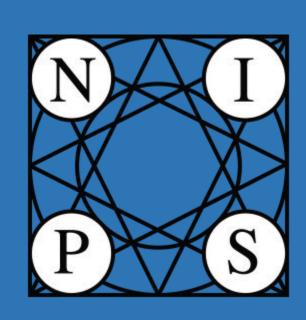


Optimal Teaching for Online Perceptrons

Department of Computer Sciences, University of Wisconsin–Madison



Optimal Teaching Problem

- Student: A machine learner \mathcal{A} . In this work, we focus on sequential learners.
- **Teacher**: A person who knows a target model θ^* , and wants to teach it to the student \mathcal{A} by creating a training set $\mathcal{D} \subseteq \mathcal{X} \times \mathcal{Y}$, where \mathcal{X} is the input space and \mathcal{Y} is the label space.
- Constructive Setting: In this work, we allow \mathcal{X} to be the whole \mathbb{R}^d . This is called the constructive teaching setting, as opposed to the **pool-based** teaching setting, where \mathcal{X} is a finite subset of \mathbb{R}^d .
- Goal: Find the 'best' training set.
- General Optimization Formulation:

$$\min_{\mathcal{D}} \quad loss(\mathcal{A}(\mathcal{D}), \theta^*) + effort(\mathcal{D})$$

Alternatively,

$$\min_{\mathcal{D}} \quad \mathrm{effort}(\mathcal{D}),$$

s.t.
$$loss(\mathcal{A}(\mathcal{D}), \theta^*) \leq \epsilon$$

Online Perceptron

Algorithm 1 Online Perceptron

1: Learning parameters: Initial weight vector $\mathbf{w_0} \in \mathbb{R}^d$, learning rate $\eta > 0$.

2: **for** $t = 1 \dots$ **do**

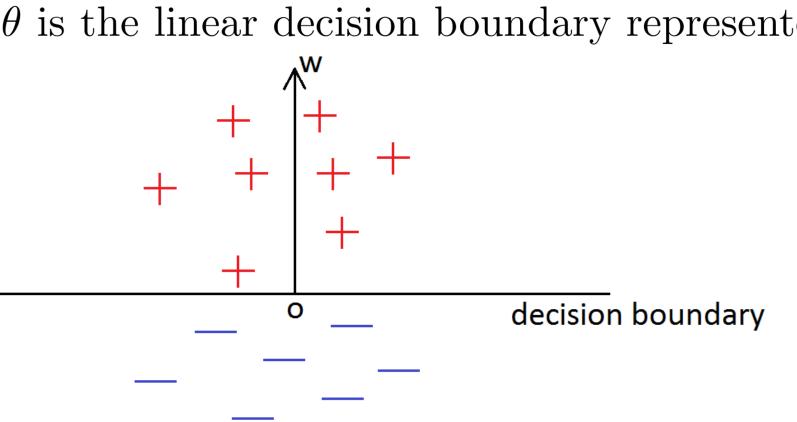
3: receive $\mathbf{x_t}$

 $\operatorname{predict} \hat{y}_t = \operatorname{sign}(\langle \mathbf{w_{t-1}}, \mathbf{x_t} \rangle)$

5: receive y_t

 $\mathbf{w}_t \leftarrow \mathbf{w}_{t-1} + \mathbb{1}_{(y_t \langle \mathbf{x}_t, \mathbf{w}_{t-1} \rangle \leq 0)} \eta y_t \mathbf{x}_t$

- Homogeneous: Linear decision boundary through the origin.
- General Setting: Allow non-zero \mathbf{w}_0 and arbitrary learning rate η .
- Formulation: In this work, the machine learner \mathcal{A} is the perceptron, and model θ is the linear decision boundary represented by the parameter \mathbf{w} .

