
∫ 1

0
γ(t)dt =

∫ 1

0
σT

t σt dt.

Instead of observing the underlying true log price process Xi (t) in continu-
ous time, we observe Yi (ti�), the high-frequency noisy observations of Xi (·) at
times ti�, � = 1, . . . ,ni , i = 1, . . . , p. When estimating covolatilities of multiple
assets based on high-frequency data, we encounter a well-known nonsynchro-
nized problem, which refers to the fact that transactions for different assets often
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occur at distinct times, and the high-frequency prices of different assets are
recorded at mismatched time points. We allow the observations Yi (ti�) to be non-
synchronized (that is, ti� �= tj� for any i �= j). Because of microstructure noise in
the high-frequency data, the observed log price Yi (ti�) is a noisy version of the
corresponding true log price Xi (ti�). In this paper, for the sake of simplicity we
assume

Yi (ti�) = Xi (ti�)+ εi (ti�), i = 1, . . . , p, � = 1, . . . ,ni , (2)

where εi (ti�), i = 1, . . . , p, � = 1, . . . ,ni , are independent noises with mean zero,
for each fixed i , εi (ti�), � = 1, . . . ,ni , are independent and identically distributed
(i.i.d.) random variables with variance ηi , and εi (·) and Xi (·) are independent.
Here we adopt the i.i.d noise assumption for mathematical simplicity. We may
relax the i.i.d. assumption to correlated noises such as the case considered in
Ait-Sahalia, Mykland, and Zhang (2011) and still obtain the same convergence
rates as in Section 4.

Our goal is to provide a new consistent estimator of the integrated volatility
matrix Γ = (

�i j
)

1≤i, j≤p based on noisy and nonsynchronized high-frequency
observations Yi (ti�), � = 1, . . . ,ni , i = 1, . . . , p, when p is very large. Recently
Wang and Zou (2010) provided one consistent estimator when both p and the
sample size can go to infinity. However, their estimator has a slow convergence
rate. In this paper we shall construct a new estimator of Γ that has a fast conver-
gence rate, depending on the sample size with the optimal 1/4-exponent.

3. LARGE VOLATILITY MATRIX ESTIMATION

To construct a good estimator for large volatility matrix Γ = (
�i j
)

1≤i, j≤p us-
ing noisy high-frequency financial data, we need to take care of three issues:
(1) the nonsynchronized problem; (2) microstructure noise; and (3) the number
of assets p can be larger than sample size. When p is small and fixed, there are
already many estimators proposed in the literature that take care of the first two
issues. See, e.g., Ait-Sahalia et al. (2010), Barndorff-Nielsen, Hansen, Lunde, and
Shephard (2011), Christensen et al. (2010), Griffin and Oomen (2011), Hayashi
and Yoshida (2005), Zhang (2011), and the references therein. However, none of
these estimators perform well when the number of assets p is large. We shall adopt
the sparsity and thresholding idea to handle the issue of fast-growing dimension p.

3.1. Multiscale Realized Volatility Matrix

Let m be an integer, and τ = {τr ,r = 1, . . . ,m}, where τr ,r = 1, . . . ,m, are a
pre-determined sampling frequency. For asset i , define previous-tick times

τi,r = max{ti� ≤ τr ,� = 1, . . . ,ni }, r = 1, . . . ,m.
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With τ we define realized covolatility between assets i and j by

�̂i j (τ ) =
m

∑
r=2

[
Yi (τi,r )−Yi (τi,r−1)

] [
Yj (τj,r )−Yj (τj,r−1)

]
, (3)

and the previous-tick realized volatility matrix by

Γ̂(τ ) = (
�̂i j (τ )

)
. (4)

We usually select the predetermined sampling frequency τ to be regular grids.
For a fixed m, we have K = [n/m] classes of nonoverlap regular grids,

τ k = {(r −1)/m,r = 1, . . . ,m}+ k/n = {(r −1)/m + k/n,r = 1, . . . ,m}, (5)

where k = 1, . . . , K , and n is the average sample size

n = 1

p

p

∑
i=1

ni .

Figure 1 illustrates the regular grids for n1 = 13, n2 = 11, n3 = 10, n = 11, m = 5,
and K = 2. The two panels in Figure 1 correspond to the cases of k = 1 and k = 2,
respectively.

For each sampling frequency τ k , we use (3) to define �̂i j
(
τ k
)

and realized

covolatility matrix Γ̂
(
τ k
)
. We average K realized covolatility matrices Γ̂

(
τ k
)

and define an average realized volatility matrix

�̂K
i j = 1

K

K

∑
k=1

�̂i j
(
τ k), Γ̂

K = (
�̂K

i j

)= 1

K

K

∑
k=1
Γ̂
(
τ k). (6)

Wang and Zou (2010) defined an average realized volatility matrix (ARVM)

estimator by adjusting the diagonal elements of Γ̂
K

for some bias corrections. The
ARVM estimator is a two-scale estimator and has slow convergence rates with
respect to sample size. To improve the ARVM estimator, we define our multiscale
realized volatility matrix (MSRVM) estimator as

Γ̂=
M

∑
m=1

amΓ̂
Km + ζ

(
Γ̂

K1 − Γ̂KM
)

, (7)

where

Km = m + N , am = 12(m + N )(m − M/2−1/2)

M
(

M2 −1
) , ζ = (M + N )(N +1)

(n +1)(M −1)
.

