
Review for Nonlinear Programming

Zhiting Xu

November 30, 2008

1

1 Line Search Methods

In line search method, each iteration computes a search direction pk and
then decides how far to move along that direction. That is,

xk+1 = xk + αkpk (1.1)

The search direction pk often has the form

pk = −B−1
k fk (1.2)

where Bk is a symmetric and nonsingular matrix.

1.1 Step Length

Define φ(α) = f(xk + αpk), α > 0. The ideal choice of α would be global
minimizer of φ. However, it is usually too expensive to identify this value.
Line search methods try to find a reasonable value α that meets some con-
ditions by try out a sequence of candidate α. A popular condition is Wolfe
Conditions, which has two inequality:

f(xk + αpk) ≤ f(xk) + c1α∇fT
k pk (1.3)

∇f(xk + αkpk)T pk ≥ c2∇fT
k pk (1.4)

where 0 < c1 < c2 < 1.
The right-hand-side of 1.3 is a linear function with negative slop, so the

first Wolfe Condition is that the function value of the new point should be
sufficient small.

To avoid a too short step, the Wolfe Condition also requires a smooth
slope, which is the second Wolfe Condition.

The Strong Wolfe conditions requires that the derivative φ′(αk) can’t be
too positive:

f(xk + αkpk) ≤ f(xk) + c1αk∇fT
k pk (1.5a)

|∇f(xk + αkfk)T pk| ≤ c2|∇fT
k pk| (1.5b)

1.2 Convergence of Line Search

To see the convergence of line search, discuss the angle θk between pk and
the steepest descent direction, define by

cos θk =
−∇fT

k pk

||∇fk||||pk||
(1.6)

2

Theorem 1.1 Consider any iteration of the form 1.1, where pk is a descent
direction and αk satisfies the Wolfe conditions 1.3, 1.4. Suppose that f is
bounded below in Rn and that f is continuously differentiable in an open
set N containing the level set L def

= {x : f(x) ≤ f(x0)},where x0 is the
starting point of the iteration. Assume also that the gradient ∇f is Lipschitz
continuous on N , that is, there exists a constant L > 0 such that

||∇f(x)−∇f(x̃)|| ≤ L||x− x̃||, for all x, x̃ ∈ N (1.7)

Then ∑
k≥0

cos2 θk||∇fk||2 <∞ (1.8)

If the angle between pk and −∇fk is bounded away from 900, that is,
cos θk ≥ δ > 0, for all k, then limk→∞ ||∇fk|| = 0. If Newton and quasi-
Newton methods require Bk bounded, that is, ||Bk||||B−1

k || ≤ M , then
cos θk ≥ 1/M . Therefore, these methods are globally convergent.

For conjugate gradient methods, we can only get weaker result:
lim infk→∞ ||∇fk|| = 0.

1.3 Rate of Convergence

Basic concepts:

Q-linear:
||xk+1 − x∗||
||xk − x∗||

≤ r, for all k sufficiently large (1.9)

Q-superlinear: lim
k→∞

||xk+1 − x∗||
||xk − x∗||

= 0 (1.10)

Q-quadratic:
||xk+1 − x∗||
||xk − x∗||2

≤M (1.11)

R-linear: if there is a sequence of nonnegative scalars {vk} such that ||xk −
x∗|| ≤ vk for all k, and {xk} converges Q-linearly to zero. The sequence
||xk − x∗|| is said to be dominated by {vk}.

Steepest Descent

Theorem 1.2 When the steepest descent method with exact line searches
xk+1 = xk−

∇fT
k ∇fk

∇fT
k Q∇fk

∇fk is applied to the strongly convex quadratic function

f(x) = 1
2xT Qx− bT x, the error norm 1

2 ||x− x∗||2Q = f(x)− f(x)∗ satisfies

||xk+1 − x∗||2Q ≤
λn − λ1

λn + λ1

2

||xk − x∗||2Q (1.12)

where 0 < λ1 ≤ λ1 ≤ · · · ≤ λn are the eigenvalues of Q.

3

Newton’s Method
In Newton iteration, the search pk is given by:

pN
k = −∇2f−1

k ∇fk (1.13)

pk may not be the descent direction as ∇2fk may not be positive definite.

