
Cost-Based Labeling of Groups of Mass Spectra

ABSTRACT
We make two main contributions in this paper. First, we
motivate and introduce a novel class of data mining prob-
lems that arise in labeling a group of mass spectra, specifi-
cally for analysis of atmospheric aerosols, but with natural
applications to market-basket datasets. This builds upon
other recent work in which we introduced the problem of
labeling a single spectrum, and is motivated by the advent
of a new generation of Aerosol Time-of-Flight Mass Spec-
trometers, which are capable of generating mass spectra for
hundreds of aerosol particles per minute. We also describe
two algorithms for group labeling, which differ considerably
in how they utilize an LP solver, and also differ considerably
from algorithms for labeling a single spectrum.

Our second main contribution is to show how to auto-
matically select between these algorithms in a cost-based
manner, analogous to how a relational query optimizer se-
lects from a space of query plans. While the details are
specific to the labeling problem, we believe that this is a
promising first step towards a general framework for cost-
based data mining, and opens up an important direction for
future research.

1. INTRODUCTION
The size and composition of aerosol particles, which are

often complex mixtures of organic and inorganic solids and
liquid suspended in the air, is directly related to their origin,
evolution and deposition and is intimately related to their
environmental and health effects [19]. The aerosol time-
of-flight mass spectrometer (ATOFMS) [20] samples aerosol
particles directly from the ambient air or from an emission
source and obtains size and chemical composition informa-
tion on one particle at a time, in real-time. It holds the
potential to fundamentally change policy and practice in en-
vironmental monitoring, but our ability to analyze the data
is a critical bottleneck. Specifically, an ATOFMS produces
a mass spectrum for each aerosol particle, and can sample
about 250 particles per minute.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

A mass spectrum is a plot of signal intensity (often normal-
ized to the largest peak in the spectrum) versus the mass-to-
charge (m/z) ratio of the detected ions. Thus, the presence
of a peak indicates the presence of one or more ions contain-
ing the corresponding m/z value. A basic task is to label
a spectrum with the ions that are present in the particle,
and we studied this problem in [10], in collaboration with
a team of atmospheric chemists. In practice, however, we
are often interested in the composition of particles sampled
over some time window, rather than the composition of each
individual particle.

In this paper, our first contribution addresses the cen-
tral problem of labeling a group of mass spectra. To a first
approximation, we treat the group as an unordered collec-
tion. The fact that these spectra are obtained from a con-
tinuously sampled stream of particles essentially allows us
to exploit some domain knowledge about the percentage of
similar spectra within a group. The labeling of mass spectra
is a first step in a more comprehensive analysis of ATOFMS
streams, and allows us to model each aerosol particle as a
collection of ions, along with a quantity for each ion. Viewed
thus, an aerosol particle is a generalization of the well-known
market basket abstraction of a collection of items purchased
at one time by a customer. While our primary focus is on
mass spectra, we briefly discuss this connection to market
basket data, which makes our results relevant for a wider
class of applications.

Additional steps in a typical analysis involve looking for
trends and correlations with other spatiotemporal streams,
taking into account data about ambient conditions and emis-
sion sources. Thus, labeling is just one step in a typical
multi-step analysis. Our ultimate objective is to develop
an algebraic framework for expressing such multi-step data
mining analyses, and a cost-based optimization framework
for finding good evaluation plans.

Our second contribution in this paper is to show how
database concepts like set-orientation and cost-based query
optimization can be applied to data mining tasks (such as la-
beling mass spectra using linear programming techniques).
While the details are specific to the labeling problem, we
show the benefits of a set-oriented approach to a complex
mining task, in particular, the benefits of essentially “push-
ing” constraints over the desired set of labels down into the
linear programming computations for identifying those la-
bels. The cost analysis of the algorithms we propose for
group labeling clearly shows the benefits of group label-
ing versus labeling each spectrum in the group individu-
ally. Most importantly, it provides the basis for a cost-based

approach to selecting the most efficient algorithm. To our
knowledge, this is the first paper to describe a cost-based
framework for selecting between alternative data mining al-
gorithms (including algorithms for machine learning prob-
lems, statistical analyses, various kinds of frequent itemset
and sequential pattern identification, etc.).

Research in data mining has largely concentrated on al-
gorithms for a single task, and comparisons of performance
have been empirical in nature. Insights from database sys-
tems design can guide the development of a framework for
multi-step analyses that incorporates data mining tasks such
as clustering, decision-tree construction, or labeling. In turn,
this opens the door to a cost-based optimization framework,
and to a compositional approach to mining. We believe that
our results are a modest first step towards this goal.

1.1 Outline
The rest of the paper is structured as follows. We review

single spectrum labeling in Section 2 and then introduce
group labeling in Section 3. We propose two new algorithms
for group labeling in Section 4. In Section 5, we present a
cost analysis of these algorithms. Using this analysis as a
foundation, we propose a cost-based method for selecting the
most efficient group labeling algorithm, taking into account
the characteristics of the data and the group labeling pa-
rameters, in Section 6. In Section 7, we study the algorithm
selection method experimentally, and show its effectiveness.
In Section 8, we discuss the connections between spectrum
labeling and market basket analysis. We survey related work
in Section 9.

2. SPECTRUM LABELING
In this section, we review the problem of labeling a single

mass spectrum, introduced in [10], to keep this paper self-
contained. The formalization of the group labeling problem,
presented in the next section, builds upon the single spec-
trum case.

2.1 Preliminaries
A mass spectrum can be represented as a normalized

vector ~b,
P

i bi = 1. bi ∈ R is the relative signal intensity at
m/z value i.

The signature of an ion is a vector ~s, si ∈ R and
P

i si = 1, representing the distribution of its isotopes, i.e.,
si is the relative abundance of isotopes with m/z value i.

A signature database is a set of signatures
S = {~s1, ~s2, ..., ~sn} where ~sj is the signature of chemical
element j. All the spectra and signatures have the same
‘range’ and ‘granularity’ over m/z axis; i.e., they have the
same dimension and the ith element of a spectrum or signa-
ture always corresponds to the same m/z value i.

The task of spectrum labeling is to find the chemical
ions identified by the peaks in the spectrum and, ideally,
their quantities in the particle. If we arrange the n signa-
tures in the signature database in some order, the signature
database can be represented as a matrix A = [~s1, ~s2, ..., ~sn],
where the kth column in matrix A represents signature k.
The labeling task consists of finding an n-dimensional vec-
tor ~x such that ~x[j] is the relative abundance of chemical
element j. This is equivalent to solving the linear equation

A~x = ~b, ~x ≥ 0. (1)

2.2 An Optimization-Based Reformulation

2.2.1 Error Bound
In real applications, the observed spectrum usually con-

tains noise and calibration discrepancies, and cannot be de-
scribed as an exact linear combination of ion signatures. La-
beling therefore involves finding a linear combination of ion
signatures that approximately matches the input spectrum.
Therefore, we introduce an error bound E with respect to a
certain distance function D. The linear equation model (1)
then becomes an optimization task:

Seek ~a, s.t. D(A~a,~b) < E, ~a ≥ 0 (2)

Given a signature database A that contains n signatures,

and an input spectrum ~b, the search space for the optimiza-
tion task defined in (2) is an n-dimensional continuous space.

The solution space for input ~b is a subspace within this
search space.

