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Abstract
Neural network (NN) models have achieved great
success in many applications. However, in large
neural networks, iterative model parameter updat-
ing via gradient descent requires tremendous com-
puting time and resources. Recent study shows
that the gradient-based training dynamics of NNs
can be approximated by linear models. Although
the approximation strictly holds with assumption
of infinite NN width, our proof-of-concept evalua-
tion indicates that NN training with small data set
size and number of hidden units could also benefit
from linear models. Compared to traditional prop-
agation with gradient descent, we obtain better
training efficiency by solving initial value prob-
lems (IVPs) derived from linear models with no
harm in model accuracy.

1. Introduction
Recent work (Lee et al., 2019) has revealed the underly-
ing mathematical principle of NN training dynamics. If
we use ft(χ) to denote the output of the neural network at
time t related to training set χ, considering the output as
a function of model parameter collection θ, we can get its
Taylor expanded form, ft(χ) = f lint (χ) + O(θ2t ), where
f lint (χ) = f0(χ) +∇θf0(χ)(θt − θ0) is used as an approx-
imation of ft(χ). As a result, the gradient descent learning
dynamics can be approximated by the following ordinary
differential equations (ODEs).

θ̇t = −η∇θf0(χ)T∇f lin
t (χ)L (1)

ḟ lint (χ) = −ηΘ̂0(χ, χ)∇f lin
t (χ)L (2)

Since ∇θf0(χ) and Θ̂0(χ, χ) could be computed and η is
deterministic learning rate at initialization, we could actu-
ally solve the IVP described by the above ODEs and ob-
tain good models without iterative propagation. Therefore,
it is promising to explore many off-the-shelf numerical
solvers which have the potential to generate good mod-
els efficiently.
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Table 1. Training time taken to reach certain accuracy threshold on
(UCI, 2013) using 1 Intel Xeon Gold 6140 CPU and 1GB memory.

ACCURACY
TIME FOR

NN/S
TIME FOR
ODES/S

SPEEDUP

0.80 60.10 38.66 1.55×
0.85 75.52 39.02 1.94×
0.90 102.19 40.85 2.50×
0.95 147.73 69.83 2.12×

Table 2. Training time taken to reach certain accuracy threshold on
(UCI, 2007) using 1 Intel Xeon Gold 6140 CPU and 1GB memory.

ACCURACY
TIME FOR

NN/S
TIME FOR
ODES/S

SPEEDUP

0.80 118.50 59.42 1.99×
0.85 140.88 72.52 1.94×
0.90 189.30 76.19 2.48×
0.95 201.45 90.97 2.21×

2. Experiment Evaluation
We conduct experiments on some multivariate and labeled
data sets (over 1000 training instances) (UCI, 2013), (UCI,
2007), etc. Two-layer fully-connected NN models with
various numbers of hidden units respectively on different
data sets are built to do classification and cross entropy is
used as the loss function. For simplicity, the learning rate is
consistent throughout any single experiment. Moreover, we
do both the traditional training and the IVP solving on the
whole data set (i.e., without mini-batch). To solve the IVP,
we choose the Backward Differentiation Formula (BDF)
(Byrne & Hindmarsh, 1975) solver provided by Scipy since
it scales well and handles the possible stiffness.

Table 1 and Table 2 show the requisite training time for
reaching specific accuracy threshold. Unlike epochs which
strictly stick to the iterative manner, BDF solver applies
adaptive stepping, which outperforms the iterative propa-
gation in terms of efficiency (e.g., over 2 times speedup to
reach 90% training accuracy in experiment). In addition,
applying the weights and biases obtained from solver to test
data set, the accuracy is often comparably high (i.e., both
around 93% using the parameters from traditional training
and IVP solving, given appropriate hidden unit numbers).
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