Theorem 1.3 Suppose that f is twice differentiable and that the Hessian
∇2f(x) is Lipschitz continuous in a neighborhood of a solution x∗ at which
the sufficient conditions are satisfied. Consider the iteration xk+1 = xk +pk,
where pk is given by 1.13. Then

• 1- if the starting point x0 is sufficiently close to x∗, the sequence of
iterates converges to x∗

• 2- the rate of convergence of {xk} is quadratic; and

• 3- the sequence of gradient norms {||∇fk||} converges quadratically to
zero.

Quasi-Newton Methods
In Quasi-Newton method, pk is:

pk = −B−1
k ∇fk (1.14)

where Bk is symmetric and positive definite.

Theorem 1.4 Suppose that f : Rn → R is twice continuously differentiable.
Consider the iteration xk+1 = xk +akpk, where pk is a descent direction and
αk satisfies the Wolfe conditions 1.3, 1.4 with c1 ≤ 1/2. If the sequence
{xk} converges to a point x∗ such that ∇f(x∗) = 0 and ∇2f(x∗) is positive
definite, and if the search direction satisfies

lim
k→∞

||∇fk +∇2fkpk||
||pk||

= 0 (1.15)

then

• 1- the step length αk is admissible for all k greater than a certain index
k0: and

• 2- if αk = 1 for all k > k0,{xk} converges to x∗ superlinearly.

If pk is a quasi-Newton search direction of the from 1.14, then 1.15 is
equivalent to

lim
k→∞

||(Bk −∇2f(x∗))pk||
||pk||

= 0 (1.16)

This is both necessary and sufficient for the superlinear convergence of
quasi-Newton methods.

4

Theorem 1.5 Suppose that f : Rn → R is twice continuously differentiable.
Consider the iteration xk+1 = xk+pk(that is, the step length αk is uniformly
1) and that pk is given by 1.14. Let us assume also that {xk} converges to a
point x∗ such that ∇f(x∗) = 0 and ∇2f(x∗) is positive definite. Then {xk}
converges superlinearly if and only if 1.16 holds.

1.4 Step-Length Selection Algorithms

Line search uses an initial estimate α0 and generates a sequence {αi} that
either terminates at a step that meets some conditions (like Wolfe condi-
tion), or determines that such a step length does not exist. Basically, the
precedure consists of two phases: a bracketing phase that finds an interval
[a, b] that contains acceptable step lengths, and then a selection phase taht
zooms in to locate the final step length. The selection phase usually reduces
the bracketing interval and interpolates some of the function and derivative
information gathered on earlier steps to guess the location of the minimizer.

Interpolation
At a guess αi, if we have

φ(αi) ≤ φ(0) + c1αiφ
′(0) (1.17)

Then this step length satisfies the condition. Otherwise, we know that [0, αi]
contains acceptable step lengths. Perform a quadratic approximation φq(α)
to φ by interpolating the three pieces of information available - φ(0), φ′(0),
and φ(αi)- to obtain

φq(α) = (
φ(αi)− φ(0)− α0φ

′(0)
α2

0

) + φ′(0)α + φ(0) (1.18)

Initial Step Length
For Newton and quasi-Newton methods, the step α0 = 1 should always

be used as the initial trial step length. For methods that do not produce well
scaled search directions, such as the steepest descent and conjugate gradient
methods, use current information about the problem and the algorithm to
make the initial guess.

1.5 Barzilai-Borwein

sk = xk − xk−1

yk = ∇f(xk)−∇f(xk−1)

In Newton method, pk = −∇f2(xk)∇f(xk).From Taylor theorem, we have

∇f2(xk)(xk − xk−1) ≈ ∇f(xk)−∇f(xk−1) (1.19)

,which is secant condition.

5

Algorithm 1 Line Search Algorithm
Set α0 ← 0, choose αmax > 0 and α1 ∈ (0, αmax)
i← 1
1: repeat
2: Evaluate φ(αi);
3: if φ(αi) > φ(0) + c1αiφ

′(0)or[φ(αi) ≥ φ(αi−1) and i > 1] then
4: α∗ ← zoom(αi−1, αi) and stop;
5: end if
6: Evaluate φ′(αi)
7: if |φ′(αi)| ≤ −c2φ

′(0) then
8: set α∗ ← αi and stop
9: end if

10: if φ′(αi) ≥ 0 then
11: set α∗ ← zoom(αi, αi−1) and stop
12: end if
13: Choose αi+1 ∈ (αi, αmax)
14: i← i + 1
15: until