Definition 1. Given a signature database A, an input spec-

trum ~b, and an error bound E with respect to distance func-

tion D, the solution space of spectrum ~b,

L~b = {~a | D(A~a,~b) < E and ~a ≥ 0}

It is worth noticing that the choice of the distance func-
tion D in (2) could dramatically change the complexity
of the problem [10]. Using Manhattan distance, namely
D(~v1, ~v2) =

P

i |~v1[i] − ~v2[i]|, the optimization task of (2)
can be interpreted as a linear programming task [10] whose
time complexity is polynomial in the total number of sig-
natures in the signature database. Other distance functions
can be useful in certain situations, for example, to spread
errors over fewer dimensions. However, considering other
distance functions is outside the scope of this paper, and we
will henceforth assume that Manhattan distance is used.

2.2.2 Optimization Model
In [10], we have shown that the optimization task defined

in (2) will have an infinite number of solutions for most
input spectra. Fortunately, in practice, we only care about
those solutions that are significantly different. A natural
approach to deal with the infinity in a continuous space is
to discretize it into grids, so that the number of possible
solutions is finite.

Formally, a discretization is specified by a threshold vec-
tor ~t = [t1, t2, ...td+1] divides each dimension of the
search space into d ranges: [t1, t2), [t2, t3)...[td, td + 1),
where ti and ti+1 are the lower bound and upper bound of
range i. A cell is the finest granularity of the discretization,
which characterizes the degree of detail users care about.
Given a discretization that divides each dimension into d
ranges, the whole search space is discretized into dn cells,
where n is the number of dimensions. (Recall that n is the
number of signatures in the signature database.)

A label of spectrum ~b is simply a cell that intersects ~b’s
solution space. It can be represented as a vector of integers
~x, s.t. ~x[i] indicates the range it falls into on dimension

i.1 The set of all cells intersecting ~b’s solution space forms

the label set of spectrum ~b. We use the term feasible

1This is defined rigorously using the notion of an index
vector in [10].

subspace to describe any subspace of the search space that
intersects the solution space.

Figure 1 illustrates the concepts discussed in this section.
Suppose there are two signatures in the signature database.
The threshold vector ~t = [0, 0.3, 0.6, 1] divides each dimen-
sion into three ranges indexed by 0, 1, and 2. The search
space is a two-dimensional space ABCD. S1S2S3S4 is the
solution space of an example input spectrum, which inter-
sects the cells LFGM and MGHA. So, cells LFGM and
MGHA, which can be represented as vectors [0, 1] and [0, 2],
are labels of the input spectrum. Subspace ALFH intersects
the solution space, so it is a feasible subspace. MBEG is
also a feasible subspace.

�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
��������������������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������

B

�����������
�����������
�����������
�����������

���

���

cell

space
solution

Label

L

M

0.3

0.6

1

0.3 0.6 10

F

H

E C

DA

G

S1

	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

S3

S2

S4

Figure 1: Illustration of Concepts

Given an error bound E with respect to a distance func-
tion D and a discretization, we now redefine the task of
spectrum labeling as follows: Find all cells that inter-
sect the solution space of the input spectrum.

Table 1 summarizes the notations used in this paper and
provides an operational optimization model for the labeling
task that we just described.

Notation: ~x A n dimensional vector of integers
, 1 ≤ ~x[i] ≤ d.

~b Input mass spectrum
~t Threshold vector for discretization
d Number of ranges per dimension

under discretization
L Label set of input spectrum
A Signature database
D Distance function
E Error bound

L=∅
For every possible ~x, 1 ≤ ~x[i] ≤ d

Seek ~a s.t.

D(A~a,~b) ≤ E (3)
~t[j] ≤ ~a[i] < ~t[j + 1], j = ~x[i]
If (3) succeeds, L = L ∪ ~x

Return L

Table 1: Operational Definition of Spectrum Label-
ing

3. GROUP LABELING
In this section, we introduce the problem of labeling a

group of spectra. In environmental monitoring, the spec-
tra are collected through continuous sampling, and a group
that is collected at a single location over a short time-span is
likely to contain many similar spectra (because the environ-
ment does not change instantaneously). Thus, the goal is to

find these common, or typical, spectra.2 Indeed, this is the
goal even when the group does not reflect particles from the
same location and time; e.g., when analyzing a collection of
spectra obtained at multiple locations and times but with
some commonalities in ambient conditions.

Given a group of spectra {~bi}, we can conceptually3 com-
pute a set of label sets {Li}, where Li = {−→xij} is the label

set of ~bi. We define the support of a label ~x with respect

to the group of spectra {~bi} as the percentage of ~bis whose
corresponding label set contains ~x.

Definition 2. Given a group of spectra {~b}, the support

of a label ~x = |{Li|~x∈Li}|
|{Li}|

, where Li = {−→xij} is the label set

of spectrum ~bi.

Intuitively, the support characterizes the likelihood of a
label given a group of similar spectra. Extending the concept
of ‘label’ and ‘label set’ discussed in Section 2.2, we define
group label and group label set as follows:

Definition 3. Given a group of spectra B = {~bi} and a
threshold Min Sup, ~x is a group label if the support of ~x
w.r.t. B is greater than Min Sup. The group label set
for the group B is GL = {~x|~x is a group label of B}.

As an example, consider a group of spectra {~b1, ~b2, ~b3}.

Let the label set for ~b1 be { ~x1, ~x2}, the label set for ~b2 be

{ ~x2}, and the label set for ~b3 be { ~x3}. Then, support(~x1) =
support(~x3) = 33%, support(~x2) = 66%. Suppose the Min Sup
threshold is set to be 50%, then ~x2 is the only group label.
The group label set is therefore { ~x2}.

Spectral labeling is important in many domains other than
environmental monitoring because mass spectra are a widely
used tool for chemical and biological analysis. Surprisingly,
the concepts also show promise for analyzing market-basket
data; we discuss this briefly in Section 8.

4. SEARCH FOR GROUP LABELS
In this section, we first review a depth-first search algo-

rithm introduced in [10] for single spectrum labeling, based
on which we propose two new algorithms for group labeling.
When we go from labeling a single spectrum to a large group
of spectra, the problem is fundamentally altered by the no-
tion of support. The new Depth First Search with Voting
(DFSVoting) and Candidate Generation and Test(GenTest)
algorithms for group labeling differ significantly in how they
handle support.

4.1 Basic Depth First Search Algorithm
If a subspace is not feasible, then we do not need to con-

sider any cell in that subspace. The basic depth-first single
spectrum labeling algorithm utilizes this property to prune
the search space. Table 2 shows the operational procedure
which invokes an LP call to test whether a given subspace
is feasible.

2A related task is to find common ions across the group of
spectra. Further, we often have domain knowledge that can
be expressed in terms of constraints over the composition of
the particles in the group. These extensions are important
directions for future research, but outside the scope of this
paper.
3Computing all label sets is inefficient, and the group label-
ing algorithms that we propose avoid this.

Given : Input spectrum ~b
Threshold vector ~t
Error bound E

is feasible(subspace S)
Seek ~a, s.t.

D(A~a,~b) ≤ E (*)
~t[li] ≤ ~a[i] < ~t[hi]
~t[li] and ~t[hi] are the boundary of S in dimension i

if (*) succeeds, return TRUE, otherwise return FALSE

Table 2: Testing the Feasibility of a Subspace

The basic depth-first single spectrum labeling algorithm is
shown in Table 3, and uses a divide-and-conquer approach.
Its exploration of the search space can be mapped to a search
tree. Each node in the search tree is associated with a unique
subspace.