(8)

We take M and N to be of the exact order
√

n. Note that when p = 1 our estimator
becomes the multiscale realized volatility estimator proposed in Zhang (2006) and
used by Fan and Wang (2007) for a single asset based on noisy high-frequency
data.
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FIGURE 1. An illustration of regular grids with K = 2. Panels from up to down are the
grids with k = 1 and k = 2, respectively.

3.2. Regularized Estimation of a Large Sparse Volatility Matrix

For a relatively small number of assets, p is much smaller than sample sizes, and
all of the existing realized volatility matrix estimators (including our MSRVM
estimator Γ̂) are consistent estimators of Γ. However, they perform poorly when
p is large. In fact, Wang and Zou (2010) and Tao et al. (2011) show that when
both p and n go to infinity, all the existing realized volatility matrix estimators
are inconsistent. The inconsistency indicates that for large p, the eigenvalues and
eigenvectors of the volatility matrix estimators are far from those corresponding
to Γ. In order to consistently estimate Γ when p is very large, we have to impose
some sparse structure on Γ and to regularize Γ̂.

There are different ways to impose sparse structures on large square matrices.
As in Wang and Zou (2010) and Tao et al. (2011), we assume that Γ satisfies the
sparse condition

p

∑
j=1

|�i j |δ ≤ 	π(p), i = 1, . . . , p, E[	] ≤ C, (9)
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where 0 ≤ δ < 1, π(p) is a deterministic function of p that grows very slowly
in p, 	 is a positive random variable, and C is a positive constant.

Remark 1. As the number of parameters to be estimated in volatility matrix
Γ is of order p2, for p is comparable to sample size, we can not estimate all
these parameters consistently. The sparse modeling (9) makes consistent estima-
tion of Γ possible for the large p scenario. Intuitively, a sparse matrix means that
only a relatively small percent of elements in each row (or column) have signifi-
cantly large magnitude (and thus are important). Now π(p) controls the number
of important elements that may grow with p, and typically we may take π(p) to
be 1 or log p. Here δ calibrates the magnitude level of elements as significantly
large. For example, δ = 0 in (9) means that each row of Γ has at most 	π(p)
number of nonzero elements. Decay matrix Γ with |�i j | ≤ C |i − j |α corresponds
to a special case of sparsity condition (9) with δ = 1/(α+1) and π(p) = log p or
1/(α +1) < δ < 1 and π(p) = 1.

Remark 2. Sparse modeling is widely used in scientific studies such as signal
and image processing, remote sensing, and high-dimensional statistics. Sparse
matrices include block diagonal matrices, matrices with decay elements from di-
agonal, matrices with a relatively small number of nonzero elements in each row
or column, and matrices obtained by randomly permuting rows and columns of
the above matrices. We can improve sparsity by transformations. For example, we
may consider important economic factors and some known transformations like
Fourier and wavelet transformations. After we sort out important factors and/or
take some specific transformations, it is often the case that the volatility matrix
resulting from the transformation of Γ is very sparse. In financial econometrics
the generalized autoregressive conditionals heteroskedasticity (GARCH) model-
ing of large volatility matrices is usually to reduce large volatility matrices into
a sequence of smaller matrices and transform the very high-dimensional model
into a sequence of univariate or low-dimensional models (Palandri, 2009; Engle
and Sheppard, 2001). The GARCH approaches correspond to a special case of
sparsity where large volatility matrices are modeled as block diagonal matrices.
General sparse modeling may be very useful for the study of high-dimensional
economic and financial problems.

Given Γ satisfying the sparsity condition (9), its important elements are those
whose absolute values are above a certain threshold. Thus we threshold the
MSRVM estimator Γ̂ by retaining its elements with absolute values exceeding
some given threshold value and replace others by zero; that is, we define

Γ̃= T � [Γ̂] =
(
�̂i j 1

(|�̂i j | ≥ �
))

, (10)

where � is called threshold. The (i, j)th element of T� [Γ̂] is equal to �̂i j if its
absolute value is greater than or equal to � and zero otherwise. The threshold
value � will affect the convergence rate, and the optimal � will be given in
Theorem 2.
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Similar to other existing covolatility matrix estimators, we can not guarantee
the positive definite property for our estimator in finite samples. However, when
both the sample sizes and the number of assets go to infinity, our estimator is
asymptotically positive definite.

To summarize, our final estimator ofΓ is the threshold MSRVM estimator given
by equations (7), (8), and (10). As we show in the next section, our estimator is not
only consistent but also converges to Γ at a rate faster than that of the estimators

proposed in Wang and Zou (2010) and Tao et al. (2011), which are T�
[
Γ̃

Km ]with

Γ̃
Km defined by (14) in Section 6.