Algorithm 2 zoom
1: repeat
2: Interpolate to find a trial step length αj between αlo and αhi

3: Evaluate φ(αj)
4: if φ(αj) > φ(0) + c1αjφ

′(0)or φ(αj) ≥ φ(αlo) then
5: αhi ← αj

6: else
7: Evaluate φ′(αj)
8: if |φ′(αj)| ≤ −c2φ

′(0) then
9: Set α∗ ← αj and stop

10: end if
11: if φ′(αj)(αhi − αlo) ≥ 0 then
12: αhi ← αlo

13: end if
14: αlo ← αj

15: end if
16: until

In quasi Newton method, use B instead of H.
In Barzilai-Borwein, use Bk = αkI, choose αk > 0 that Bksk ≈ yk, that

6

is, αs ≈ y.

min
α
||αs− y||22

min
α

(αs− y)T (αs− y)

α =
sT y

sT s

Then we have

αkpk = −∇f(xk)

pk = − 1
αk
∇f(xk)

xk+1 = xk −
sT
k sk

sT
k yk
∇f(xk) (1.20)

Alternative BB formula
Try to approximate ∇2f(xk)−1 rather than ∇2f(xk)
State secant condition as: sk ≈ f(xk)−1yk. Let τkI = ∇2f(xk)−1, so

τk = argmin||sk − τkyk||22

=
sT
k yk

yT
k yk

(1.21)

Switched BB
Take BB step when k is even, and take BBalt step when k is odd.
Cyclic BB
Choose cycle length M , recompute αk using B every Mth iteration.
Usually, cycle BB performs better than other BB methods.

7

2 Trust-Region Methods

Trust-region methods define a region around the current iterate within which
they trust the model to be an adequate representation of the objective func-
tion, and then choose the step to be the approximate minimizer of the model
in this region. They choose the direction and length of the step simultane-
ously.

Taylor-series expansion of f around xk:

f(xk + p) = fk + gT
k p +

1
2
pT∇2f(xk + tp)p (2.1)

By using an approximation Bk to the Hessian in the second-order term, mk

is defined as:
mk(p) = fk + gT

k p +
1
2
pT Bkp (2.2)

To obtain each step, we seek a solution of the subproblem

min
p∈Rn

mk(p) = fk + gT
k p +

1
2
pT Bkp s.t.||p|| ≤ ∆k (2.3)

Measure agreement between pk and f using ratios ρ of actual of two
protected decrease:

ρk =
f(xk)− f(xk + pk)
mk(0)−mk(pk)

=
actual

protected
(2.4)

Solving the TR subproblem

min
p∈Rn

m(p) = f + gT p +
1
2
pT Bp s.t.||p|| ≤ ∆ (2.5)

Theorem 2.1 The vector p∗ is a global solution of the trust-region problem

min
p∈Rn

m(p) = f + gT p +
1
2
pT Bp s.t.||p|| ≤ ∆ (2.6)

if and only if p∗ is feasible and there is a scalar λ ≥ 0 such that the following
conditions are satisfied:

(B + λI)p∗ = −g (2.7a)
λ(∆− ||p∗||) = 0 (2.7b)

(B + λI)is positive semidefinite (2.7c)

8

Algorithm 3 Trust Region

1: given ∆̂ > 0,∆0 ∈ (0, ∆̂), and η ∈ [0, 1/4]
2: for k = 0, 1, 2 do
3: Obtain pk by (approximately) solving 2.5
4: Evaluate ρk from 2.4
5: if ρ < 1/4 then
6: ∆k+1 = 1/4∆k

7: else
8: if ρk > 3/4 and ||pk|| = ∆k then
9: ∆k+1 = min(2∆k, ∆̂)

10: else
11: ∆k+1 = ∆k

12: end if
13: end if
14: if ρk > η then
15: xk+1 = xk + pk

16: else
17: xk+1 = xk

18: end if
19: end for

2.1 Algorithms based on the Cauchy point

The Cauchy point
Algorithm(Cauchy Point Calculation)

Find the vector ps
k taht solves a linear version of 2.5, that is,

ps
k = min

p∈Rn
fk + gT

k p s.t.||p|| ≤ ∆k (2.8)

