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Abstract—By enabling operators to program behaviors of
the packet processing pipeline, P4, a domain-specific language,
unleashes new opportunities for offloading network functions
onto the programmable data plane (PDP) and enhancing net-
work performance. However, recent research shows that as
P4 programs and the corresponding packet processing pipeline
grow in size and complexity, the performance of the PDP will
decrease significantly, which compromises the programmability
and flexibility brought by P4. To overcome this performance
degradation, we propose B-Cache, a general behavior-level
caching framework for both stateful and stateless behaviors
on the PDP. The basic idea of B-Cache is to compile packet
processing behaviors that were once distributed across multiple
tables into one synthetic cache table, thus guarantee the per-
formance on various P4 targets. Our experiment results indicate
that B-Cache comparably yields significant performance benefits
including a 49% delay decrease and a 200% throughput increase
on the software target, and a 60% throughput increase on the
hardware target.

I. INTRODUCTION

P4 [1], a recently proposed domain-specific language, en-
ables network operators to customize behaviors of the pro-
grammable data plane (PDP). P4 empowers operators to define
various programmable elements in a P4 program. For example,
operators can customize the parser to extract header fields
complied with particular protocol formats. In the match-
action table (MAT), operators can define the match fields, the
permissible compound actions and primitive actions. More-
over, operators can organize various MATs as a complex
Direct Acyclic Graph in the control flow. Besides, operators
can declare data plane variables such as metadata, register,
meter and counter, to perform complex stateful operations.
At runtime (i.e., while the switch is forwarding packets),
the controller can manage the table entries in the MATs.
Recent research works [2]–[7] present a promising trend that
with P4, operators can implement sophisticated on-data-plane
network functions, such as in-network computation, stateful
load balancing, and in-band network telemetry, to achieve
large performance improvements.

However, according to Whippersnapper [8], the increased
length of the packet processing pipeline, composed of MATs
and the control flow, can cause a significant performance
penalty. For instance, BMv2 [9], a widely-used software target
for P4, suffers a delay increase as much as 40x when packets
traverse 30 MATs. Moreover, the reference switch provided
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Figure 1. The cache MAT for L2L3 Switch.

by P4 consortium, switch.p4 [10], applies more than 94
MATs and may suffer more degradation. For P4FPGA [11], a
hardware target, the delay increase can be over 300% with 30
MATs. Whippersnapper’s evaluation unveils a dilemma that
as the processing pipeline prolongs, the performance of some
P4 targets degrades remarkably, which inevitably erodes the
programmability and flexibility of P4.

This paper proposes B-Cache, a general behavior-level
caching framework that aims at optimizing performance of P4-
specific PDP. The basic insight of B-Cache is to cache the
behaviors defined along the processing pipeline into one cache
MAT. If packets hit the cache MAT, they can bypass the orig-
inal processing pipeline, thus decrease the delay through the
equivalently reduced processing. In this way, the performance
of the cached flow can be independent of the complexity and
length of the pipeline. As is shown in Figure 1, if the flow φ
hits the cache MAT, the P4 pipeline of L2L3 Switch [12] can
directly process and transmit packets of flow φ.

Various flow caching mechanisms have long been re-
searched and played an essential role in performance en-
hancement. But, existing flow caching mechanisms, usually
employing the flow information carried by packet headers
as the cache entry identifier, are based on a hypothesis that
all packets in the same flow follow the same processing
behavior. However, such hypothesis is not always correct for
the state-of-the-art PDP architectures such as [13] and [14].
Because the intrinsic metadata (e.g., the indicator for queue
length) and the register can alter the processing behavior to
another according to different network states. For example,
operators can program an on-data-plane heavy-hitter-detector
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Category P4 Object
Initialized 
by/to be

Data Plane Control Plane Packet-
impacting

Target-
impacting

VIO VOO
Read Write Read Write

Stateless
Objects

Metadata
Intrinsic P4 Target Y Y N N N Y Y Y

User 0 Y Y N N N N N N

Packet Header Parser Y Y N N Y N Y Y

Action Parameter Control Plane Y N N Y N N N N

Stateful
Objects

Register P4 Target Y Y Y Y N Y Y Y

Meter P4 Target - - - - N Y Y Y

Counter P4 Target N Y Y Y N Y Y Y

Figure 2. P4 objects that can be accessed in the P4 pipeline. The intrinsic metadata is defined in the vendor-provided target library, while the user metadata
is defined by operators.

