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1 Problem Description

Support Vector Machines(SVMs) has been showed that it is a powerful clas-
sifier in many problems. It can be viewed as a optimization problem and
it has a nice property that the objective function is convex, which means
its local minimizer is the global minimizer. However, it is usually expensive
to get the labeled data, while it is much easier to get unlabeled data. As a
result, Semi-Supervised Support Vector Machines(S3VMs) were developed.
One difficulty is that the formulation is a non-convex optimization problem,
and thus varieties optimization techniques were proposed for this problem.
Each technique has its own advantages and disadvantages, and [2] does a
survey of optimization techniques for S3VMs.

In that paper, for optimization techniques, they only consider the bi-
nary classification problem. In the semi-supervised learning for binary clas-
sification problem, the training set contains l labeled samples {(~xi, yi)}li=1,
yi = ±1, and u unlabeled examples {~xi}ni=l+1. The linear S3VMs solve the
following optimization problem:

min
(~w,b),~yu

I(~w, b, ~yu) =
1
2
||~w||2 + C

l∑
i=1

V (yi, oi) + C?
n∑

i=l+1

V (yi, oi) (1)

s.t.
1
u

n∑
i=l+1

max(yi, 0) = r (2)

As it shows, S3VMs solve over both the hyperplane parameters (~w, b) and
the labels for the unlabeled data ~yu = [yl+1, . . . , yn]T . The constrain is to
avoid unbalanced solutions.

A widely choice for V is the Hinge loss V (yi, oi) = max(0, 1−yioi)p, and
p = 2 is a widely choice for p.

There are generally two kinds of techniques to solve 1:

• Combinatorial Optimization: Fix ~yu first, and then solve a stan-
dard SVM. Try to find the best ~yu. Formally, define

ϑ(~yu) = min
~w,b

I(~w, b, ~yu) (3)

and solve
min
~yu

ϑ(yu) (4)

• Continuous Optimization: For a fixed (~w, b), argminyV (y, o) =
sign(o), so just use oi = ~xT

i ~xi + b as the label of unlabeled point ~xi.
So the objective function becomes:

min
(~w,b)

1
2
||~w||2 + C

l∑
i=1

max(0, 1− yioi)2 + C?
n∑

i=l+1

max(0, 1− |oi|)2 (5)
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The last term in 5 is non-convex.

In the rest of the paper, several techniques of these two kinds of approaches
were discussed.

2 Combinatorial Optimization

2.1 Branch-and-Bound (BB) for Global Optimization

Branch-and-Bound is a technique of global optimization for 4. The idea was
to search over the ~yu space with pruning.

BB searches on a binary tree, which nodes represent the set of points
that are have labels (either the given labels or guessed labels), and thus
for each node, it has an objective function value. A node’s left child is its
labeled points set union with a new point xi with guessing label 1, while
the right child is its set union with xi with guessing label 0. Thus, the tree
begin with the initial labeled points set, and gradually add unlabeled points
to explore the whole tree.

One observation is crucial to prune the tree: if the set of labeled points
on one node, n1, is a subset of the set on another node n2, and the objective
function value of n1 is larger than that of n2, then there is no need to explore
the children of n1. In [1], they discussed how to choose candidate children
to explore.

As BB approach searches for all possible ~yu, and only prunes bad sub-
trees, so it guarantees the global solutions. On the other hand, it is too
expensive to search the tree if the unlabeled points set is large.

2.2 S3VMlight

S3VMlight refers to implementation in the popular toolkits SVMlight. The
initial labels of unlabeled points are given by SVM with balanced constraints;
and for each iteration, it switches the labels of two points, if the following
condition is satisfied:

yi = 1, yj = −1, V (1, oi) + V (−1, oj) > V (−1, oi) + V (1, oj) (6)

Thus after switching the labels, the objective function value is guaranteed
to decrease. It is obvious that this approach converges to a local minimizer
of 4. In an outer loop, S3VMlight increases C? to control the non-convex
part of the objective function.

In practice, running time of S3VMlight is acceptable, but it only converges
to a local minimizer.
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2.3 Deterministic Annealing S3VM

Apply Deterministic annealing(DA) to S3VM, the discrete label variables ~yu

are relaxed to real-valued variables ~pu = (pl+1, . . . , pl+u) where pi indicates
the probability of yi = 1. So 4 could be transferred as:

I ′(~w, b, ~pu) = E(I(~w, b, ~yu)) (7)

=
1
2
||~w||2 + C

l∑
i=1

V (yi, oi) + C?(
n∑

i=l+1

piV (1, oi) + (1− pi)V (−1, oi))

where E is expectation under the probabilities ~pu.
In addition, an entropy term −H(~pu) is added to the objective,

I ′′(~w, b, ~pu;T ) = I ′(~w, b, ~pu)− TH(~pu) (8)

whereH(~pu) = −
∑

i

pi log pi + (1− pi) log(1− pi)

The balance constraint used in DA is:

1
u

n∑
i=l+1

pi = r (9)

The degree of non-convexity decreases with the increasing of T . At any
T , let (~wT , bT , ~puT ) = argmin(~w,b),~pu

I ′′(~w, b, ~pu;T ). There are two ways to
perform the optimization here:

• Alternating Minimization (DA): For each iteration, it fixes ~pu first,
which leads to a standard SVM; and then fixes the (~w, b), solves 8
with constraints 9, which leads to

pi =
1

1 + egi−v/T
(10)

where gi = C?[V (1, oi), V (−1, oi)] and v, the Lagrange multiplier as-
sociated with the balance constraint.

Repeat this until ~pu stabilizes in a KL-divergence sense.