At each node, the algorithm first invokes a linear pro-
gramming (LP) call to check if the subspace is feasible. If
the subspace is not feasible, the subtree is pruned and not
explored. Otherwise, we know there are one or more la-
bels in the subspace, and we must search inside that sub-
space. To do this, we select a dimension j that has not been
subdivided to the finest possible granurality, and use it to
split the subspace into smaller spaces, each of which has
the finest possible granurality in dimension j. Each smaller
space created thus corresponds to a new search node is, and
is explored recursively.

The above procedure is repeated until either (1) the cur-
rent subspace is not feasible, or (2) the current subspace is a
cell. In the former case, we discard the current search node
and backtrack. In the latter case, the label corresponding
to this cell is output by the algorithm.

Given : Input spectrum ~b

Threshold vector ~t = [t1, t2, . . . , td+1]
Error bound E

Output: Label set for ~b
Depth First Search(subspace S)

if (is feasible(S))
RETURN

else
if (S is a cell)
output the corresponding label of S

else
pick dimension(j)
split S into a set of subspacesSi

s.t. Each Si is not divisible on dimension j
for each result subspace Si

Depth First Search(Si)

Main: Depth First Search(the whole search space W)

Table 3: Algorithm for Single Spectrum Labeling

In Table 2, the method pick dimension(j) chooses the
dimension to split. We use a simple scheme in which (k+1)th

dimension is chosen as the split dimension at level k of the
recursion, assuming the search starts from level 0.4

4Different strategies for choosing the dimension to split are
studied in [10].

4.2 Depth-First Search Voting Algorithm
In group labeling, a subspace is ‘feasible’ (i.e., worth fur-

ther exploration) only when it intersects the solution spaces
of at least a certain minimum number of spectra. Follow-
ing this intuition, we derive the DFSVoting group labeling
algorithm (shown in Table 4) from the depth-first single
spectrum labeling algorithm by changing the definition of
‘feasible’.

At each search node, we take a vote among the spectra in
the group. A spectrum votes yes at a node if the subspace
corresponding to the node is feasible for the spectrum; oth-
erwise it votes no. When the number of yes votes exceeds
the minimum number required by the support theshold, the
algorithm goes on to search the children of the current node
in depth-first order. Otherwise, the subspace at the current
node is pruned, and the algorithm backtracks to the parent
node.

Consider an example of group labeling, with two signa-
tures in the database and with two spectra in the group,
and the threshold vector for discretization set to be ~t =
[0, 0.3, 0.6, 1]. Suppose that the label sets for the two spec-
tra are { ~x1, ~x2, ~x3} and { ~x1, ~x2, ~x4} respectively, in which
~x1 = [0, 1], ~x2 = [0, 2], ~x3 = [0, 0] and ~x4 = [1, 2].

Figure 2 illustrates the execution of the DFSVoting algo-
rithm. The shadow area in each search node represents the
subspace investigated. Beside each search node, we show
the set of spectra that vote yes for the subspace, and the
order in which nodes are visited. The edge connecting two
search nodes is tagged by the additional constraint intro-
duced when going from the parent to its child.

Input : Set of Spectra B, |B| = w

Threshold vector ~t = [t1, t2, . . . , td+1]
Error bound E
Support threshold Min Sup

Output: Group label set for B
DFSVoting(Subspace S, Set of Spectra C)

C′ = {~b|~b ∈ C, S is feasible w.r.t. ~b}
if |C′| ≤ Min sup ∗ w

RETURN
else

if (S is a cell)
output the corresponding label of S

else
pick dimension(j)
split S into a set of subspaces Si

s.t each Si is not divisable on dimension j
for each result subspace Si

DFSVoting(Si, C
′)

Main : DFSVoting(The whole search space W , B)

Table 4: Algorithm DFSVoting for Group Labeling

The following theorem establishes the correctness of DFSVot-
ing. The proof is omitted for lack of space.

Theorem 1. Given a group of spectra and a specified
minimum support, the DFSVoting algorithm finds the com-
plete group label set without duplication.

4.3 Candidate Generation and Test Algorithm
The Candidate Generation and Test (GenTest) algorithm

0<=a1 < 0.3
0.3 <=a1 < 0.6

0.6 <= a1 < 1

0 <= a2 < 0.3
0.3 <=a2 < 0.6 0.6 <= a2 < 1

1

feasible cells (labels)

Infeasible subspaces

{1,2}

{1}

3

{1,2}

4

{1,2}

5

2

{1,2}

6

{2} {}

7

Figure 2: An Example of the DFSVoting Algorithm

uses the depth-first algorithm for single spectrum labeling
as a building block. It is based on the following observation:

Lemma 1. Suppose that we are given a support threshold
Min Sup, a set of spectra B, |B| = w, and a subset S, S ⊂
B, |S| = b(1 − Min Sup) ∗ w + 1c. Then, l is a group label

⇒ ∃~b ∈ S, s.t. l is a label of ~b.

The above lemma essentially uses a pigeon-hole argument
to establish that labels with a given level of support can only
be missing in a certain (hopefully small, for high support)
number of spectra. In particular, such a label must appear
in the labels for some spectrum in set S if we pick |S| =
b(1 − Min Sup) ∗ w + 1c. Thus, the union of the label sets
of spectra in such a set S contains all group labels for B.

The GenTest algorithm shown in Table 5 consists of two
phases: (1) Select a group S with b(1−Min Sup)×w + 1c
spectra from B and calculate the label set for each of them.
This generates a set of candidates group labels. (2) For
each candidate group label, test whether it is a label for
each spectrum in B −S. If a candidate label appears in the
label set of at least dw × Min Supe spectra, it is output as
a group label for B.

The following theorem establishes the correctness of Gen-
Test.

Theorem 2. Given a group of spectra and a specified
minimum support, the GenTest algorithm finds the complete
group label set without duplication.

We observe that both algorithms are highly parallelizable.
DFSVoting is also non-blocking, in contrast to GenTest, in
which the testing phase is blocked until the candidate gen-
eration phase is complete. A more detailed analysis that
compares the cost of the two algorithms is presented in the
next section.

5. COST ANALYSIS
The goal of our analysis is to estimate the effect of various

inputs on the overall cost of each algorithm, and more im-
portantly, to determine the relationship between algorithm
cost and the characteristics of the data. Ultimately, we want
to be able to select the less expensive algorithm for any in-
stance of the problem by using these cost estimates.

In what follows, we will use the notation in Table 6.