Calculate the scalar τk > 0 that minimizes mk(τps
k) subject to

satisfying the trust-region bound, that is,

τk = min
τ≥0

mk(τps
k) s.t.||τps

k|| ≤ ∆k (2.9)

Set pc
k = τkp

s
k

The solution of 2.8 is
ps

k = − ∆k

||gk||
gk (2.10)

If gT
k Bgk ≤ 0, τk is 1. Otherwise, τk is minimizer of ||g||3/(∆kg

T
k Bkgk). In

summary, pc
k = −τ ∆k

||gk||gk, where τk = 1 if gT
k Bkgk ≤ 0 or min(||gk||3/(∆kg

T
k Bkgk), 1)

otherwise.
The Dogleg Method
It can be used when B is positive definite. When B is positive definite,

the unconstrained minimize of m of problem 2.6 is pB = −B−1g. When this

9

point is feasible for 2.6, it is a solution. When ∆ is small relative to pB, the
restriction p ≤ ∆ ensures that quadratic term in m has little effect on the
solution of 2.6. Then omit the quadratic term, the solution is p ≈ −∆ g

||g||
The dobleg method finds a path consisting of two line segments. The

first one runs along the steepest descent direction, which is

pU = − gT g

gT Bg
g (2.11)

while the second one runs from pU to pB. That is

p̃(τ) =
{

τpU : 0 ≤ τ ≤ 1
pU + (τ − 1)(pB − pU) : 1 ≤ τ ≤ 2

Lemma 2.1 Let B be positive definte. Then

• ||p̃(τ)|| is an increasing function of τ, and

• m(p̃(τ)) is a decreasing function of τ

2.2 Global Convergence

The dogleg produces approximate solutions pk satisfies:

mk(0)−mk(pk) ≥ c1||gk||min(∆k,
||gk||
||Bk||

) (2.12)

Lemma 2.2 The Cauchy point pc
k satisfies 2.12 with c1 = 1/2.

Theorem 2.2 Let η = 0 in Algorithm 2.1. Suppose that ||Bk|| ≤ β for some
constant β, that f is bounded below on the level set S = {x|f(x) ≤ f(x0)}
and Lipschitz continuously differentiable in the neighborhood S(R0) for some
R0 > 0, and that all approximate solutions of 2.5 satisfy the inequalities 2.12
and ||pk|| ≤
gamma∆k, for some positive constants c1 and γ. We then have

lim inf
k→∞

||gk|| = 0 (2.13)

Theorem 2.3 η > 0, accept pk only if ρk > eta, i.e. f(xk)− f(xk + pk) ≥
η(mk(0)−mk)(pk). Then limk→∞ ||g|| = 0

2.3 Iterative solution of the subproblem

Try harder to solve the subproblem. Use theorem 2.1 with an eigenvalue
decomposition to get an explicit formula for p.

p(λ) = −Q(Λ + λI)−1QT g = −
n∑

j=1

qT
j g

λj + λ
qj (2.14)

10

By orthonormality of q1, q2, . . . , qn, we have

||p(λ)|| =
n∑

j=1

(qT
j g)2

(λj + λ)2
(2.15)

Do line search to find λ > −λ1 such that ||p(λ))2 −∆2 = 0.
TR with true Hessian works even when Hessian is not positive definite.

11

3 Conjugate Gradient Methods

3.1 The linear conjugate gradient method

The conjugate gradient method is an iterative method for solving a linear
system of equations

Ax = b (3.1)

where A is an n× n symmetric positive definite matrix. It is equal to

minφ(x) =
1
2
xT Ax− bT x (3.2)

Its gradient equals to the residual of the linear system

∇φ(x) = Ax− b = r(x) (3.3)

A set of nonzero vectors {p0, p1, . . . , pl} is said to be conjugate with respect
to the symmetric positive definite matrix A if

pT
i Apj = 0 (3.4)

We can minimize φ in n steps if we minimize it along the individual directions
in a conjugate set. That is

xk+1 = xk + αkpk (3.5)

where αk is the one-dimensional minimizer of the quadratic function φ along
xk + αpk

αk = −
rT
k pk

pT
k Apk

(3.6)

Theorem 3.1 For any x0 ∈ Rn the sequence {xk} generated by the conju-
gate direction algorithm 3.5, 3.6 converges to the solution x∗ of the linear
system 3.1 in at most n steps.