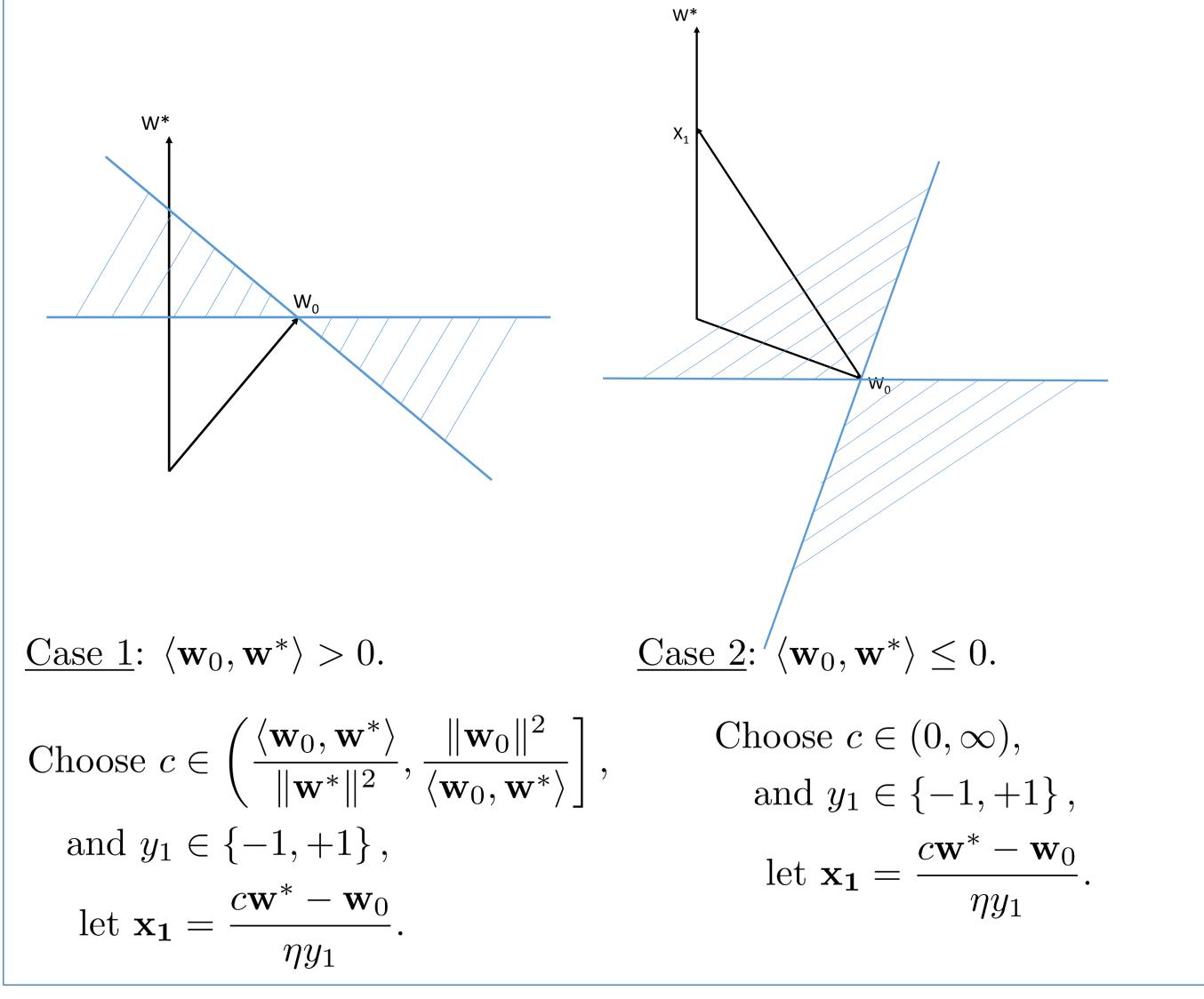


Teaching with Full Knowledge of Perceptron

Definition. The **Exact Teaching dimension** of perceptron is defined as

$$\operatorname{arg\,min}_{\mathcal{D}} \quad |\mathcal{D}|,$$
 $s.t. \quad \mathcal{A}(\mathcal{D}) = \mathbf{w}^*$

Theorem. For any target parameter \mathbf{w}^* , a perceptron with any initial weight \mathbf{w}_0 and learning rate η has exact teaching dimension 1.