Input : Set of Spectra B, |B| = w
Threshold vector ~t = [t1, t2, . . . , td+1]
Error bound E
Support threshold Min Sup

Output: Group label set for B
GenTest

L = ∅
B0 = {b(1 − Min Sup) ∗ w + 1c spectra

randomly choosen from B}

for each ~b in B0

find Fi, the label set of ~b
for each label l ∈ Fi

l.count + +
L = L ∪ Fi

for each spectrum ~b ∈ B − B0

for each l ∈ L

if l is a label for the ~b
l.count + +;

for each label l ∈ L
if (l.count > Min Sup ∗ w)

output l as a solution

Table 5: Algorithm GenTest for Group Labeling

Notation Meaning
n Number of element signatures in the

database
d Number of ranges per dimension

under discretization
m Number of labels for a particular

spectrum
w Size of the group of spectra
s Conceptual number of identical spectra

within the group
Min Sup Minimum support threshold for

group labeling
CSingle Cost of labeling a single spectrum
CV oting Cost of DFSVoting algorithm
CGenTest Cost of GenTest algorithm

Table 6: Notation for Cost Analysis

5.1 Cost Metric
The proposed algorithms call an LP solver to determine

whether a subspace is feasible or not. The exact cost of
an LP call depends on the initial point and the constraints.
When more sophisticated optimization is used, the cost of
a particular LP call may also depend on the previous linear
programming tasks performed [18]. Fortunately, the cost of
one LP call is polynomial in the number of signatures in
the database [18] and both DFSVoting and GenTest tend
to have similar gains when given additional constraints and
similar input spectra. Therefore, the number of LP calls
incurred is a good cost metric, at least for comparing the two
algorithms. In addition, this abstraction makes our analysis
applicable to other depth-first search algorithms that invoke
expensive subcomputations at each node.

5.2 Cost of Labeling One Spectrum
The depth-first single spectrum labeling algorithm takes

a spectrum as input and outputs its label set. The search
space corresponds to a complete tree, as shown in Figure 3.

.

level 0

level 1

level k

level n
(leaf level)

Figure 3: A Complete Search Tree

Each leaf node corresponds to a cell in the space. The tree
is traversed in a top-down fashion. At each non-leaf node
visited, we invoke an LP call to see if it has in its subtree
a leaf node corresponding to a label. If there is such a leaf
node, all the children of the subtree are visited, otherwise,
the algorithm will prune that subtree. We can think of the
algorithm as a node coloring game.

Given a complete tree of n + 1 levels, a painter
randomly drops m black balls on the leaf nodes
and colors the non-leaf nodes as follows: If a
non-leaf node has a black ball in its subtree, paint
it black; otherwise, leave it white.

The painter corresponds to the input spectrum. The num-
ber of black balls is the number of labels for that spectrum.
The complete tree with n+1 levels corresponds to the entire
search space of the depth-first algorithm, and each leaf node
with a black ball is a label. A non-leaf node is black if its
corresponding subspace is feasible.

Lemma 2. Given a spectrum ~b and a discretization crite-
rion that divides each dimension of the search space into d
ranges, if the corresponding node coloring game ends with
nb black non-leaf nodes, the number of LP calls invoked by

the depth-first algorithm in Table 3 to label spectrum ~b is:

Csingle = nb ∗ d + 1 (4)

Proof. In the node coloring game, a non-leaf node is
black if it corresponds to a feasible subspace. Black nodes
are those that invoke one LP call for each of their children.
Since each black node invokes an LP call for each of its
children and one LP call is performed at the root node, the
total number of LP calls invoked is nb ∗ d + 1.

In transforming the single spectrum labeling problem to a
node coloring game, we deliberately made a random drop
assumption: A label of a spectrum is randomly and uni-
formly assigned to a cell in the search space.

This assumption actually allows duplicates among the m
labels for a spectrum, which is not the case for our labeling
algorithm. However, the number of labels m is much smaller
than the total number of cells dn. Therefore, the difference
due to duplicates is negligible.

In reality, the uniform distribution assumption is also vi-
olated. The labels are not spread out in the space without
any constraints. They all intersect the solution space of the
input spectrum, which is a convex hull [10]. In other words,
they are close to each other in the space. Nonethless, these

simplifications allow us to derive cost formulae that track
actual performance very well, as we show empirically in Sec-
tion 7.

Given the ‘node coloring game’ model, to estimate cost,
we have to estimate the number of black non-leaf nodes.
In order to estimate the total number of black nodes after
playing the game, we first estimate the probability that a
particular non-leaf node is painted black.

Lemma 3. In the node coloring game, if the painter has
m balls, the probability that a non-leaf node at level k is
colored black is:

P (k) = 1 −

„

1 −
1

dk

«m

(5)

Proof. At a particular level k, there are dk nodes. So,
for a particular non-leaf node N at level k the probability
that a particular black ball is in the subtree of N is 1

dk
.

1 − 1
dk

then gives the probability that a particular black
ball is not in the subtree of N . Since each ball is dropped
independently, the probability that all m black balls are not
in N ’s subtree is

`

1 − 1
dk

´m
. Hence, 1−

`

1 − 1
dk

´m
gives us

the probability that node N at level k has a black ball in
its subtree. In other words, the probability that a painter
colors a node black at level k is:

P (k) = 1 −

„

1 −
1

dk

«m

Given the function P in Lemma 3, we can estimate the
number of black nodes at level k, and in turn, the overall
number of LP calls invoked by the depth-first algorithm for
labeling a single spectrum.

Theorem 3. Given a signature database with n signa-
tures and a threshold vector ~t that divides each dimension
of the search space into d ranges, under the random drop
assumption, the expected number of LP calls invoked by the
depth-first algorithm shown in Table 3 to label a single spec-
trum with m labels is:

CSingle = d ∗

n−1
X

k=0

dk ∗

„

1 −

„

1 −
1

dk

«m«
!

+ 1 (6)

Proof. The spectrum labeling process is equivalent to
the node coloring game. The complete search tree as shown
in Figure 3 has n levels (counting from 0). Each non-leaf
node has d children. For each level k, there are dk equivalent
nodes. According to Lemma 3, the probability of a non-leaf
at level k being black is P(k), so the average number of
black nodes at level k is dk ∗ P (k). Adding up the number
of black nodes at each non-leaf level gives us the number
of black nodes in the tree:

Pn−1
k=0 dk ∗ P (k). Combining

the result of Lemma 2, we have the total number of LP
calls invoked by the basic depth first search algorithm as:
CSingle = d ∗

`
Pn−1

k=1 dk ∗ P (k)
´

+ 1. Replacing P(k) with
the formula given in Lemma 3 leads to the formula (6) stated
in this theorem.

When k is large, P (k) is reduced to m

dk
and formula (6) is

approximately equivalent to:

CSingle ≈ d ∗ (n − 1) ∗ m (7)

This suggests that the number of LP calls invoked by the
algorithm is linear in the number of labels for the input spec-
trum.

5.3 Cost of Group Labeling
When we go from single spectrum labeling to labeling a

group of spectra, the analysis is complicated further by the
fact that data distribution has a significant impact on perfor-
mance. In this subsection, we first propose a simple model
to characterize data distribution, and then analyze the cost
of the two group labeling algorithms. Our analysis of the
relationship between data distribution and algorithm cost,
leads to the discussion of cost-based algorithm selection in
Section 6.

5.3.1 A Model of Data Distribution
As discussed in Section 3, the majority of spectra in groups

that we want to label tend to be very similar to each other.
A simplified way to model this is that most spectra in a group
are identical, while the rest are random noise or ‘impurities’
with great variance. Following this intuition, we model a
group of w spectra as s identical spectra mixed with w − s
random ‘noise’ spectra which are greatly different from each
other.

While this is an overly simplified model of the data, note
that the number of identical spectra s is just a conceptual
parameter which describes the ‘diversity’(or ‘variance’) of
the data. Of course, more complicated statistical tools,
such as Chi-Square testing [4] and other deviation detection
and characterization methods [2] can be adopted for charac-
terizing the data. The simple model we propose, however,
suffices for a cost analysis aimed at estimating the relative
performance of DFSVoting and GenTest.

