# Train faster, generalize better: Stability of stochastic gradient descent

Presenter: Xuezhou Zhang

December 27, 2016

# Outline

### Introduction

Stability of Sochastic Gradient Descent

Stability-inducing operations

# General Setting of Supervised Learning

▶ We receive a sample  $S = (z_1, ..., z_n)$  of n examples drawn i.i.d. from a distribution  $\mathcal{D}$ . Our goal is to find a model w with small **population risk**, defined as

$$R[w] = \mathbb{E}_{z \sim \mathcal{D}} f(w; z) \tag{1}$$

where f(w; z) is the **loss** of the model described by w encountered on example z.

Since we cannot measure the objective R[w] directly, we often instead try to minimize the empirical risk, defined as:

$$R_{S}[w] = \frac{1}{n} \sum_{i=1}^{n} f(w; z_{i})$$
 (2)

# General Setting of Supervised Learning

▶ The **generalization error** of a model *w* is the difference

$$R_S[w] - R[w]. (3)$$

▶ When w = A(S) is chosen by a potentially randomized algorithm A, it makes sense to consider the **expected generalization error**:

$$\epsilon_{gen} = \mathbb{E}_{S,A}[R_S[A(S)] - R[A(S)]], \tag{4}$$

where the expectation is over the randomness of *A* and the sample *S*.

#### Recall from the last talk...

# Definition (2.1)

A randomized algorithm A is  $\epsilon$ -uniformly stable if for all data sets  $S, S' \in Z^n$  such that S and S' differ in at most one example, we have

$$\sup_{z} \mathbb{E}_{A}[f(A(S);z) - f(A(S');z)] \le \epsilon.$$
 (5)

We will denote by  $\epsilon_{stab}(A, n)$  the infimum over all  $\epsilon$  for which (5) holds. **Note**: This stability constant implicitly depends on n.

#### Theorem (2.2)

[Generalization in expectation] Let A be  $\epsilon$ -uniformly stable. Then,

$$|\mathbb{E}_{S,A}[R_S[A(S)] - R[A(S)]|| \le \epsilon. \tag{6}$$

#### Stochastic Gradient Descent

▶ Given *n* labeled examples  $S = (z_1, ..., z_n)$  where  $z_i \in Z$ , consider a decomposable objective function

$$f(w) = \frac{1}{n} \sum_{i=1}^{n} f(w; z_i)$$
 (7)

where  $f(w; z_i)$  denotes the loss of w on the example  $z_i$ . The **stochastic gradient update** for this problem with learning rate  $\alpha_t > 0$  is given by

$$\mathbf{w}_{t+1} = \mathbf{G}_{f,\alpha_t}(\mathbf{w}_t) = \mathbf{w}_t - \alpha_t \nabla_{\mathbf{w}} f(\mathbf{w}_t; \mathbf{z}_{i_t}). \tag{8}$$

► Stochastic Gradient Descent (SGD) is the algorithm resulting from performing stochastic gradient updates *T* times where the indices *i*<sup>t</sup> are randomly chosen.

Stability of Sochastic Gradient Descent

Stability-inducing operations

# Stability of Sochastic Gradient Descent

- Our goal is to show that SGD is uniformly-stable in three different cases, namely with convex, strongly convex and non-convex objective functions.
- ▶ Then, theorem 2.2 would imply that SGD generalizes well.
- ► Recall that to show that a learning algorithm is stable, we want to establish some bound on the quantity

$$\mathbb{E}_{A}[f(A(S);z)-f(A(S');z)]. \tag{9}$$

# Stability of Sochastic Gradient Descent

▶ We say that f is L-**Lipschitz** if for all points x in the domain of f we have  $\|\nabla f(x)\| \le L$ . This implies that for all  $v, w \in \Omega$  we have

$$|f(v) - f(w)| \le L||v - w||$$
 (10)

Note that if the loss function f is L-Lipschitz for every example z, then we have

$$\mathbb{E}_{A}|f(w;z)-f(w';z)| \leq L\,\mathbb{E}_{A}||w-w'|| \tag{11}$$

▶ Hence, it suffices to analyze how  $w_t$  and  $w'_t$  diverge in the domain as a function of iteration t, and we can do that with the help of the next two lemmas.

