
1

Train faster, generalize better: Stability of stochastic
gradient descent

Presenter: Xuezhou Zhang

December 27, 2016



2

Outline

Introduction

Stability of Sochastic Gradient Descent

Stability-inducing operations



3

General Setting of Supervised Learning

I We receive a sample S = (z1, . . . , zn) of n examples drawn i.i.d.
from a distribution D. Our goal is to find a model w with small
population risk, defined as

R[w ] = Ez∼Df (w ; z) (1)

where f (w ; z) is the loss of the model described by w encountered
on example z.

I Since we cannot measure the objective R[w ] directly, we often
instead try to minimize the empirical risk, defined as:

RS[w ] =
1
n

n∑
i=1

f (w ; zi) (2)
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General Setting of Supervised Learning

I The generalization error of a model w is the difference

RS[w ]− R[w ]. (3)

I When w = A(S) is chosen by a potentially randomized algorithm
A, it makes sense to consider the expected generalization error:

εgen = ES,A[RS[A(S)]− R[A(S)]], (4)

where the expectation is over the randomness of A and the sample
S.



5

Recall from the last talk..

Definition (2.1)
A randomized algorithm A is ε-uniformly stable if for all data sets
S,S′ ∈ Z n such that S and S′ differ in at most one example, we have

sup
z

EA[f (A(S); z)− f (A(S′); z)] ≤ ε. (5)

We will denote by εstab(A,n) the infimum over all ε for which (5) holds.
Note: This stability constant implicitly depends on n.

Theorem (2.2)
[Generalization in expectation] Let A be ε-uniformly stable. Then,

|ES,A[RS[A(S)]− R[A(S)]]| ≤ ε. (6)
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Stochastic Gradient Descent

I Given n labeled examples S = (z1, . . . , zn) where zi ∈ Z , consider
a decomposable objective function

f (w) =
1
n

n∑
i=1

f (w ; zi) (7)

where f (w ; zi) denotes the loss of w on the example zi . The
stochastic gradient update for this problem with learning rate
αt > 0 is given by

wt+1 = Gf ,αt (wt ) = wt − αt∇w f (wt ; zit ). (8)

I Stochastic Gradient Descent (SGD) is the algorithm resulting
from performing stochastic gradient updates T times where the
indices it are randomly chosen.
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Stability of Sochastic Gradient Descent

I Our goal is to show that SGD is uniformly-stable in three different
cases, namely with convex, strongly convex and non-convex
objective functions.

I Then, theorem 2.2 would imply that SGD generalizes well.
I Recall that to show that a learning algorithm is stable, we want to

establish some bound on the quantity

EA[f (A(S); z)− f (A(S′); z)]. (9)
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Stability of Sochastic Gradient Descent

I We say that f is L-Lipschitz if for all points x in the domain of f we
have ‖∇f (x)‖ ≤ L. This implies that for all v ,w ∈ Ω we have

|f (v)− f (w)| ≤ L‖v − w‖ (10)

I Note that if the loss function f is L-Lipschitz for every example z,
then we have

EA|f (w ; z)− f (w ′; z)| ≤ LEA‖w − w ′‖ (11)

I Hence, it suffices to analyze how wt and w ′t diverge in the domain
as a function of iteration t , and we can do that with the help of the
next two lemmas.
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Proof Tools

Definition (2.3)
We consider general update rules of the form G : Ω→ Ω which map a
point w ∈ Ω in the parameter space to another point G(w). An update
rule is η-expansive if

sup
v ,w∈Ω

‖G(v)−G(w)‖
‖v − w‖

≤ η (12)

Definition (2.4)
An update rule is σ-bounded if

sup
w∈Ω
‖w −G(w)‖ ≤ σ. (13)
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Proof Tools

Lemma (Growth recursion)
Fix an arbitrary sequence of updates G1, . . . ,GT and another sequence
G′1, . . . ,G

′
T . Let w0 = w ′0 be a starting point in Ω and define

δt = ‖wt − w ′t ‖ where wt ,w ′t are defined recursively through

wt+1 = Gt (wt ) w ′t+1 = G′t (w
′
t ). (14)

Then we have the recurrence relation

δ0 = 0 (15)

δt+1 ≤


ηδt Gt = G′t is η-expansive
min(η,1)δt + 2σt Gt and G′t are σ-bounded,

and Gt is η-expansive
(16)

Note: This is saying if the update rules are expansive and bounded,
then we can bound δt recursively.
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Proof Tools
Definition (3.6)
A function f : Ω→ R is β-smooth if for all v ,w ∈ Ω we have

‖∇f (v)−∇f (w)‖ ≤ β‖v − w‖ (17)

