
The main design philosophy is that no single data
structure / algorithm wins. Thus from the high
level perspective we build a system with clearly
abstracted modules to address this complexity of
supporting a rich collection of indexes, specialized
operators, and parallel execution strategies.

System Architecture:

Key Mechanisms:

● No “silver bullet” operator / index -- need to
implement a rich collection of them and design
proper rules to choose.

● Apply aggressive operator fusion to avoid the
cost of materializing intermediate results.

● Build a scheduler that supports dynamic task
DAG spawning to fully utilize CPU resources.

● Implement a collection of relational operators.
Some regular operators are: select, hash join,
sort merge join, index scan, index lookup join.

● When applicable, fuse multiple binary joins and
the top-level aggregation into one multi-relation
join-aggregate operator. Example operators are
multiway-join-aggregate and linear-join-aggregate.

ACM SIGMOD Programming Contest 2018
Quickstep Team* @ University of Wisconsin-Madison

Jianqiao Zhu, Zuyu Zhang, Dylan Bacon, Jignesh M. Patel (advisor)
{jianqiao, zuyu, dbacon, jignesh}@cs.wisc.edu

QueryQueryData

Preprocessor

Compressed
Storage

Query Parser

Optimizer

Statistics
&

Indexes

γ
⋈

...
...⋈

Query
Plan

Execution
Generator

DAG of
Operators

Index
Scan

Aggregate

Selection

Hash
Join

Print
Tuple

Drop Hash
Table

ResultsExecute

1

Query
Evaluation
Main Task

Evaluate One Query

Parse → Optimize →
Generate Execution Plan

Spawn

...

Aggregate
Subtask

SpawnAggregate
Operator

Print Tuple
Operator

...
Spawn

Continuation
(Task Barrier) Dependency

Link

Aggregate
Finalization

Batch Start

Batch Complete

Inter-query
parallelism

Inter-operator
parallelism

Intra-operator
parallelism

Task: Evaluate as fast as possible batches of
SPJA (Selection-Projection-Join-Aggregation)
queries on a set of immutable relations.

Each query involves up to 4 relations. Aggregate
functions are always SUM without GROUP BY.

Testing machine configuration:
2x Intel Xeon E5-2660 v2 (2.2 GHz), 20 cores / 40
hyperthreads, 256 GB DDR3 RAM

1. Contest Overview

2. Our Approach

● Calculate min/max values of each column.
Meanwhile compress the column if possible
(simply truncating the leading zeros).

● Build existence bitmap for each column, and use
it to count the number of unique values in the
column.

3. Preprocessing

● Use existence maps to figure out containment
relationship among columns.

● Build various indexes on each relation (primary
key index, foreign key index, count vector index)
based on relation size.

● ~20 optimization passes.
● Some of the optimization rules: filter pushdown,

early projection, range propagation, predicate
simplification, semi-join elimination, common
aggregate-expression elimination.

● Heuristic-based join order optimization.
● Identify the shape of multi-relation joins

(multi-way join, linear join, star join) and apply
corresponding specialized operators.

4. Optimizer

5. Execution

6. Contest Workload and Results

Dataset Small Medium Large X-Large
Size 9.4 MB 89.5 MB 3.9 GB 6.6 GB

Relations 14 12 29 34

Queries 50 146 50 146

Batches 5 21 5 20

Execution
Time (s) 0.027 0.133 0.547 1.475

This work was supported in part by CRISP, one of six centers in JUMP, a Semiconductor Research Corporation (SRC) program sponsored by DARPA, and grant FA8650-15-C-7562 also from DARPA. *