4. ASYMPTOTIC THEORY

Let x = (x1, . . . , xp)
T be a p-dimensional vector and U = (Ui j ) a p-by-p matrix.

Define the �d -norms,

‖x‖d =
(

p

∑
i=1

|xi |d
)1/d

, ‖U‖d = sup
{‖Ux‖d ,‖x‖d = 1

}
, d = 1,2,∞.

The matrix norm ‖U‖2 is the square root of the largest eigenvalue of UUT , and

‖U‖1 = max
1≤ j≤p

p

∑
i=1

|Ui j |, ‖U‖∞ = max
1≤i≤p

p

∑
j=1

|Ui j |.

For a symmetric U, its matrix norm is equal to the largest absolute eigenvalue,
and ‖U‖2 ≤ ‖U‖1 = ‖U‖∞. We consider �d -norm for d = 1,2,∞ in the paper.

We need the following technical conditions to establish the asymptotic theory.

Assumption A1. For some β ≥ 2,

max
1≤i≤p

max
0≤t≤1

E
[|γi i (t)|β

]
< ∞, max

1≤i≤p
max

0≤t≤1
E

[
|μi (t)|2β

]
< ∞,

max
1≤i≤p

E

[
|εi (ti�)|2β

]
< ∞.

Assumption A2. There exist constants C1 and C2 such that

max
1≤i≤p

ni

n
≤ C1, max

1≤i≤p
max

1≤�≤ni
|ti� − ti,�−1| ≤ C2/n,

where n = (
n1 +·· ·+np

)
/p.

Remark 3. Assumption A1 imposes moment conditions on the price process
and microstructure noise to derive the asymptotic theory. Also, we need some
condition on sampling frequencies of the data in order to establish the asymptotic
theory. Assumption A2 imposes conditions on data sampling frequencies over p
assets. It essentially requires no “hole” in the entire observation time interval.
If there is a “hole” in the data, no methods can consistently estimate the volatility
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matrix over the hole. The second inequality in Assumption A2 implies that for
all 1 ≤ i ≤ p, ni

n ≥ 1/C2. Since the constants C1 and 1/C2 may differ substan-
tially, the condition does not force all assets to sample at approximately equal
rate. For example, if C1C2 = 20, some assets may be sampled 20 times more
often than other assets. Assumption A2 ensures that the data are observed at
frequencies for which the gaps between adjacent time points are of order n−1.
Since Km used in (7) are of order n−1/2, from the definitions of (5)–(7) we see
that for each of the M presampling grids, the gap between two consecutive grid
points is equal to 1/Km , which is of exact order n−1/2, for m = 1, . . . , M . As
n−1/2/n−1 = n1/2 → ∞, the selected presampling grids are an order of magni-
tude coarser than the observed data, and thus there are always some observations
between any two consecutive grid points in the selected presampling grids. As-
sumption A2 can be relaxed. For example, we may allow ni to vary within some
powers of n and allow maxi,� |ti� − ti,�−1| to be a order of a power of 1/n, and
then we select Km accordingly to construct a volatility matrix estimator and de-
velop associated asymptotic theory. The important point is that we need to select
presampling grids an order of magnitude coarser than the observed data.

We have the following results for estimating a large volatility matrix using
noisy high-frequency data.

THEOREM 1. Under Models (1)–(2) and Assumption A1–A2, the MSRVM es-
timator Γ̂= (�̂i j ) given by (7)–(8) satisfies

E

[∣∣�̂i j −�i j
∣∣β]≤ C n−β/4, i, j = 1, . . . , p, (11)

where C is a generic constant free of n and p.

THEOREM 2. Under Models (1)–(2), Assumption A1–A2, and sparsity (9), the
threshold MSRVM estimator T� (Γ̂) defined in (10) satisfies

E

[∥∥T� (Γ̂)−Γ∥∥2

]
≤ E

[∥∥T� (Γ̂)−Γ∥∥1

]
= O

(
π(p)� 1−δ

)
,

where the threshold � is of order n−1/4 p2/β hn,p, and hn,p is any sequence going
to infinity arbitrarily slowly such as hn,p = log log(n ∧ p).

Remark 4. Theorem 1 indicates that the convergence rate for each element
of the MSRVM estimator Γ̂ is n−1/4, which is the optimal convergence rate for
estimating each element of Γ (see Gloter and Jacod, 2001; Reiss, 2011). Note
that, due to the contamination of high-frequency data by microstructure noise,
this optimal convergence rate n−1/4 is slower than the usual n−1/2 rate.

Remark 5. As hn,p and π(p) are slow growth factors, the convergence rate

in Theorem 2 is nearly equal to
[
n−1/4 p2/β

]1−δ
, which goes to zero when p

grows more slowly than nβ/8. Assumption A1 imposes finite 2βth moments on
the microstructure noise, drift, and diffusion covariance of log price X(t). Since
it is always assumed that financial data have some finite moments, it is realistic to
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assume Assumption A1 with reasonably large β. Thus, with p being allowed to
be close to nβ/8 and β reasonably large, we can consistently estimate Γ by T� (Γ̂)
for p close to or even larger than n.