[15] to detect the heavy flow based on the incoming packets
counter (implemented by counter register) and change to the
corresponding processing behavior at runtime. Since the PDP
enables more and more flow states to be managed on the
data plane at runtime. As a result, various packets, even in
the same flow, may undergo different processing behaviors
due to state changes. Obviously, this consequence renders
existing flow caching mechanisms powerless on the stateful
and programmable data plane.

Comparing with existing researches [16] [17] in flow
caching, B-Cache, for the first time, takes stateful behaviors
and data plane programmability into consideration and inno-
vatively builds a general behavior-level caching framework.
B-Cache is devoted to caching stateful and stateless behav-
iors within a cache MAT. In order to achieve the design goal,
B-Cache detailedly analyzes the key information used by
flow caching; the ingredients including the intrinsic metadata,
various device states that are used to construct behavior-level
caching entries; and the classification of packet processing
results. As behavior-level caching provisions multiple dimen-
sions of information, B-Cache enables fine-grained behavior
classification and permits caching stateful behaviors on PDP.

In this paper, our contributions can be concluded as below.
• We introduce B-Cache, a behavior-level caching frame-

work that enhances performance of stateful and stateless
processing on the PDP and is independent of the com-
plexity and length of the processing pipeline.

• We present a concise behavior equivalence model to
describe behaviors defined by P4 programs (Section II).
Based on the model, we manifest the plausibility of
caching behaviors and provide optimization methods to
generate cache MATs (Section III).

• Due to the limited space of the cache MAT, we design
an on-data-plane hot behavior detector to select hot
behaviors at runtime and achieve performance boost from
the global view. Besides, we devise a control barrier to
keep coherence between the cache MAT and the original
P4 pipeline at runtime (Section IV).

• We have conducted the proof-of-concept evaluation on
B-Cache (Section V). The experiment results indicate
that B-Cache can achieve a delay decrease over of 49%
and a throughput increase of over 200% on the software

target. On the hardware target, B-Cache can keep line
rate and increase throughput by over 60%.

II. BEHAVIOR EQUIVALENCE MODEL

To prove the feasibility of behavior caching, we explore the
representation of behaviors and provide a model for describing
behavior equivalence between the cache MAT and the original
P4 pipeline. Besides, we will elaborate how to handle stateful
behaviors with the behavior equivalence model.

A. Behavior Equivalence Model
In this section, (1) we explore the P4 objects relevant to the

behaviors. Then, (2) we employ the P4 objects to represent the
behaviors defined by P4 programs. At last, (3) based on the
behavior representation, we depict the behavior equivalence
model which illustrates the associations between the cache
MAT and the original P4 pipeline. On the whole, we present a
novel and general method to model P4 pipelines. Furthermore,
this model can work not only on behavior caching but also on
other significant and interesting fields, such as verification of
the stateful and programmable data plane.

P4 Objects: Figure 2 summarizes all P4 objects, each of
which is a variable with a value and can be referenced by an
identifier in P4 programs. Through these objects, P4 programs
realize packet modification, packet forwarding, P4 target state
updates, and other packet processing operations. The values
of stateless P4 objects are transient and re-initialized for every
packet, while the stateful objects can persistently exist in P4
targets. Besides, action parameters can be viewed as read-only
constants for the P4 programs running on the data plane and
can only be changed by the control plane.