### Definition (2.3)

We consider general update rules of the form  $G: \Omega \to \Omega$  which map a point  $w \in \Omega$  in the parameter space to another point G(w). An update rule is  $\eta$ -expansive if

$$\sup_{v,w \in \Omega} \frac{\|G(v) - G(w)\|}{\|v - w\|} \le \eta \tag{12}$$

#### Definition (2.4)

An update rule is  $\sigma$ -bounded if

$$\sup_{w \in \Omega} \|w - G(w)\| \le \sigma. \tag{13}$$

#### Lemma (Growth recursion)

Fix an arbitrary sequence of updates  $G_1, \ldots, G_T$  and another sequence  $G'_1, \ldots, G'_T$ . Let  $w_0 = w'_0$  be a starting point in  $\Omega$  and define  $\delta_t = \|\mathbf{w}_t - \mathbf{w}_t'\|$  where  $\mathbf{w}_t, \mathbf{w}_t'$  are defined recursively through

$$w_{t+1} = G_t(w_t)$$
  $w'_{t+1} = G'_t(w'_t).$  (14)

Then we have the recurrence relation

$$\delta_0 = 0$$

$$\int \eta \delta_t \qquad G_t = G'_t \text{ is } \eta\text{-expansive}$$

$$\int \min_{t \in \mathcal{T}} \left( -1 \right) \delta_t + 0 \qquad G_t \text{ and } G'_t \text{ are abounded}$$

$$(15)$$

$$\delta_{t+1} \leq \left\{ \begin{array}{ll} \eta \delta_t & \textit{G}_t = \textit{G}_t' \text{ is } \eta\text{-expansive} \\ \min(\eta, 1) \delta_t + 2\sigma_t & \textit{G}_t \text{ and } \textit{G}_t' \text{ are } \sigma\text{-bounded,} \\ & \textit{and } \textit{G}_t \text{ is } \eta\text{-expansive} \end{array} \right. \tag{16}$$

**Note**: This is saying if the update rules are expansive and bounded, then we can bound  $\delta_t$  recursively.



#### Definition (3.6)

A function  $f: \Omega \to \mathbb{R}$  is  $\beta$ -smooth if for all  $v, w \in \Omega$  we have

$$\|\nabla f(v) - \nabla f(w)\| \le \beta \|v - w\| \tag{17}$$

# Definition (3.4)

A function  $f: \Omega \to \mathbb{R}$  is **convex** if for all  $v, w \in \Omega$  we have

$$f(v) \ge f(w) + \langle \nabla f(w), v - w \rangle.$$
 (18)

#### Definition (3.5)

A function  $f: \Omega \to \mathbb{R}$  is  $\gamma$ -strongly convex if for all  $v, w \in \Omega$  we have

$$f(v) \ge f(w) + \langle \nabla f(w), w - v \rangle + \frac{\gamma}{2} \|v - w\|^2.$$
 (19)

# Lemma (3.7)

Assume that f is  $\beta$ -smooth. Then the following properties hold.

- 1. the gradient update  $G_{f,\alpha}$  is  $(1 + \alpha\beta)$ -expansive.
- 2. Assume in addition that f is convex. Then, for any  $\alpha \leq \frac{2}{\beta}$ ,  $G_{f,\alpha}$  is 1-expansive.
- 3. Assume in addition that f is  $\gamma$ -strongly convex. Then, for  $\alpha \leq \frac{2}{\beta + \gamma}$ ,

$$G_{f,\alpha}$$
 is  $\left(1-rac{lphaeta\gamma}{eta+\gamma}
ight)$ -expansive.

**Note**: That is saying, the gradient update  $G_{f,\alpha}$  is expansive with some constant if f is smooth and  $\alpha$  is small enough.

# Stability of SGD with convex objectives

# Theorem (3.8)

Assume that the loss function  $f(\cdot;z)$  is  $\beta$ -smooth, convex and L-Lipschitz for every z. Suppose that we run SGD with step sizes  $\alpha_t \leq \frac{2}{\beta}$  for T steps. Then, SGD satisfies uniform stability with

$$\epsilon_{stab} \le \frac{2L^2}{n} \sum_{t=1}^{I} \alpha_t. \tag{20}$$

**Note**: Intuitively, the theorem says if the step size  $\alpha$  is small, number of steps T is small, sample size n is large, then SGD is stable.