Remark 6. Wang and Zou (2010) and Tao et al. (2011) proposed their estima-

tors as T� [Γ̃
Km ] with Γ̃

Km given by (14) in Section 5, and showed that they

achieve the convergence rate of π(p)
[
n−1/6 p2/β

]1−δ
, which is much slower

than the convergence rate derived in Theorem 2 for our threshold MSRVM
estimator.

Remark 7. For estimating the large sparse covariance matrix of Gaussian data,
Bickel and Levina (2008) constructed a threshold estimator that can achieve con-

vergence rate π(p)
[
n−1/2 log1/2 p

]1−δ
, and Cai and Zhou (2012, 2013) showed

that such a convergence rate is optimal. The convergence rate for the Gaussian
data increases in matrix size p through log1/2 p and sample size via n−1/2, while
the convergence rate in Theorem 2 grows with n through n−1/4 and p through
a power of p. The slower convergence rate here in both p and n is due to the
intrinsic complexity of our problem. The log p factor in the convergence rate of
covariance matrix estimation is attributed to Gaussianity imposed on the observed
data. In our setup, observations Yi (ti�) from model (2) have random sources from
both microstructure noise εi (ti�) and true log price X(t) given by model (1). First,
as we have discussed in Remark 4, because of microstructure noise in the data,
the optimal rate depends on n through n−1/4 instead of n−1/2 for covariance
matrix estimation; second, log price X(t) has finite moments but does not obey
Gaussianity or sub-Gaussianity for common price and volatility models. Because
we impose only realistic finite moment conditions in Assumption A1, the obtained
convergence rate in Theorem 2 depends on p through a power of p instead of log p
for the Gaussian case. These facts lead us to conjecture that the convergence rate
in Theorem 2 is the optimal convergence rate with respect to both n and p for the
large volatility matrix estimation problem in our setup.

5. NUMERICAL STUDIES

We conducted simulations to check the performances of the proposed estimators
and compare them with the ARVM-based estimators for finite samples. We simu-
lated the true log price X(t) = (X1(t), . . . , X p(t))T at t� = �/n, � = 1, . . . ,n, from
model (1) with μt = 0 and volatility matrix σt as a Cholesky decomposition of

γ(t) = (
γi j (t)

)
, γi j (t) = τiτjκ

|i− j |, (12)

where {τi , i = 1, . . . , p} are independently simulated from a uniform distribution
on (0,1), and κ is taken to be 0.5. We generated synchronized noisy observations
Yi (t�) from model (2) by adding mean zero normal random errors εi (t�) to the
simulated log price Xi (t�), � = 1, . . . ,n, where for the i th asset, the random errors
εi (ti�) have standard deviation θτi , τi are given by (12), and θ is the relative
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noise level with range selected from 0 to 0.6 in the simulation study. We used
the simulated data Yi (t�) to compute the MSRVM estimator and the threshold
MSRVM estimator given in Section 3, as well as the ARVM estimator and the
threshold ARVM estimator defined in Wang and Zou (2010).

In the simulation study we fixed n = 200 and chose two values of p = 3,100.
We repeated the whole simulation procedure 200 times. The mean �2 error (ME)
of each matrix estimator is computed by averaging �2-norms of the differences
between the estimator and Γ over 200 repetitions. We used the MEs to evaluate
the performances of the estimators. In the simulation study we selected values for
K in the ARVM estimator, M and N in the MSRVM estimator, and threshold
� in the threshold ARVM estimator and the threshold MSRVM estimator by
minimizing their respective MEs.

We started with simulation results for small p = 3. Figure 2 plots the MEs
against noise level for the MSRVM estimator, the threshold MSRVM estimator,
the ARVM estimator, and the threshold ARVM estimator. It shows that at the low
noise level, the ARVM estimator performs better than the MSRVM estimator. As
the noise level increases, the ME of the ARVM estimator increases dramatically
and quickly exceeds the ME of the MSRVM estimator, which decreases initially
and then increases slightly. The simulations also show that at all noise levels,
the MEs of the ARVM and MSRVM estimators are very close to those of the
corresponding threshold estimators. The findings can be heuristically explained
as follows. The higher ME of the MSRVM estimator at very low noise level is
due to the fact that for the noiseless case, the best estimator is the simple realized
volatility, which is a one-scale estimator, and the purpose of the two-scale and
multiscale schemes is for noise reduction. At the very low noise level, where there
is not much noise to reduce, the complicated multiscale scheme in the MSRVM
estimator produces larger bias than the two-scale design in the ARVM estimator,

FIGURE 2. The ME plot for the four estimators with p = 3. The left panel is the ME curves
for all four estimators, and the right panel is the ME curves for the threshold MSRVM and
threshold ARVM estimators.
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and thus the MSRVM estimator has larger ME than the ARVM estimator. On
the other hand, at the higher noise level, the multiscale MSRVM estimator is
more effective in reducing noise and thus yields significantly smaller ME than the
ARVM estimator. From the plot we see that thresholding does not improve the
estimators. The reason is that p = 3 is very small relative to sample size n = 200,
for which thresholding is not needed.