Conjugate Directions
From 3.3 and 3.5, we have

rk+1 = rk + αkApk (3.7)

Theorem 3.2 Let x0 ∈ Rn be any starting point and suppose that the se-
quence {xk} is generated by the conjugate direction algorithm 3.5, 3.6. Then

rT
k pi = 0fori = 0, 1, . . . , k − 1 (3.8)

and xk is the minimizer of φ(x) = 1
2xT Ax− bT x over the set

{x|x = x0 + span{p0, p1, . . . , pk−1}} (3.9)

12

Basic properties of the conjugate gradient method
The conjugate gradient method is a conjugate direction method with

very special property: in generating its set of conjugate vectors, it can com-
pute a new vector pk by using only the previous vector pk−1.

pk = −rk + βkpk−1 (3.10)

As pT
k−1Apk = 0,

βk =
rT
k Apk−1

pT
k−1Apk−1

(3.11)

The residuals ri are mutually orthogonal. Each search direction pk and
residual rk is contained in the Krylov subspace of degree k for r0, defined as

K(r0; k) = span{r0, Ar0, . . . , A
kr0} (3.12)

Theorem 3.3 Suppose that the kth iterate generated by the conjugate gra-
dient method is not the solution point x∗. The following four properties
hold:

rT
k ri = 0 for i = 0, 1, . . . , k − 1 (3.13a)

span{r0, r1, . . . , rk} = span{r0, Ar0, . . . , A
kr0} (3.13b)

span{p0, p1, . . . , pk} = span{r0, Ar0, . . . , A
kr0} (3.13c)

pT
k Api = 0, for i = 0, 1, . . . , k − 1 (3.13d)

Therefore, the sequence {xk} converges to x∗ in at most n steps.

A practical form of the conjugate gradient method
Replace α and β with the following form:

αk =
rT
k rk

pT
k Apk

(3.14)

βk+1 =
rT
k+1rk+1

rT
k rk

(3.15)

Rate of convergence
Among all possible methods whose first k steps are restricted to Krylov

subspace, algorithm using 3.14 and 3.15 is the best one.

1
2
||x− x∗||2A =

1
2
(x− x∗)A(x− x∗) = φ(x)− φ(x∗) (3.16)

We have

xk+1 − x∗ = x0 + γ0r0 + γ1Ar0 + . . . + γkA
kr0 − x∗

= x0 − x∗ + (γ0I + γ1A + . . . + γkA
k)A(x0 − x∗)

= [I + Pk(A)A](x0 − x∗) (3.17)

13

where Pk(A) = γ0I + γ1A + . . . + γkA
k.

Eigenvalue decomposition of A:

A =
n∑

i=1

λiviv
T
i (3.18)

Since the eigenvectors span the whole space Rn, we can write

x0 − x∗ =
n∑

i=1

ξivi (3.19)

So 3.17 equals to
n∑

i=1

ξi(1 + Pk(λi)λi)vi (3.20)

So we have

φ(xk+1)− φ(x∗) ≤ max
λ1,λ2,...,λn

(1 + Pk(λ)λ)2
n∑

i=1

ξ2
i λi (3.21)

= max
λ1,λ2,...,λn

(1 + Pk(λ)λ)2||x0 − x∗||2A (3.22)

Theorem 3.4 If A has only r distinct eigenvalues, then the CG iteration
will terminate at the solution in at most r iterations.

Theorem 3.5 If A has eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λn, we have

||xk+1 − x∗||2A ≤ (
λn−k − λ1

λn−k + λ1
)2||x0 − x∗||2A (3.23)

A is nice if its eigenvalues are clustered, or well-conditioned.
Preconditioning
Define new variable x̂ = Cx, then φ̂(x̂) = 1

2 x̂T (C−T AC−1)x̂−(C−T b)T x̂.
Choose C so that C−T AC is well-conditioned or has clustered eigenvalues.

