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Some notations
• Training data 𝑆 = (𝒙!, 𝑦!)!"#$ , input 𝑥! is 𝑑-dim vector, 𝑦! label (or real value)

• Neural network (NN) 𝑓𝜽: 𝑅& → 𝑅'(or 𝑅), e.g., feed-forward NN

where 𝜎 is activation (e.g., ReLU); 𝜽 contains all trainable parameters 

• Loss function 𝐿(𝑦, 𝑓𝜽 𝒙 ), Empirical Risk Minimization (ERM)

• Train loss 𝑅$(1𝜽), train error: ratio of misclassification on 𝑆

• On test data 𝑇 = (𝒙!, 𝑦!)!"#$! , evaluate 1𝜽, test error (sometimes generalization error): 
ratio of misclassification on 𝑇. Often 𝑛( = ∞ in analysis
• Disclaimer: very incomplete references; check [Bartlett, Montanari, Rakhlin, Deep 

learning: a statistical view, 2021]



The generalization puzzle



Bias-variance tradeoff

• Generally holds for many statistical models
• Classical solution to high-complexity models: regularize!

Source: ESL



Why and how regularizing high complexity model
• Consider linear ridge regression. Denote 𝑛 × 𝑑 data matrix 𝑿. Solve

• Using SVD : 𝑛)#/+𝑿 = 𝑼𝜮𝑽𝑻

• Test error generally 𝑂(𝑑/𝑛) if 𝑑 ≪ 𝑛
• Worse still, if 𝑑 is close to n, huge variance in 1𝜽 without regularization. (MP law)
• Solution: need large 𝝀 if 𝑑 is large.

Successful stories of regularization are everywhere: 
• If signal is a sparse vector, use 𝐿#regularization ∥ 𝜽 ∥#, called LASSO
• If signal is a low-rank matrix, use nuclear-norm regularization ∥ 𝜽 ∥∗



But wait…double descent ?!

Source: Belkin et al, 2019

New questions for ML/statistics:
1. When and why this happens?
2. When second descent better? Do we need regularization?
3. Lessons for architecture & algorithm design?



Need understanding beyond interpolation

Source: Zhang et al, 2019



Search for implicit bias



Implicit bias
• Space of interpolating solutions (train error/loss is zero) may be large, 

but (stochastic) gradient descent (GD) converges to one with good 
generalization performance
• Proof-of-concept in overparametrized linear regression:



Implicit bias for classifying separable data
• Classification setting: for linearly separable data we can achieve zero 

train error using a linear classifier.

• Gradient descent favors “small-norm” solution (at least in certain settings)
• Search for implicit bias: multiple linear deep network [Moroshko et al. 

20], linear convolution network [GLSS18], one-hidden-layer ReLU network 
[NTS15], etc.

• Q: What is the generalization error of these solutions?



The path to realism (or not?)

• In lazy training regime [OCB19], models are linear in parameters 
[HMRT18, MM19, MRSY19, MZ20]
• Test error can be calculated with idealized assumptions on data, 

rigorously justifying double descent

Random 
features modelsLinear models Neural tangent 

models
Deep neural 

networks

Lazy training regime



Neural tangent model
• Key insight: when network width is infinite (or very large), the GD or SGD 

dynamics is given by (or approximated) by linearized local models---known 
as neural tangent kernel (NTK) models [JGH18, DZPS19, AZLS19, COB19]
• A simple example: one-hidden-layer NN:

• Initialize from 𝜽! = (𝒂!,𝑾!), do Taylor expansion:



Why NTK makes sense?

• Q: under NTK, what is the generalization error?



Insights from statistics



Overparametrized linear models

• Consider the one-hidden-layer NTK model. We have NT features:

• A useful simplification: NT features have complicated dependence, 
why not assume that we have !𝒙!~𝑁(𝟎, 𝜮), prediction function is 
!𝒙"*𝜽. By abuse of notations, just write 𝒙! .

• Key insight:



Decomposing features

• Regression setting. Data 𝐗 = [𝐗#$ , 𝐗%$] of size 𝑛×𝑑, where 𝑑 > 𝑛

• A seemingly bold assumption: 𝐗%$𝐗"%$ ≈ 𝛾 𝐈&
• Heuristic justification: features are divided into “important” ones (≤
𝑘) and “not important” ones (> 𝑘); the latter is similar to pure noise

• Equivalent to ridge regression!