For the scenario of large p, we reported the simulation results for p = 100.
Figure 3 plots the MEs of the four estimators against noise level, and Tables 1
and 2 provide their MEs and average values for (K , M, N ,�) along with the

FIGURE 3. The ME plot for the four estimators with p = 100. The upper panel is the ME
curves for the four estimators, and the lower panel is the ME curves for threshold MSRVM
and threshold ARVM estimators.
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TABLE 1. Simulation results for the MSRVM estimator (Γ̂) and the threshold
MSRVM estimator (Γ̃) with p = 100

θ ME of Γ̂ ME of Γ̃ �̄ M̄ N̄

0.001 2.186 (0.031) 0.267 (0.003) 0.426 (0.009) 5.0 (0.0) 2.0 (0.0)
0.05 2.225 (0.038) 0.689 (0.009) 0.440 (0.008) 5.3 (0.1) 2.0 (0.0)
0.1 2.493 (0.064) 0.689 (0.011) 0.546 (0.011) 5.9 (0.2) 2.0 (0.0)
0.15 2.861 (0.077) 0.711 (0.013) 0.665 (0.011) 7.5 (0.3) 2.3 (0.1)
0.2 3.293 (0.059) 0.745 (0.012) 0.720 (0.012) 10.0 (0.2) 2.5 (0.1)
0.3 4.167 (0.079) 0.812 (0.019) 0.772 (0.012) 15.4 (0.4) 3.9 (0.2)
0.4 5.029 (0.095) 0.930 (0.033) 0.845 (0.010) 20.2 (0.4) 6.2 (0.4)
0.5 5.443 (0.109) 0.975 (0.038) 0.874 (0.009) 23.5 (0.4) 8.1 (0.4)
0.6 5.624 (0.122) 1.011 (0.041) 0.885 (0.008) 25.4 (0.4) 9.7 (0.5)

Notes: The θ column is the relative noise level for the microstructure noise, the M̄ and N̄ columns are the respective

average values of M and N used in Γ̂ over 200 repetitions, and the �̄ column is the average value of threshold �

used in Γ̃ over 200 repetitions. The values in parentheses represent the corresponding standard errors.

corresponding standard errors. The basic findings are that thresholding signifi-
cantly improves both the MSRVM and ARVM estimators. Figure 3 shows that
except for the very small noise level case, the MEs of the MSRVM and ARVM
estimators are much larger than the threshold counterparts. Both the threshold
ARVM estimator and the threshold MSRVM estimator perform very well, com-
pared with the MSRVM and ARVM estimators. The threshold ARVM estimator
performs a little bit better than the threshold MSRVM estimator at very low noise
levels, and the threshold MSRVM estimator has slightly smaller ME than the

TABLE 2. Simulation results for the ARVM estimator and the threshold ARVM
estimator with p = 100

θ ME of ARVM ME of threshold ARVM �̄ K̄

0.001 0.533 (0.007) 0.267 (0.003) 0.102 (0.001) 1.0 (0.0)
0.05 1.098 (0.021) 0.546 (0.004) 0.188 (0.004) 5.1 (0.1)
0.1 1.423 (0.028) 0.614 (0.006) 0.260 (0.004) 6.5 (0.1)
0.15 1.878 (0.034) 0.698 (0.006) 0.342 (0.005) 9.9 (0.2)
0.2 2.208 (0.036) 0.783 (0.007) 0.412 (0.007) 13.1 (0.3)
0.3 2.911 (0.053) 0.897 (0.005) 0.588 (0.010) 19.8 (0.5)
0.4 3.643 (0.078) 0.955 (0.005) 0.772 (0.010) 27.1 (0.8)
0.5 3.978 (0.078) 0.983 (0.007) 0.828 (0.009) 34.2 (0.8)
0.6 4.385 (0.093) 1.006 (0.010) 0.865 (0.008) 42.9 (0.7)

Notes: The θ column is the relative noise level for the microstructure noise, the K̄ column is the average value of
K in (6) used for the ARVM estimator over 200 repetitions, and the �̄ column is the average value of threshold �
used in the threshold ARVM estimator over 200 repetitions. The values in parentheses represent the corresponding
standard errors.



ESTIMATING LARGE VOLATILITY MATRICES 13

threshold ARVM estimator at higher noise levels. The behaviors of the threshold
ARVM estimator and the MSRVM estimator with large p = 100 are quite similar
to those of the ARVM estimator and the MSRVM estimator with small p = 3.
While confirming the findings on ME, Tables 1 and 2 reveal that as noise level
increases, MEs and the average values of (K , M, N ,�) all increase. The higher
the noise level is, the harder the estimation problem becomes. As a result, the es-
timators have larger MEs, and naturally we need to use larger (K , M, N ) in the
ARVM estimator and the MSRVM estimator to reduce noise and select bigger
threshold � to better balance bias and variance.