3.2 Nonlinear Conjugate Gradient methods

The Fletcher-Reeves method Extend the conjugate gradient method to
nonlinear function by making two simple changes in 3.14. First, for the step
length αk, perform a line search that identifies an approximate minimum of
the nonlinear function f along pk. Second, the residual r is replaced by the

gradient of the nonlinear objective f . That is, βFR
k+1 =

∇fT
k+1∇fk+1

∇fT
k ∇fk

The Polak-Ribiere method and variants
Variants of FR method differ from each other mainly in the choice of

parameter β. Polak-Ribiere defines this parameter as:

βPR
k+1 =

∇fT
k+1(∇fk+1 −∇fk)

||fk||2
(3.24)

14

Wolfe conditions do not guarantee that pk is always a descent direction.
If we define the β parameter as

β+
k+1 = max{βPR

k+1, 0} (3.25)

In practice, PR+ performs more robust than FR, and their performances
are influenced by the choice of the range of safeguarding.

Lemma 3.1 Suppose that FR is implemented with a step length αk that
satisfies the strong Wolfe conditions with 0 < c2 < 1

2 . Then the method
generates descent directions pk that satisfy the following inequalities:

− 1
1− c2

≤
∇fT

k pk

||∇fk||2
≤ 2c2 − 1

1− c2
, for all k = 0, 1, . . . (3.26)

Theorem 3.6 Suppose that f is bounded and Lipschitz continuously differ-
entiable, and FR is implemented with a line search that satisfies the strong
Wolfe conditions, with 0 < c1 < c2 < 1

2 . Then

lim
k→∞

inf ||∇fk|| = 0 (3.27)

15

4 Quasi-Newton Methods

In Newton method, pk = −(∇2f(x))−1∇f(xk). In quasi Newton, use Bk to
replace ∇2f(xk) or Hk to replace (∇2f(xk))−1. That is, pk = −B−1

k ∇f(x)
or pk = −Hk∇f(xk).

Desired properties of Bk:

• don’t use second derivations to compute it

• positive definite to guarantee descent

• symmetric

• behaves like true hessian

• Bk+1 is small modification at Bk

Secant condition:
yk = Bk+1sk (4.1)

Thus
sT
k yk > 0 (4.2)

To determine Bk+1 uniquely, we impose the additional condition that
among all symmetric matrices satisfying the secant equation, Bk+1 is, in
some sense, closest to the current matrix Bk. That is,

min
B
||B −Bk|| s.t. B = BT , Bsk = yk (4.3)

DFP updating formula:

Bk+1 = (I − ρkyks
T
k)Bk(I − ρksky

T
k) + ρkyky

T
k (4.4)

with ρk = 1
yT

k sk
. The corresponding H is

Hk+1 = Hk −
Hkyky

T
k Hk

yT
k Hkyk

+
sks

T
k

yT
k sk

(4.5)

BFGS estimates Hk:

Hk+1 = (I − ρksky
T
k)Hk(I − ρkyks

T
k) + ρksks

T
k (4.6)

It converges superlinearly.

16

4.1 The SR1 Method

In the BFGS and DFP, the updated matrix Bk+1 differs from the predecessor
Bk by a rand-2 matrix. SR1, symmetric-rank-1 uses rank-1 update, but it
does not guarantee that the updated matrix maintains positive definiteness.
It has from

Bk+1 = Bk + σvvT (4.7)

As it satisfies the secant equation yk = Bksk, we have

yk = Bk + [σvT sk]v (4.8)

The term in brackets is a scalar, so v must be a multiple of yk−Bksk. That
is,

(yk −Bksk) = σδ2[sT
k (yk −Bksk)](yk −Bksk) (4.9)

So the parameters should be

σ = sign[sT
k (yk −Bksk)], δ = ±|sT

k (yk −Bksk)|−1/2 (4.10)

Hence, rank-1 updating formula is given by

Bk+1 = Bk +
(yk −Bksk)(yk −Bksk)T

(yk −Bksk)T sk
(4.11)

Hk+1 = Hk +
(sk −Hkyk)(sk −Hkyk)T

(sk −Hkyk)T yk
(4.12)

This is only defined when (yk −Bksk)T sk 6= 0.

• Nice case when (yk −Bksk)T sk 6= 0

• yk −Bksk = 0, set Bk+1 = Bk

• (yk −Bksk)T sk = 0 . skip the update

4.2 The Broyden class

The Broyden Class has a family of updates:

Bk+1 = Bk −
Bksks

T
k Bk

sT
k Bksk

+
yky

T
k

yT
k sk

+ φk(sT
k Bksk)vkv

T
k (4.13)

where φk is a scalar parameter and

vk = (
yk

yT
k sk
− Bksk

sT
k Bksk

) (4.14)

Each iteration, updates has form

pk = −B−1
k ∇fk, xk+1 = xk + pk (4.15)

Set φ = 0, we get BFGS; φ = 1, we get DFP. φ = sT
k yk

sT
k (yk−Bksk)

, we get
SR1.