Implicit regularization

• Parameter 𝛾 controls the amount of regularization
• Turning heuristics into rigorous arguments. For general (𝜆')'#( , 

define effective rank:

• Concentration results can show:

• Find a sweet spot for 𝑘 so that: 𝒙#$ captures almost all information 
while 𝒙%$ is similar to noise. Called effective dimension.



A look at the theorems

• Upper bounds tight up to constants [Tsigler, Bartlett, 2020]
• Bias and variance vanish under suitable decay of eigenvalues [TB20], 

empirically checked [WHS22]



Is linear model naïve?

• Consider the NT features:

• The spirit is the same. Stacking NT features into 𝑛 × 𝑁𝑑 matrix Φ . 
Assume isotropic data 𝒙!~ 𝑁(𝟎, 𝑰().

• Self-induced regularization: nonlinearity of activation helps!



A general generalization result for 2-layer NTK

• [Montanari, Zhong, 2020] Suppose 𝑑$ ≪ 𝑛 ≪ 𝑑$)*, isotropic input 
data. general target function 𝑓∗ ∈ 𝐿, 𝑆(-* . As long as network width 
𝑁 satisfies 𝑁𝑑 ≫ 𝑛 (overparametrization), then with high probability, 

• Generalization via low-degree component, interpolation via high-
degree component
• Regularization increased due to high-degree part of activation



Beyond Lazy Training



Limitation of Lazy training

• Success of deep learning depends on learning data representation. 
More complicated than random features models or variants.
• Want NNs to move moderately away from initialization.
• Random features models restricted, having trouble learning single 

neuron function [MBM17].
• Nevertheless, NTK may be advantageous for small-sample datasets 

[ADLS+19]



Mean-field perspective
• Viewing parameters as a probability distribution [MMN18, CB18]

• Under a nonstandard initialization scaling 𝑣𝑎𝑟 𝑤$ ~ 𝑂 *
&!

, continuous-
time SGD ≈ Gradient flow on probability measure, which is determined by 
a PDE.
• Advantage: capable of learning more functions
• Disadvantages: weak theory. Requires very large width (likely exponential 

in 𝑑), requires very large sample size (in general, exponential in 𝑑); the 
latter can be improved to polynomial dependence by adding noise 
[WLLM20]



Feature learning with GD

• Suppose the target function 𝑓∗ 𝒙 = 𝑔(𝑼𝒙) where 𝑼 is of size 𝑑 × 𝑟
with 𝑑 ≫ 𝑟. Assume 𝑔 is of polynomial of degree 𝑝.
• NTK cannot learn the unknown subspace 𝑼, thus requiring a much 

larger sample size 𝑂(𝑑.)
• Assuming non-degeneracy condition of Hessian of 𝑓∗, one-step GD on 

the squared loss using one-hidden-layer NN reveals information 
about 𝑼, which results in improved sample complexity 𝑂 𝑑, ; see 
[DLS22] 



Other approaches
• Classical tools in learning theory such as VC dimension insufficient 

because dimension is too large [BMM99]
• Bounding Rademacher using weight matrix norms [BFT17]
• Finding other good complexity measures by taking into account 

initialization [NLBLS18], algorithms, etc.



Emerging phenomena, and new hope?



Self-supervised learning

• Representation using supervised learning 𝑓 𝒙; 𝜽 . Q: label intensive? 
How to transfer?
• With no (or very few) label information, NNs can learn good 

embedding, e.g., SimCLR [CKNH20]
• Clear cluster structure & meaningful learned features

• Self-supervised learning or unsupervised learning may be a bridge 
to understanding generalization



Source: Wang, Isola, 2020



Visualizing learned features

Source: Wen and Li, 2021



Neural collapse
• ℎ = ℎ/ 𝑥 is last-layer activations, where ℎ/: 𝑅( → 𝑅., 𝐾 classes
• Classifier: 𝑊ℎ/ 𝑥 + 𝑏
• decomposing covariance: between-class + within-class:
• Σ" = Σ0 + Σ1

Source: Papyan, Han, 
Donoho, 2020



Clear phenomenon, clean math relations 



Intermediate layers for generalization theory?

• How about intermediate layers? Do we have neural collapse?
• Empirical work by [GGB20] demonstrates existence of effective depth, 

which is a threshold 𝐿 ---below layer 𝐿 within-class variances decrease 
but no collapse, above layer 𝐿 there is neural collapse
• Can we decompose overparametrized deep NNs into “representation 

learning component” and “interpolation component”? If so, helpful 
for generalization & transfer learning
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