We further studied the performances of the proposed MSRVM estimator and
the threshold MSRVM estimator in terms of the whole range of eigenvalues.
Figure 4 displays the 100 eigenvalues of volatility matrix Γ, the average eigen-
value curve for each of the MSRVM estimator, the threshold MSRVM estimator,
and the threshold ARVM estimator for θ = 0.2 and p = 100, where each aver-
age eigenvalue curve represents 100 average eigenvalues over 200 repetitions for
the corresponding estimator. This figure shows that while the average eigenvalues
of the MSRVM estimator are far off from the true eigenvalues of Γ at the two
extremes, the average eigenvalues of the threshold MSRVM estimator are very
close to the true eigenvalues. Furthermore, between the two threshold estimators,
the threshold MSRVM estimator has eigenvalues much closer to the true eigenval-
ues than the threshold ARVM estimator. The conclusions reinforce the ME-based
performance findings for the MSRVM estimator, the threshold MSRVM estima-
tor, and the threshold ARVM estimator.

FIGURE 4. The eigenvalue plot of Γ, the MSRVM estimator, the threshold MSRVM
estimator, and the threshold ARVM estimator with noise level θ = 0.2 and p = 100. The
left panel is the plot of the 100 average eigenvalues for each of MSRVM and threshold
MSRVM estimators over 200 repetitions. The right panel is the plot of the 100 aver-
age eigenvalues for each of threshold ARVM and threshold MSRVM estimators over 200
repetitions.
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6. PROOFS

Denote by C a generic constant whose value is free of n and p and may change
from appearance to appearance.

Proof of Theorem 1. Define

η̂ = (
η̂i j
)= diag

(
η̂1, . . . , η̂p

)
, η̂i = 1

2ni

ni

∑
�=2

[
Yi
(
ti,�
)−Yi

(
ti,�−1

)]2
, (13)

Γ̃
Km = Γ̂Km −2

n − Km +1

Km
η̂. (14)

Then η̂i is a consistent estimator of the variance, ηi = Var(εi (ti�)), of the mi-

crostructure noise for the i th asset, and Γ̃
Km are the ARVM estimators given in

Wang and Zou (2010). Applying Theorem 1 of Wang and Zou to Γ̃
Km , we have

E

(
|�̃Km

i j −�i j |β
)

≤ C
[(

Kmn−1/2)−β + K −β/2
m + (

n/Km
)−β/2 + K −β

m +n−β/2
]
.

(15)

From the definition of Γ̂ given in (7)–(8) we obtain

Γ̂=
M

∑
m=1

amΓ̃
Km + ζ

(
Γ̃

K1 − Γ̃KM
)

+2

[
M

∑
m=1

am
n − Km +1

Km
+ ζ

(
n − K1 +1

K1
− n − KM +1

KM

)]
η̂,

and therefore,

E|�̂i j −�i j |β ≤ C

⎧⎨
⎩E

∣∣∣∣∣
M

∑
m=1

am

(
�̃

Km
i j −�i j

)∣∣∣∣∣
β

+E
∣∣∣ζ (�̃

K1
i j − �̃

KM
i j

)∣∣∣β

+ 2E

∣∣∣∣∣
[

M

∑
m=1

am
n − Km +1

Km
+ ζ

(
n − K1 +1

K1
− n − KM +1

KM

)]
η̂i j

∣∣∣∣∣
β
⎫⎬
⎭

= C (I+ II+ III). (16)

We prove the theorem by showing that I, II, and III are all of order n−β/2 below.
For Part III on the right-hand side of (16), from the definitions of am , Km , and

ζ in (8), we evaluate the coefficient of η̂i j in (16),

M

∑
m=1

am
n − Km +1

Km
+ ζ

(
n − K1 +1

K1
− n − KM +1

KM

)

= −1+ (M + N )(N +1)

(n +1)(M −1)
(n +1)

(
M −1

(N +1)(N + M)

)
= 0,

and thus I I I = 0.
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We consider Part I on the right-hand side of (16). Define

UKm =GKm (1)−2
n − Km +1

Km
η̂, (17)

RKm =
[
GKm (2)+GKm (3)

]
+
[
VKm −Γ

]
+
[
HKm (1)+·· ·+HKm (8)

]
, (18)

where GKm (1),GKm (2),GKm (3), VKm , and HKm (1), . . . ,HKm (8) are the same
as those in the proof of Theorem 1 of Wang and Zou (2010, Sec. 7.1). Then Part
I can be written as

I = E
∣∣∣∣∣

M

∑
m=1

amUKm +
M

∑
m=1

amRKm

∣∣∣∣∣
β

≤ C

⎛
⎝E

∣∣∣∣∣
M

∑
m=1

amUKm

∣∣∣∣∣
β

+E
∣∣∣∣∣

M

∑
m=1

amRKm

∣∣∣∣∣
β
⎞
⎠.