5.3.2 DFSVoting
The DFSVoting algorithm proposed in Section 4 is a di-

rect extension of the depth-first algorithm for single spec-
trum labeling. All the analysis for the single spectrum case
still holds, with the difference that we now have a group of
painters voting for the color of a non-leaf node.

According to the notation in Table 6, we have a group
of w spectra, within which s spectra are the same. The
group labeling algorithm will look for all the labels that are
common to at least t = dw ∗ Min Supe spectra. We again
assume each spectrum has m labels.5 The node coloring
game for single spectrum labeling then becomes the group
node coloring game described below.

There are w painters in the game, and each has
m black balls. They randomly drop the balls onto
the leaf nodes. For a particular node N , a painter
votes yes if at least one of his black balls is in
N ’s subtree. A node is painted black if at least
t = dw ∗ Min Supe painters vote yes.

As described in Section 4, if a node has v votes (v ≥ t),
it is painted black and v LP calls are issued for each of its
children; otherwise, the node is ‘white’, and is pruned. In
addition, the root node requires w LP calls. The cost of
DFSVoting is therefore:

CV oting = w + d ∗ #V otes got by all black nodes (8)

Lemma 4. In the group node coloring game, if there w
painters independently vote for the color of the nodes, the

5This is a strong assumption. If spectra differ a lot, the size
of label sets may vary greatly. However, when the majority
of spectra are similar, this is a reasonable simplification.

probability that a particular node at level k receives v votes
is:

PV ote(v, w) = Cv
w ∗ P (k)v ∗ (1 − P (k))w−v (9)

Proof. As shown in Theorem 3, for a non-leaf node at
level k, the probability that a painter drops at least one
black ball in N ’s subtree is P (k). Thus, with a probability
P (k), node N will get a vote from a particular painter. Since
all the painters make independent decisions, given a group
of w painters, the probability that node N receives v votes
is:

PV ote(v,w) = Cv
w ∗ P (k)v ∗ (1 − P (k))w−v

Lemma 4 studies the situation when painters make de-
cisions independently. We now extend it to the case when
some of them always make the same decision, and in turn
estimate the number of LP calls invoked by a particular
node.

Lemma 5. Following the notation in Table 6, let t = dw∗
Min Supe. Given a group of w spectra of which s are identi-
cal, under the random drop assumption the expected number
of LP calls invoked at a particular non-leaf node at level k
in the search tree is:

NodeCost(k) = P (k)∗
“

Pw

v=max(t,s) Cv−s
w−sP (k)v−s(1 − P (k))w−v ∗ d ∗ v

”

+

(1 − P (k)) ∗
`
Pw−s

v=t Cv
w−sP (k)v(1 − P (k))w−s−v ∗ d ∗ v

´

(10)

Proof. When there are s identical spectra in the group
of w spectra, the DFSVoting algorithm described in Section
4 will act as if s painters out of w are ‘identical’ (making
exactly the same decision all the time), which means a node
will either get all the votes of those s painters or lose all their
votes. Apart from the s identical painters, the remaining
painters still vote independently, as before. According to
Lemma 4, the probability that node N receives v1 votes
from the remaining w − s painters is PV ote(v1, w − s). If s
identical painters all vote for node N , then the probability of
node N receiving v (w ≥ v ≥ s) votes is PV ote(v−s, w−s).
If (and only if) a node receives v votes, v ≥ t, we invoke v LP
calls for each of its d children. Thus, the expected number
of LP calls invoked at node N under the precondition that
s identical painters all vote for N is:

Eyes =
w
X

v=max(t,s)

PV ote(v − s, w − s) ∗ d ∗ v (11)

Similarly, the expected number of LP calls invoked by
node N under the precondition that s identical painters all
vote no at node N is:

Eno =

w−s
X

v=t

PV ote(v, w − s) ∗ d ∗ v (12)

Since s identical painters act alike, they vote yes at node
N with probability P (k), and vote no with probability 1 −
P (k). Combining this with formula (11) and formula (12),
we arrive at the overall estimated number of LP calls invoked
at node N : P (k)∗Eyes +(1−P (k))∗Eno, which is the same
as formula 10 given in this theorem.

This leads us to the formula estimating the overall cost of
the DFSVoting algorithm.

Theorem 4. Assume there are w spectra in the group,
each of which has m solutions, and that s of them are iden-
tical. Under the random drop assumption, given a signature
data base of n signatures, and a discretization that divides
each dimension of the search space into d ranges, the ex-
pected number of LP calls in the DFSVoting algorithm is:

CV oting = w +

n−1
X

k=0

dk ∗ NodeCost(k) (13)

.

Proof. Given a signature database of n signatures, the
search tree of DFSVoting has n levels. There are dk equiv-
alent nodes at level k. According to Lemma 5, a particu-
lar node at level k will invoke NodeCost(k) LP calls. So
the expected number of LP calls invoked at level k is dk ∗
NodeCost(k). Adding the LP calls invoked at each non-leaf
level plus the w LP calls at the root gives us an estimate
of the total number of LP calls invoked by the algorithm:
CV oting = w +

Pn−1
k=0 dk ∗ NodeCost(k).

5.3.3 GenTest

Theorem 5. Suppose that randomly selected spectra from
a group follow the same data distribution as the group. Fol-
lowing the notation in Table 6, if we are given a signature
database of n signatures, and a discretization that divides
each dimension of the search space into d ranges, under the
random drop assumption the expected number of LP calls
invoked by the GenTest algorithm is:

CGenTest ≈ d ∗ (n − 1) ∗ m ∗ (w − t + 1)+
`

(w − t + 1) ∗ (1 − s
w

) + 1
´

∗ m ∗ (t − 1),
(14)

where t = dw ∗ Min Supe.

Proof. The GenTest algorithm described in Section 4
has two phases, and we analyze the cost of each phase below.

Candidate Generation Phase: GenTest selects w−
t + 1 spectra from the group. For each of these spectra, it
generates a label set. The cost of searching for the label set
for a single spectrum is CSingle, from Theorem 3. Therefore,
the number of LP calls invoked for generating the candidate
labels is:

CSingle ∗ (w − t + 1) (15)

Test Phase: The GenTest algorithm takes every gen-
erated candidate label and tests it on the remaining t − 1
spectra. In the generation phase, (w − t + 1) spectra are
randomly selected. According to the assumption that the
randomly selected spectra follow the same data distribution
as the original group, there will be s

w
∗ (w − t + 1) identical

spectra with the same m labels and (1 − s
w

) ∗ (w − t + 1)
spectra that have distinct labels. So the total number of
candidates generated will be

`

(1 − s
w

) ∗ (w − t + 1) + 1
´

∗m.
Since each ‘test’ invokes an LP call, the total number of LP
calls invoked in this phase is the number of candidates times
the number of remaining spectra:

(t − 1) ∗ m ∗
“

(1 −
s

w
) ∗ (w − t + 1) + 1

”

(16)

Adding the cost of the generation and test phases gives us
the total number of LP calls invoked by GenTest:

CGenTest = CSingle ∗ (w − t + 1)+
(t − 1) ∗ m ∗

`

(1 − s
w

) ∗ (w − t + 1) + 1
´ (17)

Substituting CSingle with equation (7), we have CGenTest ≈
d∗(n−1)∗m∗(w−t+1)+(t−1)∗m∗

`

(1 − s
w

) ∗ (w − t + 1) + 1
´

.