Based on Figure 2, we can illuminate the input and output of
the P4 pipeline. Firstly, we define the P4 objects whose values
get initialized before the packet enters the P4 pipeline as valid
input objects (VIOs) because they are validated outside the P4
pipeline. Secondly, we name the P4 objects that directly impact
packets (through the deparser) and P4 target states as the valid
output objects (VOOs). VIOs and VOOs both include intrinsic
metadata, packet headers, and stateful objects. User metadata
does not belong to VIOs or VOOs because the user metadata is
used as intermediate variables to convey values within the P4
pipeline temporarily. Next, we will employ VIOs and VOOs
to represent behaviors of the P4 pipeline.
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Behavior Representation: We provide a behavior represen-
tation based on a black-box view of the P4 pipeline. Firstly,
we use the pipeline-independent (PI) VIO set Spi−vio as the
input of the black box, and the PI VOO set Spi−voo as the
output. Then, the P4 pipeline can be abstracted as executing
the following function Fpipeline : Spi−vio → Spi−voo.

Intuitively, we can use the function Fpipeline to represent
all behaviors defined by a P4 program. For a packet, the
mapping pair < s′pi−vio, s

′
pi−voo > can be used to represent

the packet-specific behavior for Fpipeline (s′pi−vio ∈ Spi−vio
and s′pi−voo ∈ Spi−voo). For a particular packet, this pair
supplies adequate information to identify the behavior and
denote the effects of the behavior on the packet and the P4
target. (1) s′pi−vio specifies the information in two dimensions.
The first one is the flow information stored in packet headers,
and the second is the runtime context stored in P4 targets,
such as the queue length. Furthermore, (2) the P4 pipeline
produces two types of results which can be adequately denoted
by s′pi−voo. The first one is about the modification of packets
(packet-impacting) and can be depicted by the packet headers.
The second one is the impact on the target states and target
behaviors (target-impacting), and almost all P4 primitives are
designed to change target states and target behaviors through
modifying the intrinsic metadata or stateful objects. Some
exceptions will be illustrated in Section III.

Behavior Equivalence Model: Behavior equivalence refers
that for all packets, the cache MAT can execute the equivalent
behaviors as the original P4 pipeline. Based on the behavior
representation, we design a concise model that defines the
behavior equivalence between the cache MAT and the P4
pipeline. The behavior equivalence model can be stated as
follows: If any packet-specific behavior < s′pi−vio, s′pi−voo >
of a P4 pipeline function Fpipeline can be expressed by a cache
MAT, we name the cache MAT is behaviorally equivalent
with the original P4 pipeline. Apparently, if the cache MAT is
behaviorally equivalent with the P4 pipeline, we can use the
cache MAT to cache behaviors of the P4 pipeline.

Based on the behavior equivalence model, we can devise a
cache MAT generation approach which uses VIOs in Spi−vio
as match fields of the cache MAT and modifies VOOs in
Spi−voo in compound actions. Through the approach, we can
construct a cache MAT that provisions equivalent behaviors for
the P4 pipeline. This approach is straightforward but far from
the destination because it is prone to generating an unfeasible
cache MAT with an oversized match vector and complex
compound actions. As the behavior equivalence model views
P4 pipelines as black boxes and ignores the packet processing
logic, we further employ the pipeline-dependent (PD) infor-
mation in P4 programs to optimize the cache MAT when
generating the cache MAT for a specific P4 program, which
is further introduced in Section III.

As the behavior equivalence model requires all behaviors
have individually different s′pi−vio, there may be an exception
that exceeds the capacity of the behavior equivalence model. In
the exceptive case, two behaviors with the same s′pi−vio have
different VOO sets. This case can happen when P4 objects are

modified by the control plane, e.g., updating action parameters,
which possibly violates cache coherence between the cache
MAT and the original P4 pipeline. To strictly keep cache
coherence at runtime, we design a control barrier which is
elaborated in Section IV.

B. Stateful Behaviors

Being able to cache stateful behaviors makes B-Cache
functionally differ from flow caching mechanisms. To be exact,
based on the behavior equivalence model, B-Cache can cache
stateful behaviors that can be modeled by the finite state
machine (FSM), a well-known model to provision on-data-
plane stateful packet processing functionality [18] [19].

