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We study the problem of data poisoning attack against online learning Near-Optimal Attacks via Model Predictive Control (MPC): Baselines:
systems. Data poisoning attack studies methods to control a machine At every time step t, the attacker solves for the surrogate attack problem: * Null Attack: baseline without attack, namely z', = z,.
learning system by contaminating its training data. Different from prior work . Greedy Attack: Zfreedy — arg min g; (0%, z;, z)
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f . i y . ' HED t — TATT T T present, and future data stream, and solves for the deterministic optimal
PErTorm attatiks under uncertainty. -1 - attack problem as a nonlinear program.
S.t. Ori1 = F(0,,0(0-,2,)),7 >t
Prqblem Definition: 0, given. Victim Learners:
Attime step t, | | * Online Logistic Regression: The learner’s update rule is one step of
* Environment: Generates a data point z; from the underlying data based on the current knowledge D;, and then perform one step attack: gradient descent on the log likelihood with step size 7
d'Str'bUUon P _ 0 y z, = ¢4 (0y,2¢). * Online Soft k-means: The learner updates all the centroids weighted by
Online Learning: Performs learning update: U1 = f( s Zt)_‘ | | | | their distances to the current data point using the softmax function.
e Attacker: Sits in between the environment and the online learning Such repeated procedure of (re)-planning but only executing the immediate
system, and can perturb z; to z';. action is characteristic of Model Predictive Control (MPC). selected Experiment Results:
environment a Solve as Nonlinear Programming (NLP): | i \ k &
Further approximate the objective by (a) introducing a finite time horizon h e e oniine L. & |= : -
and (b) replacing the expectation with random instantiationz.; 11 ~ Dy. PR S - _E = -~ _E EEEEEE S —oore
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* Attacking Objective: (a) Manipulate the learned model, while (b) stay PDPG nowledge, k=2 Seeds, k=3 Posture, k-5
undetected. It can be captured by the weighted sum of an attack loss It can then be solved using modern NLP solver such as IPOPTI. Synthetic Experiment Real Data Experiment
function and a perturbation cost function:

910y, 24, 2,) = Ny (0) + ci(z, 2}). Solve using Deep Determlnlsﬁc Pollgy Gradlgnt (D.DPG): | Conclusions
One can directly solve for the optimal policy ¢, using policy learning. In our

Examples: targe?ed attacks 1;(0:) := [|6t — Otarget|] problem, the action space is continuous. Therefore, we use the DDPG2! Takeaway messages:
ZV‘—’I':ZO" att;ck; llt((gt)) " g_(getZ:)HClean | method which learns a deterministic policy over continuous action space. + Optimal control-based methods NLP and DDPG achieve significantly
ackdoor attacks se\e) -— *\Vt; Roughly, it simultaneously learns an actor network p(s) parametrized by 6 better performance than heuristic methods such as GREEDY, and in some
. . and a critic network Q(s, a) parametrized by 8%. The actor network cases they even achieve clairvoyant-level performance.
FormUIate AS StOChaStlc Optlmal contrOI: represents the Currently learned pOlICV while the critic network estimates the e |nthe case that the learner’s dynamics f is known to the attacker and is
The attacker's optimal attack problem is characterized as a stochastic optimal action-value function of the current policy, whose functional gradient guides differentiable, and that the induced nonlinear program can be solved
control problem, namely finding a control policy that minimizes the expected the actor network to improve its policy. The policy gradient can be written as: efficiently, NLP is a strong attack method.
discounted cumulative loss: o ., » DDPG, on the other hand, is able to learn a reasonable attack policy given
e - Vogu i = oy [an(Sv a|9 )VW M(3|‘9 )] enough data. The attack policy can be fixed and deployed, which is
mig Cp Z v i (04, z¢, (04, 21)) advantageous when the data stream comes in quickly and leaves no time
PE =0 ] Advantages of DDPG vs. NLP: to re-do planning in MPC/NLP.
St Ori1 = f(Or, (0, 24)),t >0 1. DDPG actually learns a policy ¢, that can generalize and be applied to
Ao given. more than one future steps of attack. , | | Possible direction of future work:
| R | 2. DDPG is a model-free method. It doesn’t require the analytical form of the - How to perform attacks if the data generating distribution P is not fixed?
Challenge: The underlying distribution P is unknown. The only knowledge learner’s update rule f. Therefore, it also applies to the black-box attack . How to tackle high dimensional tasks? Action space dim = 784 for MINIST,
about P is the historical data points D; = {Z(), ey Zt} generated from P. setting, where the exact learning rule is unknown to the attacker. « How should the victim defend against such attacks?
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