6. ALGORITHM SELECTION
We can use the cost formulae for DFSVoting and GenTest

to estimate the cost of both DFSVoting and GenTest. Eval-
uating these formulae at optimization time has two draw-
backs: (1) The calculation of CV oting involves very high
precision floating point arithmetic, which is rather costly.
(2) It is hard to tune the cost estimates in cases when there
is significant discrepancy between the estimates and the ob-
served real cost.

In this section, we propose an approach to algorithm selec-
tion that relies on precomputing decision plots, which essen-
tially capture the performance tradeoffs between algorithms.
The precomputation approach also highlights an important
point: Even if closed-form formulae cannot be derived to ac-
curately predict algorithm costs, unlike the case for DFSVot-
ing and GenTest, a promising approach is to start with a
rough initial estimate for a decision plot and to apply ma-
chine learning or statistical modeling techniques to refine the
estimate.

6.1 Algorithm Profile
Using the cost analysis discussed in Section 5, we can plot

the relation between Min Sup and cost for a given group
of spectra, assuming that the number of identical spectra
in the group, s, is also known or can be estimated. Figure
4 shows a series of graphs derived from the calculation of
formulae (13) and (17). The y-axis in those graphs is the
estimated number of LP calls invoked by the algorithm. The
x-axis represents the Min Sup value specified by the user.
These graphs characterize the performance characteristics
of the two algorithms with respect to input data. We call
such a graph an algorithm profile. We focus on the case
when the group size is fixed, for simplicity; otherwise, this
adds an extra dimension to the algorithm profile.

The group size in the algorithm profile shown in Figure
4 is set to be 1000. Each graph in the series corresponds
to a particular s value shown in the upper right corner. As
we can see in the algorithm profile, the lines for DFSVot-
ing and GenTest intersect, which indicates that the choice
of Min Sup will change the algorithm of choice for a given
group of spectra. From the series of graphs shown in Fig-
ure 4, we also notice that the intersection point varies with
s. Thus, the choice of algorithm should be based on both
the value s (data distribution) and Min Sup (an analysis
threshold).

6.2 Decision Plots
If we plot algorithm costs as a function of Min Sup on

the y-axis and s on the x-axis, each point in the space corre-
sponds to a choice of algorithm. What we are really looking
for is an approximate separation of the space so that in one
region, the DFSVoting algorithm is faster and in the other
region, the GenTest algorithm is faster. Since the decision
of algorithm selection can be made simply by looking up this

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

x 10
5
w=1000, s=100

support

#L
P

 c
al

ls

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

x 10
5
w=1000, s=200

support

#L
P

 c
al

ls

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

x 10
5
w=1000, s=300

support

#L
P

 c
al

ls

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

x 10
5
w=1000, s=400

support

#L
P

 c
al

ls

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

x 10
5
w=1000, s=500

support

#L
P

 c
al

ls

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

x 10
5
w=1000, s=600

support

#L
P

 c
al

ls

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

x 10
5
w=1000, s=700

support

#L
P

 c
al

ls

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

x 10
5
w=1000, s=800

support

#L
P

 c
al

ls

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

x 10
5
w=1000, s=900

support

#L
P

 c
al

ls

DFSVoting
GenTest

Figure 4: Algorithm Profile

precomputed information, we call such a graph a decision
plot.

More abstractly, a decision plot for group labeling algo-
rithms is a function f(Min Sup, s), which takes Min Sup
and s as the input and outputs the group algorithm to use.
The concept of a decision plot can be easily extended to deal
with multiple algorithms, in which case, the whole space is
divided into several regions. Each region corresponds to a
particular algorithm, which is expect to perform best in that
region (defined by data and analysis parameters). We can
think of this extended decision plot as a Voronoi diagram

[17]. Of course many other extensions can also be explored.
To choose a group labeling algorithm based on data dis-

tribution and a minimum support threshold, a decision plot

can be derived from the algorithm profile shown in Figure
4. Given a fixed group size w, we use Min Sup as the y-
axis and s/w as the x-axis, and mark each point (identified
by a < Min Sup, s/w > pair) with the corresponding best
algorithm, as indicated by the algorithm profiles. It gives us
the graph shown in Figure 5. As we can see, the graph can
be divided into two regions. The smaller triangle region cor-
responds to the case when GenTest is better and the other
region represents the case when DFSVoting is better. It
is worth noting that the boundary between regions corre-
sponds to the intersection points in the algorithm profiles.
In our particular case, the boundary of these two regions
is approximately two straight lines, which suggests that we
can simply fit two linear functions of Min Sup and s to ap-
proximate the real decision plot. We study this approach
experimentally in Section 7.

6.3 Algorithm Selection Framework

6.3.1 Estimating Data Distribution
Given a decision plot and a group of spectra to label, we

still need a data distribution parameter s to ‘lookup’ the
decision plot and make a choice of group labeling algorithm.
Throughout the cost analysis in Section 5, we assumed that
the value s is the number of identical spectra in the group.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s/w

s
u

p
p

o
rt

Choose DFSVoting
Choose GenTest

Figure 5: Decision Plot

A direct approach to estimating this value is to divide the
group of spectra into clusters whose diameters are smaller
than a certain threshold and use the size of the largest clus-
ter as the value of s. Many clustering algorithms [3, 5, 8, 26]
and random sampling [24] algorithms can be applied here.

6.3.2 System Graph
Now that we have discussed all the components in our

algorithm selection framework, we put the pieces together
in Figure 6. A given group of spectra to label first goes
through the data distribution estimator, which estimates its
data distribution parameter. The algorithm selector takes
the estimated data distribution parameter (s), user-specified
analysis parameters (e.g., Min Sup) and looks up the de-
cision plot to select the best algorithm. The mining engine
then applies the algorithm to the input group of spectra and
outputs the group label set.

In Figure 6 there are also two lines going from the output
to the algorithm profile builder and data distribution esti-
mator. This indicates that the output can serve as ‘ground
truth’ to tune the data distribution estimator and algorithm
profile. When the algorithm profile component accumulates
enough data, it can in turn update the decision plot with
more accurate information. In the experimental system we
have built, these two feedback loops from the final output
are not implemented yet. Section 7 provides more details
and experimental results on the rest of the components and
focuses on validating the decision plot for group labeling
constructed using the theoretical cost analysis.

Group of Spectra

Data
Distribution
Estimator

Algorithm
Selector

Decision
Table

Mining
Engine

Group Label
Set

Algorithm
Profile

User Defined
Parameters

Table lookup

Algorithm

Figure 6: System Graph

7. EXPERIMENTAL RESULTS

7.1 Experimental Setting
The spectra we used in our experiments are collected from

an Aerosol Time-of-Flight Mass Spectrometer. The signa-
ture database, obtained from domain experts in atmospheric
aerosols, is essentially a collection of isotope distributions of
chemical ions they want to detect. There are 197 signatures
in the signature database, and each signature or spectrum
has 255 dimensions. Notice that the performance bottleneck
is not in the size of the ‘signature database’. Rather, it is
in the number of spectra to be labeled in a given amount
of time (recall that our application involves monitoring a
stream of spectra), and the cost is dominated by CPU-
intensive LP calls, rather than I/O intensive disk accesses.
Analogous to how a traditional DBMS seeks to minimize the
cost of disk accesses, our goal is to minimize the cost of LP
computation. The experimental system is implemented in
C++ and runs on a 512M memory PC with Linux.

