
CacheP4: A Behavior-level Caching Mechanism for P4
Zijun Ma, Jun Bi, Cheng Zhang, Yu Zhou, Abdul Basit Dogar∗

Tsinghua University

CCS CONCEPTS
• Networks → Programmable networks;

KEYWORDS
P4, data plane, caching mechanism, match action table

ACM Reference format:
Zijun Ma, Jun Bi, Cheng Zhang, Yu Zhou, Abdul Basit Dogar. 2017. CacheP4:
A Behavior-level Caching Mechanism for P4. In Proceedings of SIGCOMM
Posters and Demos ’17, Los Angeles, CA, USA, August 22–24, 2017, 3 pages.
DOI: 10.1145/3123878.3132003

1 INTRODUCTION
The P4 programming language [1] o�ers the �exibility of de�n-

ing data plane behaviors by applying a pipeline of match+action
tables (MATs) on packets. For a P4 program without stateful mem-
ories (e.g., counters, meters, and registers), packets in an identical
�ow will be processed by the same behavior (i.e., the same sequence
of compound actions). For instance, in Figure 1, packets in �ow F
will be processed by compound actions A1, A3 and A5 in an ingress
pipeline. Since the �rst packet in �ow F has already identi�ed the
corresponding switch behavior, it is a waste for all the MATs to
perform lookups on the header �elds of subsequent packets in �ow
F .

Inspired by the idea of caching, we put a MAT Tc in the front of
the pipeline. Tc could recognize a packet in �ow F by performing a
lookup on packet header �elds. Consequently, a compound action
Ac consisting of A1, A3 and A5 is applied to the packet. In such a
case, Tc serves as a table for behavior-level cache – it contains the
feature of �ow F as well as the corresponding behavior. To the best
of our knowledge, up to now, such behavior-level cache has not
been introduced to P4 targets (e.g., FPGA and BMv2 [2]), which
leaves potential to explore for faster packet processing.

Extending the idea of the behavior-level cache, we propose
CacheP4, a caching mechanism for P4. In CacheP4, (1) a cache
MAT determined by language elements (e.g., parser de�nitions,
table de�nitions and control �ows) of the original P4 program is
inserted into the front of ingress/egress pipeline by a preprocessor
∗Zijun Ma, Jun Bi, Cheng Zhang, Yu Zhou and Abdul Basit Dogar are with Institute
for Network Sciences and Cyberspace, Tsinghua University. Zijun Ma is also with
School of Software, Tsinghua University. Jun Bi, Yu Zhou, Cheng Zhang and Abdul
Basit Dogar are also with Department of Computer Science, Tsinghua University, and
Tsinghua National Laboratory for Information Science and Technology (TNList). This
work is supported by National Key R&D Program of China (2017YFB0801701) and
the National Science Foundation of China (No.61472213). Jun Bi is the corresponding
author.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGCOMM Posters and Demos ’17, Los Angeles, CA, USA
© 2017 Copyright held by the owner/author(s). 978-1-4503-5057-0/17/08. . . $15.00
DOI: 10.1145/3123878.3132003

T1 T2 T3Tc Buffer

Flow F

A1

A2

A3

A4

A5miss

Ac = (A1 + A3 + A5)

T1
Table of Original

Program
Tc Cache Table

A1 Action Applied to
Flow F

Ac
Cache Table Action

Figure 1: Behavior-level cache.

before compilation, and (2) the cache MAT is populated during the
runtime according to the control plane to accelerate the forward-
ing of selected �ows. Since CacheP4 provides the behavior-level
cache by modifying the original P4 program regardless of target
speci�cation, it is likely to be a general cache solution on various
P4 targets.

2 DESIGN OF CACHEP4
Mechanism overview. As is depicted in Figure 2, (1) during

preprocessing stage, the structure of a cache MAT is determined by
analyzing language elements in the original P4 program. (2) The P4
program containing cache MATs is then compiled and con�gured
onto a particular P4 target. (3) During the runtime, the control
application is noti�ed of selected �ows that need to be cached by
the P4 target. The noti�er could be network monitors or network
operators. (4) After receiving the noti�cation, the control appli-
cation computes cache MAT entries based on the desired packet
header and current table entries in the P4 target. (5) Cache MAT is
populated by the control application to accelerate the forwarding
of selected �ows.

De�nitions and preliminaries. To concisely describe the al-
gorithm for determining and populating cache MATs, we provide
the following de�nitions and preliminaries:

• P4 variable: A �eld of metadata or packet header de�ned in a P4
program.

• P4 factor: A �eld of standard metadata or packet header de�ned
in a P4 program. It is a special case of P4 variable.

• P4 operation: A language element in a P4 program that reads
and/or writes a variable. In P4 parser, a P4 operation could be a
set_metadata statement or a select statement. In P4 pipeline, a P4
operation could be a MAT reads, an if statement or a primitive
action.

• P4 predication: A P4 conditional operation, which could be a
select statement, an if statement or a MAT reads.

• P4 path: A sequence of P4 operations by which a packet is likely
to be processed. A P4 program usually has multiple P4 paths.

• Packet Trace (PTR): A sequence of P4 MAT entries that a packet
is likely to hit during the runtime. A P4 path might correspond
to multiple PTRs.

108

SIGCOMM Posters and Demos ’17, August 22–24, 2017, Los Angeles, CA, USA Z. Ma, J. Bi, C. Zhang, Z. Yu, A. Dogar

Origin P4 program

Control Plane

Data Plane

Configuration

P4 target pipeline

Cache
MAT

Cache miss flow

Cache hit flow

2. Compile and configure

1. Preprocess

5. Populate cache MAT

Caching Mechanism App
3. Notify

P4 program with cache

Buffer
Origin
MATS

Origin
MATS

Origin
MATS

Origin
MATs

4. Compute cache MAT entry

Figure 2: Mechanism overview of CacheP4.

