CS 784 Project Stage 4 Report

Kritika Rai, krai2@wisc.edu
Xia Wan, wan5@wisc.edu
Zhen Zhang, zhen.zhang@wisc.edu

Precision: Recall: F1: 96.10%; Recall: 83.20; F1: 0.8918

Details for matcher M
o Stage 3

Details
We used Random Forest with 100 trees. For the features we extracted, we
applied feature extractor to top 12 attributes. After feature selection,, we
extracted:exact matching for “Product Segment”
e edit distance and 3-gram and word based Jaccard and TF/IDF for
“Product Name”,
e exact matching for “Product Type”, 3-gram based Jaccard and
TF/IDF for “Product Short Description”
e edit distance and 3-gram and word based Jaccard and TF/IDF for
“Product Category”
3-gram and word based Jaccard and TF/IDF for “Brand Name”
exact matching with normalization for “Product Country Origin”
exact matching for “GTIN”
exact matching for “UPC”
exact matching for “Manufacturer”
exact matching for “Manufacturer Part Number”
e exact matching for “Product Color”
The threshold for “MATCH” and “MISMATCH” were set as 0.651 and
0.349, respectively.

m SetY: Precision: 96.25%; Recall: 82.78%; F1: 0.8900
Blind data set: Precision: 96.7690192484; Recall: 84.4431113777; F1:
90.1868659904
o Stage4
m Details

Based on the matcher we built on stage 3, we applied handcrafted rules
after the learned model. With looking into the wrong labelled data, we
modified the threshold to get higher recall and lower precision and wrote
some rules to increase the precision while keeping recall relatively high.
The details for rules show as following (preprocessing the values of
attributes to handle case-sensitive conditions):
e For ink cartridges, if only one product contains “Color” attribute and
the value of “Color” shows only in “Product Name” of the other
product, the prediction for the product pair is “MATCH”



L]

If the products both have “Product Name”, “Product Segment”,
“Product Type”, calculate Jaccard / (1.0 - levenshtein /
max_length_product_name) for “Product Name”. If this score is
greater than some threshold, the prediction is “MATCH”

e |f the products both have “Product Name”, “Product Segment” with
different values, “Product Type” with different values, the
levenshtain of product name is greater than 5 and “cooler” and
“cooling” show in the product name respectively, the prediction is
‘MATCH”

e If the products both have “Product Name”, “Product Long
Description”, one product long description contains the product
name of the other product and the product names show in some
predefined dictionary, prediction is “MISMATCH”

e |[f “refurbished” and “remanufactured” shows only in one product
name, the prediction is “MISMATCH”

e |[f the product names only differ on only one word (other words lie in
the same order), the final prediction could be “MATCH?”,
“*MISMATCH?” or original prediction based on if the word shows in
some dictionary

e If original prediction is “MATCH?” but the values of “Assembled
Product Length” are different, the final prediction is “MISMATCH”

e |[f original prediction is “MATCH?” but the values of “Color” / “Actual
Color” are different, the final prediction is “MISMATCH”

e The product names could contain important model and serial
number and the have high similarity except the model and serial
number, but there are actually “MISMATCH”. Model and serial
number extraction rule combined with the comparison rule are used
to refine the “MATCH” and “MISMATCH?” results from RFC. The
length of the possible model string, jaccard score, the information in
long and short description are considered.

m Precision: 96.10%; Recall: 83.20; F1: 0.8918

e Analysis

o

Why fails

In stage three, we found RFC is the most accurate algorithm among our tried
machine learning algorithm. Thus, in stage four, we tried to add some post rules to
refine the predicted results from the RFC. We finally add 7 working rules.
However, we could not improve our Precision and Recall too much with our
designed framework.

We want to build more general rule to improve our results. But, with a lot of time
and trying, finally they are not working. For example, the model and serial number
extraction rule could not fit in the variation situation of the production name in the



source data, which results in the recall decreased dramatically with the
improvement of precision.

- From the second lesson, we notice that we should do some clean and feature
extraction before apply the training and post rule pipeline. Without the
pre-transformation, our designed RFC and post rule only catch a few samples
pairs.

- The fourth lesson is that the importance of the dictionary method to introduce our
domain knowledge. In our pipeline, we used the dictionary for colors to help find
the false positive. Right now, we think we should add more dictionary to distinguish
production, for example, ‘i3’ v.s. i5’ for models.

o Future work
Based on our lessons, in the future, we want to do following improvements:

- Build the information extraction processing to standardize the following features:
brand, color, model, condition, size, length before RFC training and applying rules.

- Utilize our prior domain knowledge. In the pre-information extraction and rule apply
step, more domain knowledge should be included with dictionary based method or
rule based method.

e Discuss of py-stringmatching package
We used both modules in the package. Most of them work well and are easy to use. In
simfunctions, levenshtein returns integer 0 if the inputs are same and decimals for other
conditions. The inconsistency will cause some trouble for some machine learning
algorithms. We modified it to return 0.0 instead of 0.