17

Theorem 4.1 Suppose that f : Rn → R is the strongly convex quadratic
function f(x) = bT x + 1/2xT Ax, where A is symmetric and positive def-
inite. Let x0 be any starting point for the iteration Bk 4.15 and B0 be
any symmetric positive definite starting matrix, and suppose that the ma-
trices Bk are updated by the Broyden formula 4.13 with φk ∈ [0, 1]. Define
λk

1 ≤ λk
2 ≤ . . . λk

n to be the eigenvalues of the matrix

A1/2B−1
k A1/2 (4.16)

Then for all k, we have

min{λk
i , 1} ≤ λk+1

i ≤ max{λk
i , 1} (4.17)

Moreover, the property 4.17 does not hold if the Broyden parameter φk is
chosen outside the interval [0,1].

18

5 Large-Scale Unconstrained Optimization

5.1 LBFGS

In BFGS, each step has the from

xk+1 = xr − αkHk∇fk (5.1)
Hk+1 = V T

k HkVk + ρksks
T
k (5.2)

ρk =
1

yT
k sk

, Vk = I − ρkyks
T
k (5.3)

sk = xk+1 − xk, yk = ∇fk+1 −∇fk (5.4)

Apply 5.2 recursively, and keep the last m steps:

Hk = (V T
k−1 . . . V T

k−m)H0
k(Vk−m . . . Vk−1)

+ρk−m(V T
k−1 . . . V T

k−m+1)sk−msT
k−m(Vk−m+1 . . . Vk−1)

+ρk−m+1(V T
k−1 . . . V T

k−m+2)sk−m+1s
T
k−m+1(Vk−m+2 . . . Vk−1)

+ . . .

+ρk−1sk−1s
T
k−1 (5.5)

Algorithm 4 L-BFGS two-loop recursion
q ← ∇fk

for i = k − 1, k − 2, . . . , k −m do
αi ← ρis

T
i q

q ← q − αiyi

end for
r ← H0

kq
for i = k −m, k −m + 1, . . . , k − 1 do

β ← ρiy
T
i r

r ← r + si(αi − β)
end for
stop with result Hk∇fk = r

5.2 Inexact Newton Methods

Basic Newton step pN
k is obtained by solving:

∇2fkp
N
k = −∇fk (5.6)

The residual is
rk = ∇2fkpk +∇fk (5.7)

19

Algorithm 5 L-BFGS
Choose starting point x0, integer m > 0
k ← 0
repeat

Choose H0
k

Compute pk ← −Hk∇fk from L-BFGS two-loop recursion
Compute xk+1 ← xk + αkpk, where αk is chosen to satisfy the Wolfe
conditions
if k > m then

Discard the vector pair {sk−m, yk−m} from storage
end if
Compute and save sk ← xk+1 − xk, yk = ∇fk+1 −∇fk

k ← k + 1
until convergence

Use CG to solve this problem. Terminate the CG iterations when

||rk|| ≤ ηk||∇fk|| (5.8)

Each iteration of CG requires us to compute ∇2f(xk)v for some vector v.
We approximate it by a finite difference

∇2f(x)v ≈ 1/ε[∇f(xk + εv)−∇f(xk)] (5.9)

Then we perform a two levels of iteration-line search. In the outer loop,
do line searches in directions given by the inner loop. In inner loop, use CG
to calculate pk.

Indefiniteness: CG only works if∇2f(xk) positive definite. We terminate
the CG iteration as soon as a direction of negative curvature is generated.

Usually require ||rk|| ≤ ηk||∇f(xk)||, where 0 ≤ ηk ≤ η < 1.