• Gradient Methods (∇DA): This approach substitutes the 10 as a func-
tion of (~w, b), and thus solve a problem:

min
~w,b
S(~w, b) = min

~pu

I ′′(~w, b, ~pu;T ) (11)

S could be minimized through optimization techniques mentioned in
our course, though in this paper they used a conjugate gradient de-
scent.

Both DA and ∇DA converge to a local minimizer, but the paper claims
that ∇DA faster than DA.
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2.4 Convex Relaxation

Consider the dual problem of S3VM:

min
yi

max
α

n∑
i=1

αi −
1
2

n∑
i,j=1

αiαjyiyjKij (12)

s.t.
n∑

i=1

αiyi = 0, αi ≥ 0

where Kij = ~xT
i ~xj +Dij and D is a diagonal matrix given by Dii = 1/2C, i =

1, . . . , l and Dii = 1/2C?, i = l + 1, . . . , n.
Introducing an n× n matrix Γ, the problem can be written as:

min
Γ

max
α

n∑
i=1

αi −
1
2

n∑
i,j=1

αiαjΓijKij (13)

s.t.
∑

αiyi = 0, αi ≥ 0,Γ = yyT (14)

where 13 is convex while 14 is not convex.
Relax the 14 through replacing it with:

Γ � 0
Γij = yiyj , 1 ≤ i, j ≤ l

Γii = 1, l + 1 ≤ i ≤ n (15)

which is a Semi-Definite Programming problem.
As this is a convex problem, the global minimizer could be found. How-

ever, SDP is very expensive to perform.

3 Continuous Optimization

Methods discussed in this section do not treat ~yu as optimization variables;
rather, they solve 5 using continuous optimization techniques. There are
two issues that are common to these methods.

• Balancing Constraint These methods relax the balancing constraint
as

1
u

n∑
i=l+1

~wT~xi + b = 2r̃ − 1 (16)

where r̃ = r. To get an unconstrained optimization problem on ~w,
translate all the points so that

∑n
i=l+1 ~xi = 0 and fix b = 2r̃ − 1.

• Primal Optimization Methods in this section cannot directly use
dual-based SVM software, so following primal methods are used:

5



– Find ~zi such that ~zi · ~zj = k(~xi, ~xj), and replace xi in 5 by ~zi and
solve a linear SVM.

– Set ~w =
∑n

i=1 βiφ(~xi) where φ denotes a higher dimensional fea-
ture map associated with the nonlinear kernel. Substitute this
form in 5, and the problem is with β as the variables.

3.1 Concave Convex Procedure(CCCP)

The idea of CCCP is to decompose a non-convex function f into a convex
part fvex and a concave part fcave. The update for xt+1 is argmin~xfvex(~x)+
∇fcave(~xt) · ~x

For S3VM in form 5, the first two terms are convex and split the last into
a convex part and a concave part: max(0, 1−|t|) = max(0, 1−|t|)2+2|t|−2|t|.
The loss function L̃(t) could be defined based on this form. So we have
Algorithm 1.

Algorithm 1 CCCP for S3VM
Starting point: Use the ~w obtained from the supervised SVM solution.
repeat

yi ← sign(~w · ~xi + b), l + 1 ≤ i ≤ n
(~w, b) = argmin1

2 ||~2||
2+C

∑l
i=1 max(0, 1−yi(~w·~xi+b))2+C∗ ∑n

i=l+1 L̃+
∇(−2|t|) · (~w, b)

until convergence of yi,l + 1 ≤ i ≤ n,l

3.2 ∇S3VM

This method is to minimize objective function 5 directly by gradient de-
scent with the replacing of max(0, 1 − |t|)2 with exp(−st2). That is, the
optimization problem becomes

min
~w,b

1
2
||~w||2 + C

l∑
i=1

max(0, 1− yi(~w · ~xi + b))2 + C∗
n∑

i=l+1

exp(−s(~w · xi + b)2)

(17)
In the outer loop, this method increases C∗ gradually.

3.3 Continuation S3VM(cS3VM)

This method’s idea is that first, smooth the objection function enough to
get a global minimizer on the smoothed function, and use that point as
the starting point for the next iteration. Then smooth less to the objec-
tive function and optimize it again. Repeat this process until there is no
smoothing.

Both ∇S3VM and cS3VM has a complexity of O(n3), which is relative
expensive compared with linear SVM.
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3.4 Newton S3VM

As mentioned in last subsection, ∇S3VM and cS3VM are more expensive
than SVM, which has a computing complexity of O(n3

sv + n2), where nsv is
the number of support vectors, which is relatively small. Newton S3V M uses
a new objective function and applies Newton method with Hessian Modifi-
cation (which is named as Levenberg-Marquardt method in this paper, while
text book names it as Modified Cholesky Factorization).

They use method 2 described in the beginning of this section. That is,
set ~w =

∑n
i=1 βiφ(~xi), and let `L be the loss function of the labeled points,

and `U be the loss function of the unlabeled points. Replace ~w by β as the
variables in 5, and get the objective function:

min
β

1
2
βT Kβ + C

l∑
i=1

`L(yi(KT
i β + b)) + C∗

n∑
i=l+1

`U (KT
i β + b) (18)

where K is the kernel matrix and Ki is the ith column of K.

4 Experiments and Conclusion

The experiments in this paper show that S3VMs don’t always perform better
than SVMs; actually, in many cases, S3VMs are worse than SVMs. But the
author argues that this because the data points are on manifolds, which is
a hard task for S3VMs.

According to the results, ∇S3V M and cS3VM achieves the lowest ob-
jective values; however, lower objective values does not guarantee better
performance on classification. The results of unlabeled errors show that the
performance depends on the specified data set; for some data set, some algo-
rithms perform better. However, the SVMlight seems to be the most robust
one.
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