(19)

From (17) we can bound the first term on the right-hand side of (19) as

E

∣∣∣∣∣
M

∑
m=1

amU Km
i j

∣∣∣∣∣
β

≤ C

M1−β/2

M

∑
m=1

E

∣∣∣amU Km
i j

∣∣∣β

≤ C

M1−β/2

M

∑
m=1

12β(m + N )β |m − M/2−1/2|β
[M(M2 −1)]β

nβ/2

(m + N )β

≤ C

M1−β/2 nβ/2 Mβ+1−3β ≤ Cn−β/4, (20)

where the last inequality is due to M ∼ n1/2. To derive the second inequality
in the above array, we use the definitions of am and Km in (8), M = N ∼ n1/2.
Furthermore, because UKm are martingales, we apply the Burkholder inequality
(Chow and Teicher, 1997, Sec. 11.2) to UKm and obtain

E|U (Km )
i j |β ≤ C

(
n/K 2

m

)β/2
.

See also Wang and Zou (2010, Prop. 1).
From the definitions of am and Km in (8), we can easily verify that ∑M

m=1 am =1,

∑M
m=1 am/Km = 0, and ∑M

m=1 |am | ∼ 3
2 + 3N

M = 9/2. By (18) we establish an upper
bound for the second term on the right-hand side of (19) below,

E

∣∣∣∣∣
M

∑
m=1

amRKm

∣∣∣∣∣
β

≤ C

M1−β/2

(
M

∑
m=1

E

∣∣∣am

[
G Km

i j (2)+ G Km
i j (3)

]∣∣∣β

+
M

∑
m=1

E

∣∣∣am

[
V Km

i j −�i j

]∣∣∣β

+
M

∑
m=1

E

∣∣∣am

[
H Km (1)+ . . .+ H Km (8)

]∣∣∣β
)

≤ C
(

M−β/2 + (n/M)−β/2 + M−β +n−β/2
)

≤ C n−β/4, (21)
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where the second inequality is due to Propositions 1–3 in Wang and Zou (2010,
Sec. 7), and the last inequality is a consequence of M ∼ n1/2.

Plugging (20) and (21) into (19), we conclude that I ≤ C n−β/4.
Finally, we bound Part II on the right-hand side of (16) as

E

∣∣∣ζ (�̃
K1
i j − �̃

KM
i j

)∣∣∣β = |ζ |βE
∣∣∣(�̃

K1
i j −�i j

)
−
(
�̃

KM
i j −�i j

)∣∣∣β
≤ C

( n

M

)−β
(
E

∣∣∣�̃K1
i j −�i j

∣∣∣β +E
∣∣∣�̃KM

i j −�i j

∣∣∣β)

≤ C
( n

M

)−β

≤ C n−β/2,

where in the above equation array of four lines, the inequality in the second
line is from the definition of ζ in (8), and the inequality in the third line is
due to the fact that K1 and KM are of order n1/2 according to the definitions

in (8), and Theorem 1 in Wang and Zou (2010) shows that E
∣∣∣�̃K1

i j −�i j

∣∣∣β and

E

∣∣∣�̃KM
i j −�i j

∣∣∣β are bounded. n

Proof of Theorem 2. With Γ= (�i j ) and Γ̂= (
�̂i j
)
, let Γ̃= (

�̃i j
)= T�

(
Γ̂
)
,

and �̃i j = �̂i j 1
(|�̂i j | ≤ �

)
. Define di j = (

�̃i j − �i j
)
1(Ac

i j ), i, j = 1, . . . , p,

D = (di j ), where Ai j =
{

|�̃i j −�i j | ≤ 4min{|�i j ,� |}
}

. With the definition of

Ai j and D, E‖Γ̃−Γ‖1 can be bounded as

E‖Γ̃−Γ‖1 ≤ E‖Γ̃−Γ−D‖1 +E‖D‖1, (22)

where we will show below that the first term on the right-hand side of (22) has the
order of π(p)� 1−δ , and the second term is negligible.

Applying the Chebyshev inequality we have, for any fixed a,

P
(
|�̂i j −�i j | ≥ a�

)
≤ E|�̂i j −�i j |β

(a�)β
≤ Cn−β/4

aβn−β/4 p2hβ
n,p

= Ca−β p−2h−β
n,p,

(23)

where the second inequality is due to Theorem 1.
For the first term on the right-hand side of (22), conditional on the whole

volatility process we obtain an upper bound on the conditional expectation,

E

(
‖Γ̃−Γ−D‖1

∣∣∣Γ)= E
(

sup
j

∑
i

|�̃i j −�i j |1(Ai j )

∣∣∣∣∣Γ
)

≤ 4E

(
sup

j
∑
i

min{|�i j ,� |}
∣∣∣∣∣Γ
)

= 4sup
j

∑
i

min{|�i j ,� |}
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= 4sup
j

∑
i

|�i j |1(|�i j | < �)+4sup
j

∑
i

�1(|�i j | ≥ �)

≤ 	π(p)� 1−δ +� ·	π(p)�−δ = 2	π(p)� 1−δ,

where the last inequality is due to Lemma 1 in Wang and Zou (2010, Sec. 6).
Hence,

E‖Γ̃−Γ−D‖1 = E
{
E

(∥∥Γ̃−Γ−D
∥∥

1

∣∣∣Γ)}
≤ E

(
2	π(p)� 1−δ

)
≤ Cπ(p)� 1−δ.