Before delving into caching stateful behaviors, we need to
clarify whether FSM can model the stateful P4 objects. Firstly,
the counter is not readable and cannot change behaviors of
P4 pipelines. Thus, we do not need to consider the counter.
Secondly, the meter is more complicated than the counter, but
it only provides limited primitives for P4 programs and can
hardly be modeled by FSM because FSM cannot model the
time information which is the main ingredient of the meter.
At last, the register is most powerful among the three stateful
P4 objects and can be modeled by FSM. As P4 programs
can arbitrarily read and modify the register, we use the value
of the register to represent the state of the FSM and use
the other P4 objects in Spi−vio as the input of FSM, and
P4 objects in Spi−voo as the output of FSM. Obviously, we
can use the packet-specific behavior < s′pi−vio, s′pi−voo >
to represent state transitions in FSM. That is, B-Cache can
handle stateful behaviors involving registers and counters, and
we leave caching the meter out for future work.

III. CACHE MAT GENERATION DESIGN

Based on the behavior equivalence model, we will elaborate
the generation of cache MATs. The behavior equivalence
model is independent of P4 pipelines, which leaves optimiza-
tion space for the cache MAT generation. In this section, we
will respectively introduce generation of the cache MAT match
vector and the cache MAT actions. Furthermore, based on the
table dependencies in P4 programs, we design a few pipeline-
dependent methods to optimize the cache MAT. On the whole,
the behavior equivalence model provides a black-box-based
approach to generate cache MATs for P4 pipelines. While for
a specific P4 program, we can further apply white-box-based
optimization to the cache MAT generation.

To model the control flow in the P4 pipeline and facili-
tate analyzing the PD optimization of the cache MAT, we
provide a new P4 pipeline model, statement control flow
graph (SCFG). SCFG can intuitively display the reading and
writing operations on P4 objects in a P4 program, which
can be used to induce dependencies in P4 programs. The
pipeline of the L2L3 Switch in Figure 1 is represented as
the SCFG in Figure 3. SCFG has three kinds of vertexes:
(1) the predication vertex which denotes conditional
statements and MAT match statements in a P4 pipeline; (2)
the action vertex which represents compound action
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Figure 3. SCFG of L2L3 Switch. To save space, the detail of the multicast
part is omitted.

statements; (3) the termination vertex which resides
at the end of the P4 pipeline. Directed edges of SCFG
imply the execution order between vertexes. Based on the
behavior equivalence model and SCFG, we next introduce the
generation of the match vector and the compound actions for
the cache MAT.

A. Match Vector Generation
To reduce the cache MAT match vector, we devise a two-

step optimization method. Firstly, as the behavior equivalence
model views P4 pipelines as black boxes, Spi−vio contains all
the VIOs. However, it is possible that a P4 pipeline does not
read some VIOs. Thus, the unreferenced VIOs can be removed
from Spi−vio without violating the behavior equivalence. We
employ the P4 object set Smatch−x to represent fields read by
the predication vertex X in SCFG of the P4 pipeline.
So the P4 object set Smatch = Smatch−1 ∪ Smatch−2 ∪ ... ∪
Smatch−N as the match fields of SCFG (assume the SCFG
has N predication vertexes). We can get the PD VIO
set by Spd−vio = Spi−vio ∩ Smatch.

Secondly, although P4 objects in Spd−vio are initialized
before entering the P4 pipeline, some P4 objects can always
be modified before the P4 pipeline reads them. If a P4 object
conforms to the above statement, we name the P4 object
satisfies the strict match dependency. We can remove the P4
objects satisfying the strict match dependency from Spd−vio,
because their initial values are determined by the other VIOs
and action parameters in fact, just like the user metadata.
Then, SCFG can be utilized to classify whether a P4 object
satisfies the strict match dependency. If an action vertex
modifying a P4 object executes before all the predication
vertexes reading the P4 object, the P4 object satisfies the

Case ������� ������� ������

#1 884 (0%) 157 (-83.1%) 149 (-83.1%)

#2 884 (0%) 287 (-67.9%) 284 (-67.9%)

#3 884 (0%) 287 (-67.9%) 284 (-67.9%)

#4 884 (0%) 293 (-66.9%) 284 (-67.9%)

VIO Set (bits) #1 #2 #3 #4

������� 884 884 884 884

������� 157 287 287 296

������ 157 287 287 287

VIO Set (bits) #1 #2 #3 #4

������� 884 884 884 884

������� 157 287 287 296

������ 157 287 287 287

Figure 4. The match vector sizes of different VIO sets.