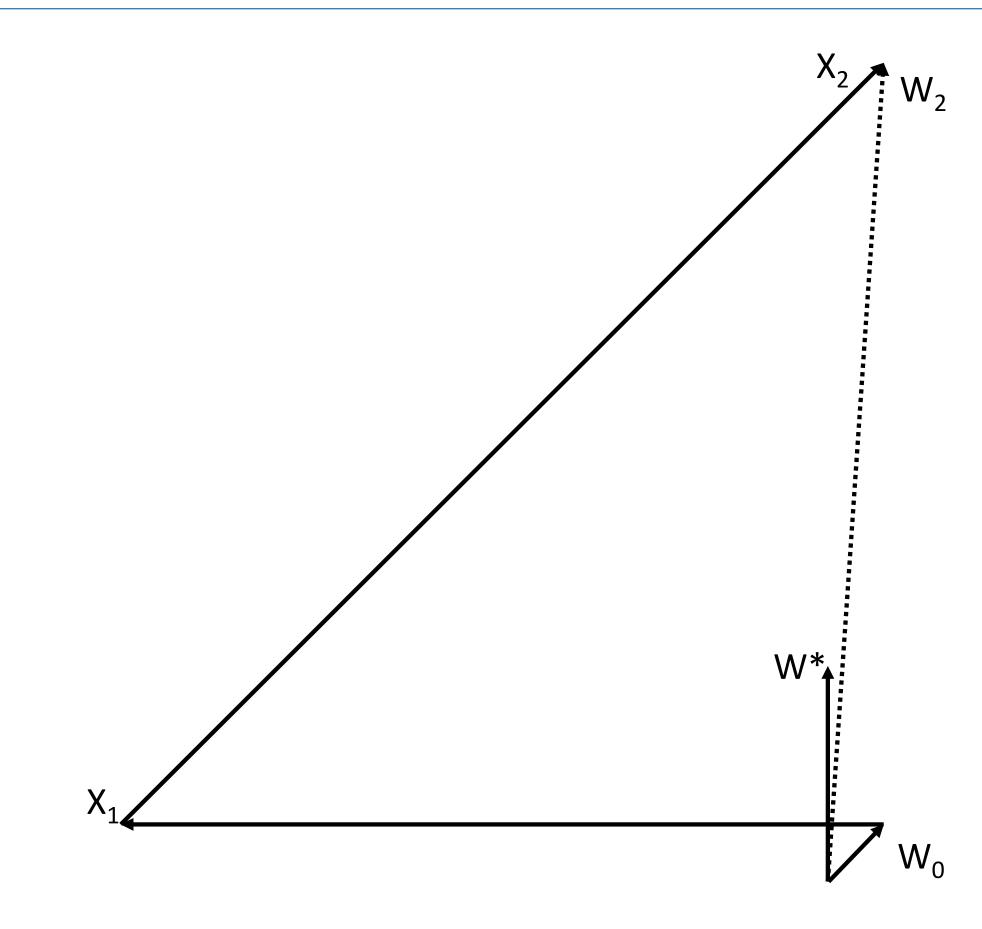
Approximate Teaching with Unknown W₀

Definition. The ϵ -Approximate Teaching dimension of perceptron is defined as

$$\underset{\mathcal{D}}{\operatorname{arg\,min}} \quad |\mathcal{D}|,$$

$$s.t. \quad \frac{\langle \mathcal{A}(\mathcal{D}), \mathbf{w}^* \rangle}{\|\mathcal{A}(\mathcal{D})\| \|\mathbf{w}^*\|} \ge 1 - 1$$

Theorem. For any target parameter \mathbf{w}^* and precision ϵ , a perceptron with unknown initial weight \mathbf{w}_0 and known learning rate η has ϵ -approximate teaching dimension 3.



- Pick $\mathbf{x}_1 \in \mathbb{R}^d$, s.t. $\|\mathbf{x}_1\| = \frac{2b}{\epsilon \eta}$ and $\langle \mathbf{w}^*, \mathbf{x}_1 \rangle = 0$.
- Let $\mathbf{x}_1' = -\mathbf{x}_1$.
- At iteration 1, feed \mathbf{x}_1 to the learner. If \mathbf{x}_1 triggers an update, let $\mathbf{x}_2 = \frac{2b}{\epsilon \eta} \mathbf{w}^* + \mathbf{x}_1$ and feed \mathbf{x}_2 to the learner.
- Else if \mathbf{x}_1 does not trigger an update, let $\mathbf{x}_2 = \mathbf{x}_1'$ and $\mathbf{x}_3 = \frac{2b}{\epsilon \eta} \mathbf{w}^* + \mathbf{x}_2$. Feed \mathbf{x}_2 , \mathbf{x}_3 to the learner.

Discussion and Future Work

- How do **constraints** on the (e.g. norm of the) training items affect teaching dimension?
- How do teachers handle other **uncertainties**, e.g. an unknown learning rate η ?
- We can already see from the construction above, with the existence of uncertainty, each step of the teaching sequence depend on the student's feedback in previous steps. This **interactive** nature of teaching is worth studying.
- Vision: A 'cooperative' learning setting, where the student tries to learn the target model, while the teacher is learning to teach.
- Extend optimal teaching problem to other **sequential learners** such as stochastic gradient descent (SGD).

Contact

Xuezhou Zhang,
Department of Computer Sciences
University of Wisconsin–Madison
Email: zhangxz1123@cs.wisc.edu

© Poster Template by Genigraphics® 1.800.790.4001 www.genigraphics.