We consider the second term on the right-hand side of (22). Note that

E‖D‖1 = E
(

sup
j

∑
i

|di j |
)

≤ E
(

sup
j

∑
i

|di j |1
(
�̃i j = 0

))
+E

(
sup

j
∑
i

|di j |1
(
�̃i j = �̂i j

))

= I1 + I2. (24)

Below we will show that both I1 and I2, are of order π(p)� 1−δ , and thus E‖D‖1
has the desired order.

First we derive the order for I1,

I1 = E
(

sup
j

∑
i

|�i j |1
(|�i j | > 4�

)
1
(
|�̂i j | < �

))

≤ E
(

sup
j

∑
i

|�̂i j −�i j |1
(
|�̂i j −�i j | ≥ 3�

))
+E

(
sup

j
∑
i

�1
(|�i j | ≥ 4�

))

≤ ∑
i, j

(
E|�̂i j −�i j |β

)1/β (
P
(|�̂i j −�i j | ≥ 3�

))1−1/β

+�E

{
E

(
sup

j
∑
i

1(|�i j | ≥ 4�)

∣∣∣∣∣�i j

)}

≤ p2Cn−1/4
(

Cp−2h−β
n,p

)1−1/β +�E
(
4−δ	π(p)�−δ

)
= Ch−β

n,p� +Cπ(p)� 1−δ = O
(
π(p)� 1−δ

)
,

where in the above equation array of five lines, the inequality in the third line
is due to the Hölder inequality, and the inequality in the fourth line is due to
Theorem 1, inequality (23), and Lemma 1 in Wang and Zou (2010, Sec. 6).

Next we show that I2 in (24) has the same order as

I2 ≤ ∑
i, j
E

[
|di j |1

(
�̃i j = �̂i j

)]
= ∑

i, j
E

[
|�̂i j −�i j |1

(
Ac

i j

)]
≤ ∑

i, j

(
E|�̂i j −�i j |β

)1/β (
P
(

Ac
i j

))1−1/β
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≤ p2 C n−1/4 (2Cp−2h−β
n,p

)1−1/β

= Ch−β
n,p� = o

(
π(p)� 1−δ

)
,

where in the above equation array of four lines, the inequality in the second
line is due to the Hölder inequality, and the inequality in the third line is due to
Theorem 1 and the inequality

P
(

Ac
i j

)≤ 2Cp−2h−β
n,p. (25)

The rest of the proof is to show (25).

Let A1 =
{

|�̂i j | ≥ �
}

. From the definition of �̃i j we have

|�̃i j −�i j | = |�i j |1
(

Ac
1

)+|�̂i j −�i j |1
(

A1
)
.

Note that

A1 =
{

|�̂i j | ≥ �
}

=
{

|�̂i j −�i j +�i j | ≥ �
}

⊂
{

|�̂i j −�i j | ≥ � −|�i j |
}

,

Ac
1 =

{
|�̂i j | < �

}
=
{
|�̂i j −�i j +�i j | < �

}
⊂
{

|�̂i j −�i j | ≥ |�i j |−�
}

.

An application of (23) leads to

P
(

A1, |�i j | < �/4
)≤ P

(|�̂i j −�i j | ≥ 3�/4
)≤ Cp−2h−β

n,p,

P
(

Ac
1, |�i j | > 2�

)≤ P
(|�̂i j −�i j | ≥ �

)≤ Cp−2h−β
n,p,

and hence with probability at least 1−Cp−2h−β
n,p,

|�̃i j −�i j | =
⎧⎨
⎩

|�i j |, |�i j | < �/4
|�i j | or |�̂i j −�i j |, �/4 ≤ |�i j | ≤ 2�

|�̂i j −�i j |, |�i j | > 2�.

(26)

Note that

4min{|�i j |,� } =
⎧⎨
⎩

4|�i j |, |�i j | < �/4
min{4�i j ,4� } ≥ max{|�i j |,� }, �/4 ≤ |�i j | ≤ 2�
4�, |�i j | > 2�.

(27)

Again, (23) implies that with probability at least 1 − Cp−2h−β
n,p, we have

|�̂i j − �i j | ≤ � . Combining this result with (26) and (27), we conclude that

with probability at least 1 − Cp−2h−β
n,p, |�̃i j − �i j | ≤ 4min{�i j ,� }, which

proves (25). n
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