Case

������� ������� �o. of 
Odd 

Primitives

�o. of 
Compound 

Actions

����� �o. of
Primitives

No. of P4 
Objects

Total 
Size 

(bits)

No. of P4 
Objects

Total Size 
(bits)

#1 42 884 5 133 1 2 11

#2 42 884 5 133 1 2 11

#3 42 884 11 261 1 2 23

#4 42 884 11 293 2 4 48

#1 #2 #3 #4

�������

No. of P4 Objects 42 42 42 42

Total Size (bits) 884 884 884 884

�������

No. of P4 Objects 5 5 11 12

Total Size (bits) 141 141 269 301

No. of Odd Primitives 1 1 1 2

No. of Compound Actions 2 2 2 4

Total No. of Primitives 11 11 23 52

#1 #2 #3 #4

�������

No. of P4 Objects 42 42 42 42

Total Size (bits) 884 884 884 884

�������

No. of P4 Objects 5 5 11 12

Total Size (bits) 141 141 269 301

No. of Odd Primitives 1 1 1 2

No. of Compound Actions 2 2 2 4

Total No. of Primitives 11 11 23 52

Figure 5. The compound action information for the cache MAT.

strict match dependency, which is stricter than the match
dependency proposed in [12]. For example, in Figure 3,
the eth.smac satisfies the match dependency but does not
satisfy the strict match dependency, and the route meta.lan
satisfies the strict match dependency. Removing P4 objects
that satisfies the strict match dependency can further optimize
the match vector while keeping behavior equivalence. If the
set of the P4 objects satisfying the strict match dependency
is Sstrict, and then we can get strict VIO set Ss−vio by
Ss−vio = Spd−vio − Sstrict. Then, we can use the P4 objects
in Ss−vio as the match fields of the cache MAT.

To further evaluate the two-step optimization, we compare
the generated match vector sizes of different VIO sets. As
shown in Figure 4, the two-step optimization can reduce the
match vector by as much as 67.5%. Besides, with the size and
complexity of the P4 pipeline growing, the match vector can
keep its size to a certain extent. The second step only brings
a minor size reduction because few P4 objects in the tested
cases conform to the strict match dependency, which results
in a limited effect on the match vector optimization.

B. Compound Action Generation
Based on the similar idea in last section, we remove the

unmodified VOOs from the Spd−voo to optimize compound
actions. Since the P4 program does not modify the removed
VOOs at all, so it will not violate the correctness of the
behavior equivalence model. Assume the P4 object set in a
action vertex is Saction−x. Then, the set of modified P4 objects
for the P4 pipeline is Saction = Saction−1 ∪ Saction−2 ∪
... ∪ Saction−M (assume the SCFG has M action vertexes).
After that, we can get the PD VOO set by Spd−voo =
Spi−voo ∩ Saction. Next, we can use Spd−voo to construct
compound actions for the cache MAT. Values of P4 objects
in Spd−voo will be set through modify field (registers can be
read and written by register read and register wirte).

Although most primitives and packet header operations can
be represented by modify field, some exceptions should be
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Figure 6. The on-data-plane hot behavior detector.

handled carefully. They include count, add header, truncate,
remove header, push, and pop. If the P4 pipeline contains the
above odd primitives, we need to replicate every compound
action in the cache MAT to support all behaviors which may or
may not invoke the odd primitive. One copy of the compound
action invokes the odd primitive, while the other one does not.
The recursive replication can cause an explosion of compound
actions. However, the replication is inevitable because P4
does not support conditional execution of primitives in the
compound action.

We conduct a measurement on VOO sets and compound
actions. As shown in Figure 5, the optimization presented in
this section can reduce the number of VOOs from 42 to 12,
which is much smaller than the PD VOO set. Furthermore, the
number of compound actions increases with odd primitives.
The case #4 has two odd primitives, i.e., generate digest in
L2L3 Switch and count in SC. Odd primitives can increase
the total number of primitives used by the cache MAT due to
the replication of compound actions.