• Match Type Power: The expressing ability of a match type. We
conclude ternary > lpm > ranдe > exact in terms of match
type power.

• Value Impact: Expressed as I = (P , F ,V ,R,T). I is a value impact;
P is a P4 path; F is a P4 factor; V is a P4 variable; R is a P4
predication and T is a match type. This indicates that in path
P , the initial value of F has an impact on the value of V read
by predication R. If R belongs to an ingress/egress pipeline, I
is considered as an ingress/egress value impact. T equals to R’s
match type or equivalently expresses R’s relation operator (e.g.,
exact match for == and range match for >=). We consider T as
a candidate match type of F .
Determining cache MAT structure. Take a cache MAT Tc of

the ingress pipeline for example. Any P4 factor that appears in a
value impact of the ingress pipeline should be a match �eld of Tc .
For a match �eld, we choose the most powerful candidate match
type as its match type inTc . An action ofTc should be a combination
of compound actions in a P4 path.

Populating cacheMAT. A �ow to be cached is described as E =
{(h.name, h.value) | h is a packet header f ield} in the noti�cation.
After the control application receives the noti�cation, it would
compute all PTRs based on the �ow description and current table
entries in the P4 target. Note that an E might correspond to multiple
PTRs, we extend an E to several E ′s by adding new packet header
�elds to guarantee that each E ′ corresponds to one PTR only. For a
cache MAT entry Te , a match �eld fc .value is generated based on
an E ′. To be speci�c, if fc ∈ E ′, then fc .value is set according to E ′.
Otherwise, fc .value is set to be the “widest” value (e.g., wildcard
for ternary match and lpm match). The action name and action
parameters of Te are determined by the corresponding PTR.

3 EVALUATION OF CACHEP4
We use BMv2 to evaluate the performance of CacheP4 with three

test cases [3] which are shown in Table 1. Programs of these cases
are based on the P4 switch program [4]. For each case, we measure
the performance of three di�erent con�gurations: (1) original P4
program without cache table, (2) P4 program with cache table whose
entries lead to a cache hit and (3) P4 program with cache table whose
entries lead to a cache miss.

As can be seen from Figure 3(a) and 3(b), with the P4 program be-
coming more involved, (1) performance improvement under cache

Case P4 program
C1 Router
C2 NAT + Router
C3 IP Source Guard + ACL + NAT + Router

Table 1: Test cases for CacheP4.

0.0% -1.56%
+3.67%

0.0%

-16.16%

+4.23%

0.0%

-21.04%

+6.62%

C1 C2 C3
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

R
T

T
 (

m
il

ls
ec

o
n

d
)

 Origin (Baseline)

 Cache hit

 Cache miss

(a) Round-Trip Time.

0.0%

13.07%

-16.08%

0.0%

+37.02%

-13.48%
0.0%

+65.41%

-11.73%

C1 C2 C3
0

50

100

150

200

250

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

 Origin (Baseline)

 Cache hit

 Cache miss

(b) Throughput.

Figure 3: Performance evaluation for CacheP4.

hit condition is higher since most MAT match and MAT transfer
are avoided. (2) Performance penalty under cache miss condition is
relatively lower since delay caused by the cache MAT match takes
a smaller proportion of the total packet processing time.

All the experiments above are ideally based on one single packet
�ow traversing a P4 target. However, multiple packet �ows would
simultaneously traverse a P4 target in a production environment.
Therefore, the strategy to decide which �ows should be cached to
make the best use of the cache MAT is required. Here we put for-
ward several pertinent factors: (1) pre-estimated number of packets
within a �ow, (2) packet size within a �ow, (3) number of MATs a
�ow traverses (more MATs mean the gains obtained from caching
are bigger), (4) target resource constraint leading to limited cache
MAT entries and (5) policy intent.

4 FUTUREWORK
CacheP4 shows great potential for improving packet forwarding

speed and throughput of P4 targets. However, more work is required
for the design re�nement as well as the implementation.

Automatic cache maintenance. We plan to implement a pre-
processor for P4 programs to generate cache MAT structure auto-
matically. Note that during the runtime (1) a new �ow could be
handled by the cache, (2) a cached �ow could physically disappear
and (3) the original MAT entries could be updated. Therefore, strate-
gies for automatically repopulating cache MAT under such dynamic
circumstances call for careful design and implementation.

Customized �ow selection. Instead of proposing a particular
standard on selecting cached �ow, we plan to design a set of inter-
faces for network operators to designate the desired �ow to cache
and notify the control application based on their considerations.
These interfaces include information such as (1) the �ow descrip-
tion, (2) condition to start caching the �ow and (3) duration for
caching the �ow.

109

CacheP4: A Behavior-level Caching Mechanism for P4 SIGCOMM Posters and Demos ’17, August 22–24, 2017, Los Angeles, CA, USA

REFERENCES
[1] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rexford,

Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and David Walker.
P4: Programming protocol-independent packet processors. SIGCOMM Comput.
Commun. Rev., 44(3):87–95, July 2014.

[2] Barefoot Networks. P4 behavioral model. Website. https://github.com/p4lang/
behavioral-model.

[3] Cachep4 test cases. Website. https://github.com/mzj14/CacheP4-Test.
[4] P4 Language Consortium. P4 switch. Website. https://github.com/p4lang/switch.

110

https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model
https://github.com/mzj14/CacheP4-Test
https://github.com/p4lang/switch

	1 Introduction
	2 Design of CACHEP4
	3 EVALUATION OF CACHEP4
	4 Future Work
	References