Theorem 5.1 Suppose that ∇2f(x) exists and is continuous in a neigh-
borhood of a minimizer x∗, with ∇2f(x∗) is positive definite. Consider the
iteration xk+1 = xk + pk, where pk satisfies 5.8, and assume that ηk ≤ η for
some constant η ∈ [0, 1). Then, if the starting point x0 is sufficiently near
x∗, the sequence {xk} converges to x∗ and satisfies

||∇2f(x∗)(xk+1 − x∗)|| ≤ η̂||∇2f(x∗)(xk − x∗)|| (5.10)

for some constant η̂ with η < η̂ < 1.

In CG, it needs ∇2fkd, we can use the approximation

∇2fkd ≈
∇f(xk + hd)−∇f(xk)

h
(5.11)

20

We can use a trust-region framework for inexact Newton in place of
line-search framework.

Outer loop: TR framework Inner loop: if ||rj+1|| ≤ εk then stop inner
iterations, set pk = zj+1.
Choose tolerance εk .
Generate CG steps z0, z1, . . .
using CG search directions d0, d1, d2, . . .
Use d0 = −∇f(xk)
If dT

j ∇2f(xk)dj ≤ 0, search along dj : find a point that crosses TR boundary,
use this as pk.
Usually step zj+1 = zj + αjdj

but if ||zj+1|| > ∆, then set step at TR boundary.
Set pi = zj+1

Theorem 5.2 The sequence of vectors {zj} generated by algorithm above
satisfies

0 = ||z0||2 < . . . < ||zj ||2 < ||zj+1||2 < . . . < ||pk||2 ≤ ∆k (5.12)

21

6 Derivative-Free Optimization

6.1 Finite Differences and Noise

Use finite-difference approximation to gradient:

∂f

∂xi
≈ f(x + εei)− f(x)

ε
(6.1)

Through this, we can get a finite-difference approximation to gradient by
doing n function evaluations. Can get a better gradient approximation using
a centered difference formula.

∂f

∂xi
=

f(x + εei)− f(x− εei)
2ε

+ o(ε3) (6.2)

In many applications, the objective function f has the form

f(x) = h(x) + φ(x) (6.3)

Define η(x, ε) = max||z−x||∞≤ε |φ(z)|, then we have

| ∂h

∂xi
− f(x + εei)− f(x)

ε
| = o(ε) +

2η(x; ε)
ε

(6.4)

Thus error bounded by Mε + η
2 . Choose ε to minimize this min:

ε =
√

η

M
(6.5)

6.2 Model-Based methods

Wish to construct a quadratic model of the form

mk(xk + p) = c + gT p + 1/2pT Gp (6.6)

We want mk(xk + p) = f(xk + p) at a bunch of p values:

mk(yl) = f(yl), l = 1, 2, . . . , q (6.7)

As there are 1/2(n+1)(n+2) coefficients (c, g,andG taking into account the
symmetry of G), the interpolation conditions determine mk uniquely only if
q = 1/2(n + 1)(n + 2).

An alternative is that just do n+1 initial evaluations and construct linear
model with G = 0. Take steps based on the linear model, after accumulating
f values at enough points, switch to quadratic model.

Replacing one member of {y1, y2, . . . , yq} equals to replacing one row of
matrix Y , and we would like to do this in a way that makes Y more nonsingu-
lar. Use determinant δ(η) to measure nonsingularty. In doing replacement,
try to increase |δ(η)|.

22

Perform a trust region. In each step, if the improvement is less than η,
shrink ∆k, improve {y1, y2, . . . , yq}

Idea is to do a least-change modification to G:

min
f,g,G

||G−Gk||2F

s.t. G symmetric
m(yl) = f(yl), l = 1, 2, . . . , q̂ (6.8)

6.3 Coordinate Search and Pattern-Search Methods

Coordinate Search Search along different coordinate directions x ∈ Rn.
Search directions ei, need to cycle though all i = 1, . . . , n

Pattern Search At each xk, we have a set of possible directions Dk,
search along some or all directions in Dk until we find a point xk + γkpk

for γ > 0 with ”sufficiently better” f value pk ∈ Dk. If no pk ∈ Dk have
f(xk + γkpk) = f(xk)− ρ(γk), decrease γk and repeat.

Validity requirement: for any v ∈ Rn that there is at least one p ∈ Dk

such that pT v > 0.

κ(Dk) = min
v∈Rn

max
p∈Dk

vT p

||v||||p||
≥ δ (6.9)

References

[1] Stephen J. Wright Jorge Nocedal. Numerical Optimization. Springer, 2
edition, 2006.

23