Throughout our experiments, the error bound E is set
to 0.05 (a value selected heuristically after some experi-
mentation). The threshold vector ~t = [t1, . . . , td+1] used
is ~t = [0, 0.1, 0.4, 1]. This threshold vector divides the rela-
tive quantity of a chemical element into three ranges, [0,0.1),
[0.1,0.4) and [0.4,1), with each range corresponding to the
state of ‘missing’, ‘present’, and ‘abundant’ respectively.

7.2 The Choice of Cost Metric
Throughout the cost analysis in Section 5, we used the

number of LP calls as the cost metric, assuming that the
number of LP calls invoked is proportional to the execution
time of the algorithm. However, the time cost of a particular
LP call may vary due to differences in constraints and the
context of a particular LP task. To study whether the choice
of LP call as a cost unit is justified, we randomly selected
spectra, and recorded the number of LP calls and execution
time required to label each of them. Figure 7 plots the
results of our experiment, where the x-axis is the number
of LP calls invoked by a particular task and the y-axis is
the execution time for that task. As shown in the graph,
the relation between execution time and number of LP calls
invoked is clear: The execution time is proportional to the
number of LP calls invoked.

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3x 106

#LP calls

ex
ec

ut
io

n
tim

e
(in

 m
ic

ro
se

co
nd

s)

Figure 7: Number of LP calls vs.Execution Time

7.3 Algorithm Profiles and Decision Plots
For the algorithm selection framework we propose, we

want to study two issues via experiments: (1) How does the
algorithm profile derived from the cost estimation formula
match the actual algorithm profile and how good is the cost
estimation in terms of deriving the right decision plot? (2)
How good is the decision plot derived from the theoretical

cost model, in terms of providing the correct information
for algorithm selection? In all the experimental data shown
in this subsection, the group size is set to be 1000 spectra,
while the error bound and threshold vector remain the same
as those described in Section 7.1.

0 0.2 0.4 0.6 0.8 1
0

0.5
1

1.5
2

2.5
x 105 w=1000, s=100

support

#
L

P
 c

a
lls

0 0.2 0.4 0.6 0.8 1
0

0.5
1

1.5
2

2.5
x 105 w=1000, s=200

support

#
L

P
 c

a
lls

0 0.2 0.4 0.6 0.8 1
0

0.5
1

1.5
2

2.5
x 105 w=1000, s=300

support

#
L

P
 c

a
lls

0 0.2 0.4 0.6 0.8 1
0

0.5
1

1.5
2

2.5
x 105 w=1000, s=400

support

#
L

P
 c

a
lls

0 0.2 0.4 0.6 0.8 1
0

0.5
1

1.5
2

2.5
x 105 w=1000, s=500

support

#
L

P
 c

a
lls

0 0.2 0.4 0.6 0.8 1
0

0.5
1

1.5
2

2.5
x 105 w=1000, s=600

support

#
L

P
 c

a
lls

0 0.2 0.4 0.6 0.8 1
0

0.5
1

1.5
2

2.5
x 105 w=1000, s=700

support

#
L

P
 c

a
lls

0 0.2 0.4 0.6 0.8 1
0

0.5
1

1.5
2

2.5
x 105 w=1000, s=800

support

#
L

P
 c

a
lls

0 0.2 0.4 0.6 0.8 1
0

0.5
1

1.5
2

2.5
x 105 w=1000, s=900

support

#
L

P
 c

a
lls

DFSVoting (Actual)
GenTest (Actual)
Naive (Actual)
DFSVoting (Predict)
GenTest (Predict)

Figure 8: Experimental Result of Algorithm Profile
(w=1000, n =197)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s/w

su
pp

or
t

(a) Decision Plot(Synthesized Data)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s/w

su
pp

or
t

(a) Decision Plot (Theory)

Choose GenTest
Choose DFSVoting

Figure 9: Experimental Result of Decision plot
(w=1000, n =197)

7.3.1 Algorithm Profile
Figure 8 shows both the predicted algorithm profile and

real algorithm profile for DFSVoting and GenTest. The
group size w in this series of experiments is fixed at 1000
while the number of identical spectra s in the group varies
from 100 to 900. Each graph shown in Figure 8 corresponds
to a particular s (100, 200, ..., 900) in order from left to
right and top to bottom. The series with small circles on
the top of each graph shows the cost of the brute-force ap-
proach which labels all the spectra one by one.6 The series
with stars in each graph are for DFSVoting and the series
with plus signs stand for GenTest. Solid lines show the real

6Due to the variance of average number of labels of each
spectrum, the cost of brute-force approach varies from
dataset to dataset

experimental results while the dotted lines are theoretical
predictions plotted for comparison.

As we can see in these graphs, the theoretical prediction
matches the experimental results in terms of general shape
and rough absolute values. It is worth noting that both the
theoretical line and experimental line of DFSVoting drop
sharply around the support value of s/w, which is the point
at which we have almost no group labels due to the high
minimum support. While it is clear that the analytical cost
estimation does not precisely predict the cost of each algo-
rithm, it does a good job of predicting the cross-over points
of the two algorithms and their relative performance, which
is what we really care about for cost-based optimization: in
the graphs in Figure 8 the theoretical lines cross each other
at almost the same support value that the real experimental
lines cross.

Going further as suggested in Section 6.2, we plot two
decision plots for experimental results and theoretical pre-
diction, respectively, in Figure 9. The left graph shows the
decision plot plotted from experimental results. The right
graph shows the decision table plotted from theoretical pre-
diction. The plus signs stand for the case when the DFSVot-
ing algorithm is better while zero signs represent the case
when the GenTest algorithm is better. The two decision
plots are almost exactly the same, except for four points on
the lower boundary of the two regions.

For those cases where the theoretical decision plot con-
flicts with the real decision plot, we can see from the al-
gorithm profile graph that the extra LP calls incurred by
the wrong choice is less than 10% of the cost of the optimal
algorithm. This is tolerable.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s/w

su
p
p
o
rt

Choose DFSVoting
Choose GenTest

Figure 10: Decision plot for Randomly Selected
Data, w=1000

7.3.2 Decision Plots
Figure 10 summarizes a series of experiments designed to

explore the idea of performing algorithm selection by looking
up the decision plot. A plus represents the case when
DFSVoting is better and a zero sign stand for the case when
GenTest is preferred. The solid lines separating the graph
into two regions are derived from theoretical cost model.
Points to the right of those lines are cases where GenTest
algorithm is predicted to be faster. Points to the left of those
solid lines are the cases where DFSVoting is predicted to be
faster. As we can see in the graph, the solid line almost
perfectly separate the plus signs and zero signs, with only a
few exceptions near the borders, indicating that the decision
plot derived from the theoretical cost model almost perfectly
predicts the best algorithm.

7.4 Scalability

We now consider the scalability of the two proposed al-
gorithms. We fixed the value of Min Sup at 70%. The
percentage of ‘identical spectra’ s/w is set to be 80%. Fig-
ure 11 shows the cost growth of each algorithm with respect
to the growth of group size. Each point on the graph is the
average of experimental results over 20 selected groups of
spectra such that the group size w is the same for all these
20 groups. As we can see in the graph, both algorithms’
costs grow linearly with respect to the group size.