Definition (3.4)
A function f : Ω→ R is convex if for all v ,w ∈ Ω we have

f (v) ≥ f (w) + 〈∇f (w), v − w〉. (18)

Definition (3.5)
A function f : Ω→ R is γ-strongly convex if for all v ,w ∈ Ω we have

f (v) ≥ f (w) + 〈∇f (w),w − v〉+
γ

2
‖v − w‖2. (19)
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Proof Tools

Lemma (3.7)
Assume that f is β-smooth. Then the following properties hold.
1. the gradient update Gf ,α is (1 + αβ)-expansive.
2. Assume in addition that f is convex. Then, for any α ≤ 2

β , Gf ,α is
1-expansive.
3. Assume in addition that f is γ-strongly convex. Then, for α ≤ 2

β+γ ,

Gf ,α is
(

1− αβγ
β+γ

)
-expansive.

Note: That is saying, the gradient update Gf ,α is expansive with some
constant if f is smooth and α is small enough.
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Stability of SGD with convex objectives

Theorem (3.8)
Assume that the loss function f (·; z) is β-smooth, convex and
L-Lipschitz for every z. Suppose that we run SGD with step sizes
αt ≤ 2

β for T steps. Then, SGD satisfies uniform stability with

εstab ≤
2L2

n

T∑
t=1

αt . (20)

Note: Intuitively, the theorem says if the step size α is small, number of
steps T is small, sample size n is large, then SGD is stable.
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Stability of SGD with convex objectives
Proof sketch.

I Let S and S′ be two samples of size n differing in only a single
example. Consider the gradient updates G1, . . . ,GT and
G′1, . . . ,G

′
T induced by running SGD on sample S and S′,

respectively.
I Observe that at step t , with probability 1− 1/n, the example

selected by SGD is the same in both S and S′. In this case, we
have Gt = G′t and we can use the 1-expansivity of Gt by the
lemmas. With probability 1/n the selected example is different in
which case we use that both Gt and G′t are αtL-bounded. Hence,
this gives

E[δt+1] ≤
(

1− 1
n

)
E[δt ] +

1
n

(E[δt ] + 2αtL) = E[δt ] +
2αtL

n
(21)

I Unraveling the recursion gives us the result.
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Stability of SGD with strongly convex objectives

Theorem (3.9)
Assume that the loss function f (·; z) is β-smooth, L-Lipschitz and
γ-strongly convex for every z. Suppose that we run the (projected)
SGD with constant step size α ≤ 1

β for T steps. Then, SGD satisfies
uniform stability with

εstab ≤
2L2

γn
. (22)

I In the strongly convex case, we restrict our attention to a compact,
convex set Ω over which we wish to optimize, as a strongly convex
function has unbounded gradient in Rn.

I Intuitively, the theorem says the stability of SGD is only affected by
the sample size, with no dependence on the size or number of
steps at all.
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Stability of SGD with non-convex objectives

Theorem (3.12)
Assume that f (·; z) ∈ [0,1] is a β-smooth, L-Lipschitz loss function for
every z. Suppose that we run SGD for T steps with monotonically
non-increasing step sizes αt ≤ c/t . Then, SGD satisfies uniform
stability with

εstab ≤
1 + 1/βc

n − 1
(2cL)

1
βc+1 T

βc
βc+1 . (23)

In particular, omitting constant factors, we get

εstab .
T 1−1/(βc+1)

n
. (24)

Note: This theorem shows that the number of steps of SGD can grow
as nc for a small c > 1, without sacrificing stability. This provides some
explanation to why neural networks can be trained for multiple epochs
of stochastic gradient and still exhibit excellent generalization.
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Weight Decay and Regularization

Definition
Let f : Ω→ Ω be a differentiable function. We define the gradient
update with weight decay at rate µ as

Gf ,µ,α(w) = (1− αµ)w − α∇f (w). (25)

It is easy to verify that the above update rule is equivalent to performing
a gradient update on the l2-regularized objective

g(w) = f (w) +
µ

2
‖w‖2. (26)

Lemma
Assume that f is β-smooth. Then, Gf ,µ,α is (1 + α(β − µ))-expansive.
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Dropout

Definition
We say that a randomized map D : Ω→ Ω is a dropout operator with
dropout rate s if for every v ∈ Ω we have E‖Dv‖ = s‖v‖. For a
differentiable function f : Ω→ Ω, we let DGf ,α denote the dropout
gradient update defined as DGf ,α(v) = v − αD(∇f (v)).

Lemma
Assume that f is L-Lipschitz. Then the dropout update DGf ,α with
dropout rate s is sαL-bounded.
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