# Stability of SGD with convex objectives Proof sketch.

- Let S and S' be two samples of size n differing in only a single example. Consider the gradient updates  $G_1, \ldots, G_T$  and  $G'_1, \ldots, G'_T$  induced by running SGD on sample S and S', respectively.
- Nobserve that at step t, with probability 1 1/n, the example selected by SGD is the same in both S and S'. In this case, we have  $G_t = G'_t$  and we can use the 1-expansivity of  $G_t$  by the lemmas. With probability 1/n the selected example is different in which case we use that both  $G_t$  and  $G'_t$  are  $\alpha_t L$ -bounded. Hence, this gives

$$\mathbb{E}[\delta_{t+1}] \le \left(1 - \frac{1}{n}\right) \mathbb{E}[\delta_t] + \frac{1}{n} \left(\mathbb{E}[\delta_t] + 2\alpha_t L\right) = \mathbb{E}[\delta_t] + \frac{2\alpha_t L}{n} \quad (21)$$

Unraveling the recursion gives us the result.

# Stability of SGD with strongly convex objectives

# Theorem (3.9)

Assume that the loss function  $f(\cdot;z)$  is  $\beta$ -smooth, L-Lipschitz and  $\gamma$ -strongly convex for every z. Suppose that we run the (projected) SGD with constant step size  $\alpha \leq \frac{1}{\beta}$  for T steps. Then, SGD satisfies uniform stability with

$$\epsilon_{stab} \leq \frac{2L^2}{\gamma n}.$$
 (22)

- In the strongly convex case, we restrict our attention to a compact, convex set  $\Omega$  over which we wish to optimize, as a strongly convex function has unbounded gradient in  $\mathbb{R}^n$ .
- Intuitively, the theorem says the stability of SGD is only affected by the sample size, with no dependence on the size or number of steps at all.

# Stability of SGD with non-convex objectives

#### Theorem (3.12)

Assume that  $f(\cdot; z) \in [0, 1]$  is a  $\beta$ -smooth, L-Lipschitz loss function for every z. Suppose that we run SGD for T steps with monotonically non-increasing step sizes  $\alpha_t \leq c/t$ . Then, SGD satisfies uniform stability with

$$\epsilon_{stab} \leq \frac{1 + 1/\beta c}{n - 1} (2cL)^{\frac{1}{\beta c + 1}} T^{\frac{\beta c}{\beta c + 1}}. \tag{23}$$

In particular, omitting constant factors, we get

$$\epsilon_{stab} \lesssim \frac{T^{1-1/(\beta c+1)}}{n}.$$
 (24)

**Note**: This theorem shows that the number of steps of SGD can grow as  $n^c$  for a small c > 1, without sacrificing stability. This provides some explanation to why neural networks can be trained for multiple epochs of stochastic gradient and still exhibit excellent generalization.

#### **Outline**

Introduction

Stability of Sochastic Gradient Descent

Stability-inducing operations

# Weight Decay and Regularization

#### Definition

Let  $f: \Omega \to \Omega$  be a differentiable function. We define the gradient update with **weight decay** at rate  $\mu$  as

$$G_{f,\mu,\alpha}(\mathbf{w}) = (1 - \alpha\mu)\mathbf{w} - \alpha\nabla f(\mathbf{w}). \tag{25}$$

It is easy to verify that the above update rule is equivalent to performing a gradient update on the  $\it l_2$ -regularized objective

$$g(w) = f(w) + \frac{\mu}{2} ||w||^2.$$
 (26)

#### Lemma

Assume that f is  $\beta$ -smooth. Then,  $G_{f,\mu,\alpha}$  is  $(1 + \alpha(\beta - \mu))$ -expansive.

# **Dropout**

#### Definition

We say that a randomized map  $D: \Omega \to \Omega$  is a **dropout operator** with dropout rate s if for every  $v \in \Omega$  we have  $\mathbb{E}\|Dv\| = s\|v\|$ . For a differentiable function  $f: \Omega \to \Omega$ , we let  $DG_{f,\alpha}$  denote the **dropout** gradient update defined as  $DG_{f,\alpha}(v) = v - \alpha D(\nabla f(v))$ .

#### Lemma

Assume that f is L-Lipschitz. Then the dropout update  $DG_{f,\alpha}$  with dropout rate s is  $s\alpha L$ -bounded.