Experiments with other Min Sup and s/w values have
consistently shown similar results to the one shown in Figure
11, and are omitted.

0 1000 2000 3000 4000 5000
0

1

2

3

4

5

6

7

8

9
x 10

5 s/w = 80%, support=70%

Group Size

#L
P

 c
al

ls

GenTest
DFSVoting

Figure 11: Scalability over group size, s/w=80%,
support=70%

8. FROM MASS SPECTRA TO MASS MAR-
KET

In previous sections, we were focused on the spectrum
labeling problem. In this section, we discuss promising con-
nections between the spectral labeling framework and mar-
ket basket analysis. An obvious connection is that after
a spectrum is labeled, we can treat it as an itemset con-
taining the detected ions, and apply the wealth of results
about itemset mining for further analysis. This is a signifi-
cant benefit, since it allows us to apply powerful and widely
available tools to the new problem of analyzing streams of
mass spectra.

There is also a deeper and surprising connection in the
other direction; we might well have a promising tool for mar-
ket basket analysis in spectral labeling. In the spectrum la-
beling framework, we have a signature database, which rep-
resents the domain knowledge, containing profiles for chemi-
cal elements of interest. Using this, for a given spectrum we
compute a label, which is essentially the most likely com-
bination in which the known chemical ions appear in the
spectrum.

If we replace chemical ion signatures by customer buying
patterns that indicate underlying phenomena of interest, as
suggested by McCarthy [16], and substitute input spectra
with a customers ‘market basket (purchases in a single visit
to a store), then labeling offers a description of the customer
by decomposing the market basket into the most plausible
combination of known purchasing patterns corresponding to
phenomena of interest.

For example, if we know the typical buying pattern of
a doting father is a lot of toys and a few pencils, and a
low income customer usually purchases a lot of chicken but
very little seafood, our signature database would contain
the buying patterns of these two types of customers. When
a market basket containing a lot of toys, some pencils, a

lot of chicken but, no seafood is encountered, labeling will
categorize that particular customer as a poor man but a
doting father. In another purchase where the market basket
contains a lot of toys but no food, labeling will describe the
customer as a doting father, but will not be able to detect
whether he is poor or rich. Such analysis was suggested
as a significant direction for data mining research, called
phenomenal data mining, in McCarthys visionary paper [16],
and labeling offers promise as a tool with which to attack
this intriguing application domain.

9. RELATED WORK
To our knowledge, this is the first paper to discuss la-

beling of groups of mass spectra, or to address cost-based
data mining algorithm selection. The idea of a data min-
ing language or framework has been explored by many re-
searchers. In [11], Imielinski and Mannila described their
vision of a data mining system, including a language spec-
ification and a general discussion of components for query
compilation and execution. [12] proposed a unified algebra
for multi-step data mining. [7] proposed a universal data
mining model consisting of a data view, a model view and
a process view. [28, 29] proposed general data mining ar-
chitectures and discussed extending a DBMS with mining
capabilities.

The cost analysis methodology used in this paper is sim-
ilar to the analysis of the cost of index seek in [25]. An
average case analysis of branch-and-bound algorithms is pre-
sented by Zhang et. al in [27]. Various aspects of numerical
optimization are studied in [18]. More details on estimating
the number of labels and the volume of a spectrum’s solu-
tion space can be found in [14, 13, 15]. [4, 21] discuss how
to describe data distributions. Clustering based techniques
are surveyed in [3].

More information about spectrum labeling and environ-
mental monitoring is provided in [10, 6, 23]. Labeled spectra
are related to market baskets, to which a number of methods
based on association rule mining and can be directly applied,
e.g., [1, 9, 22]. Further extensions to a broader concept of
phenomenal data mining is introduced in [16].

10. REFERENCES
[1] R. Agrawal et al. Mining association rules between sets

of items in large databases. In ACM SIGMOD, 1993.

[2] A. Arning et al. A linear method for deviation
detection in large databases. In ACM KDD, 1996.

[3] P. Berkhin. Survey of clustering data mining
techniques. Technical report, Accrue Software, San
Jose, CA, 2002.

[4] K. A. D. Peter J. Bickel. Inference in the
multiparameter case, Chapter 6. Prentice Hall, 2
edition, 2001.

[5] C. H. Cheng et al. Entropy-based subspace clustering
for mining numerical data. In ACM KDD , 1999.

[6] E. Gard, Jet. al. Real-time analysis of individual
atmospheric aerosol particles: Design and performance
of a portable atofms. In Anal. Chem., pages
4083–4091, 1997.

[7] I. Geist. A framework for data mining and kdd. In
SAC, 2002.

[8] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan.
Clustering data streams. In IEEE Symposium on

Foundations of Computer Science, 2000.

[9] J. Han, J. Pei, and Y. Yin. Mining frequent patterns
without candidate generation. In 2000 ACM
SIGMOD, 2000.

[10] Citation details omitted for anonymity

[11] T. Imielinski and H. Mannila. A database perspective
on knowledge discovery. In Comm. Of The Acm,
39:58–64, 1996.

[12] T. Johnson et al. The 3w model and algebra for
unified data mining. In The VLDB Journal, 2000.

[13] J. B. Lasserre. The integer hull of a convex rational
polytope. In Math. Oper. Res., 2003.

[14] J. B. Lasserre. A laplace transform algorithm for the
volume of a convex polytope. volume 48, 2003.

[15] J. B. Lasserre and E. S. Zeron. On counting integral
points in a convex rational polytope. In Math. Oper.
Res., 2003.

[16] J. McCarthy. Phenomenal data mining. In
Communications of the ACM 43(8), 2000.

[17] T. M. Mitchell. Machine Learning.
WCB/McGraw-Hill, 1997.

[18] J. Nocedal and S. J. Wright. Numerical Optimization.
Springer, 1 edition, 1999.

[19] National Research Council. Research Priorities for
Airborne Particulate Matter. Immediate Priorities and
a Long-Range Research Portfolio. 1998, National
Academy Press, Washington, DC.

[20] K. A. Prather et al. Real-time characterization of
individual aerosol particles using time-of-flight mass
spectrometry. Anal. Chem., 1994; 66, 1403-1407.

[21] O. P. Rud. Data Mining Cookbook: Modeling data for
marketing, risk, and CRM. Wiley, 1 edition, 2001.

[22] R. Srikant and R. Agrawal. Mining quantitative
association rules in large relational tables. In ACM
SIGMOD, 1996.

[23] D. Suess and K. Prather. Mass spectrometry of
aerosols. In Chemical Reviews, pages 3007–3035, 1999.

[24] H. Toivonen. Sampling large databases for association
rules. In VLDB, 1996.

[25] S. Yao. Approximating block accesses in database
organizations. In Communications of the ACM 20(4),
pages 260–261, 1977.

[26] T. Zhang et al. BIRCH: an efficient data clustering
method for very large databases. In ACM SIGMOD,
1996.

[27] W. Zhang and R. Korf. An average-case analysis of
branch-and-bound with applications: Summary of
results. In AAAI, 1992.

[28] R. Meo et al. A tightly-coupled architecture for data
mining. In ICDE, pages 316–322, 1998.

[29] S. Sarawagi, et al. Integrating mining with relational
database systems. In ACM SIGMOD, 1998.