IV. CACHE MAT MANAGEMENT DESIGN

After introducing the cache MAT generation, we elaborate
the management design of cache MATs. Firstly, we provide
an on-data-plane detector which reports hot behaviors to the
cache manager running on the control plane. Secondly, we
design a control barrier to keep cache coherence when table
entries update at runtime.

A. Hot Behavior Detector
To timely attain hot behaviors and keep high cache hit ratio,

we design a hot behavior detector based on the Count-Min
sketch [20]. To implement the hot behavior detector, we
use two register arrays, each of which comprises 64K 16-
bit slots. The register arrays efficiently store the approximate
packet number of different behaviors. Then, the hot behavior
detector hashes < s′s−vio, s′pd−voo > with two different hash
functions to produce the register locations. Next, the hot
behavior detector increases the 16-bit values in the registers.
If the smaller one of the two values is above the configured
threshold, the detector reports the hot packet-specific behavior
(< s′s−vio, s′pd−voo >) to the control plane and clear the
corresponding registers. Operators can dynamically adjust the
threshold to control the update rate of the cache MAT entries.

Data PlaneControl Plane

Operators
Control
Barrier

Cache MAT

Original MATs

(4) ack

(1) control
message

(2) remove impacted 
cache entries

(3) modify table  
entries

Cache Store

Figure 7. Workflow of the control barrier.

As shown in Figure 6, after receiving the reports from
the detector, the cache manager on the control plane queries
the cache store and gets the cached behavior with the oldest
timestamp. After that, the cache manager updates the cache
MAT and the cache store simultaneously, i.e., removing the
oldest cache entry and inserting the new cache entry. Based on
above procedures, cache coherence between the cached MAT
and original MATs can be well guaranteed without introducing
substantial overheads on the control plane.

B. Control Barrier
To keep cache coherence when updating entries in the orig-

inal MATs, we supply a control barrier. The implication of
the barrier is to remove the cached behaviors which are
impacted by modified table entries from the cache MAT. As is
shown in Figure 7, as soon as receiving a table modification
message from operators, the control barrier will remove the
impacted behaviors from the cache store and the cache MAT.
To be exact, we name the behaviors whose s′s−vio can match
the modified table entry as the impacted behaviors. Next,
the barrier will perform the table entry modification. After
completing all above steps, the control barrier will return an
acknowledgment message to operators.

Note that keeping cache coherence is the primary goal for
the barrier. If the match vector of the modified table entry does
not contain any P4 object in Ss−vio, the barrier will evict all
the cached behaviors to ensure cache coherence between the
cache MAT and the original P4 pipeline. Besides, to avoid
data race, the cache manager will stop processing the detector
reports (bypass the second step and the third step) when the
barrier is processing the control messages.

V. EVALUATION

The implementation of B-Cache comprises two parts. (1)
The cache MAT generator is implemented as a plugin of the
P4 front-end compiler [21] and can automatically integrate the
cache MAT and the hot behavior detector into the intermediate
representation of P4 programs. (2) The cache manager and the
control barrier are implemented on P4Runtime [22], a control
framework for P4 language.

We conduct the experiments on servers with 64GB RAM
and 12 2.40GHz CPU cores and evaluate B-Cache on three
widely-used P4 targets, i.e., BMv2 and DPDK [23] as the
software targets and SmartNIC [24] as the hardware target.
MoonGen [25] is used as the packet generator. We evaluate
B-Cache with four cases shown in Figure 8. As for evalu-
ation metrics, we test performance improvement brought by
B-Cache as well as performance of the cache management
services. On the whole, the experiment results indicate that
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Cases Features

#1 L2L3 Switch

#2 L2L3 Switch, Access Control List (ACL)

#3
L2L3 Switch, ACL,

Network Address Translation (NAT )

#4 L2L3 Switch, ACL, NAT, Source Guard (SG), Storm
Control (SC), Virtual Routing Forwarding (VRF)

Figure 8. Features installed in the four tested cases.

B-Cache can bring remarkable performance improvement on
the tested P4 targets, and the cache manager and the control
barrier can timely and stably keep cache coherence at runtime.

Performance improvement: To understand delay reduction
and throughput improvement brought by B-Cache, we con-
duct experiments under three conditions. The performance of
the original P4 programs is the baseline and referred as NO
CACHE. For CACHE MISS, packets will be processed by the
P4 programs with cache MATs but do not hit any cache entries.
For CACHE HIT, packets will hit cache entries and bypass the
original P4 pipeline. From the results shown in Figure 9, we
can make the following analysis.

(1) The performance of P4 targets decreases remarkably
with the increasing complexity of P4 pipelines. On BMv2 and
DPDK, this trend is apparent. Although the degradation is not
that large on SmartNIC, it achieves a 40% delay increase and
a 40% throughput decrease. As the performance degradation
varies with the internal implementations of P4 targets, other P4
targets such as Tofino [26] may expose different performance
characteristics, so this analysis is preliminarily applicative to
the tested targets, and we will conduct the in-depth evaluation
on more targets in future.

(2) B-Cache brings a significant performance gain to P4
targets. As the cases become more and more complicated, the
performance gain brought by B-Cache is more striking. For
case #4, B-Cache improves throughput by over 200% and
decreases the processing delay by 49% on BMv2. On DPDK,
B-Cache improves throughput by 125.8% and decreases the
processing delay by 22.2%. Furthermore, B-Cache increases
throughput by over 60% on SmartNIC. Besides, the perfor-
mance penalty incurred by cache miss becomes low, since
the cache MAT and the detector only take a minor part of
the P4 pipeline. For all targets in case #4, delay increase and
throughput decrease are no more than 3.1%.

Performance of cache MAT management: To understand
the performance of the cache manager and the control barrier,
we conduct two experiments on case #1. Firstly, we test the
cache manager with different workloads, i.e., the messages per
second (mps) from the hot behavior detector. Secondly, for
the control barrier, we install 10K randomly-generated cache
entries into the cache MAT and update tables entries in the
original P4 pipeline. We test the performance of the control
barrier with different numbers of cache entries influenced by
the updated table entries. For each benchmark, we repeat the
experiments for 100 times.

As shown in Figure 10(a), the processing delay of the cache
manager is stable. When the hot behavior detector reports 1K
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Figure 9. Delay and throughput of B-Cache.
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Figure 10. Performance of cache MAT management.

mps, the cache manager can complete the installation of cache
entries in about 0.2 ms. As for the control barrier, Figure
10(b) shows that with the number of impacted cache entries
increasing, the delay of the cache control grows linearly due
to the cost of searching and removing affected cache entries
(red crosses in the figure denote the raw data). The control
barrier can complete updating table entries within 0.2 seconds
even if there are 10K impacted cache entries.

VI. CONCLUSION

B-Cache is the first research effort on utilizing behavior-
level caching to improve performance of the stateful and
programmable data plane. Based on the behavior equiva-
lence model and the PD optimization, we can implement the
cache MAT provisioning behavior equivalence. Furthermore,
we provide a complete design to maintain cache coherence
during updating table entries at runtime. As is shown by our
evaluation, B-Cache can achieve remarkable performance
improvement. In future, we will explore other potential usages
of the behavior equivalence model.
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and Máté Tejfel. High speed packet forwarding compiled from protocol
independent data plane specifications. In Proceedings of the 2016 ACM
SIGCOMM Conference, SIGCOMM ’16, pages 629–630, New York,
NY, USA, 2016. ACM.

[24] Netronome Company. Agilio cx smartnics. Website. https://www.
netronome.com/products/agilio-cx/.

[25] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, Florian Wohl-
fart, and Georg Carle. Moongen: A scriptable high-speed packet
generator. In Proceedings of the 2015 Internet Measurement Conference,
IMC ’15, pages 275–287, New York, NY, USA, 2015. ACM.

[26] Barefoot Networks. Barefoot tofino. Website. https://barefootnetworks.
com/technology/#tofino.

2018 IEEE Symposium on Computers and Communications (ISCC)

978-1-5386-6950-1/18/$31.00 ©2018 IEEE 00090


