Empirical Distribution of Equilibrium Play and Its Testing Application

Yakov Babichenko, Siddharth Barman, and Ron Peretz

NEGT
Goal: Test if players are implementing an equilibrium using observed behavior
Goal: Test if players are implementing an equilibrium using observed behavior in large games

- Players: $[n]$
- Actions of each player: $[m]$
Goal: Test if players are implementing a Nash equilibrium using observed behavior in large games

- Players: \([n]\)
- Actions of each player: \([m]\)
- Mixed strategy of player \(i\): \(x_i \in \Delta^m\)
Goal: Test if players are implementing a Nash equilibrium using i.i.d. samples in large games

- Players: $[n]$
- Actions of each player: $[m]$
- Mixed strategy of player i: $x_i \in \Delta^m$
- Data: i.i.d samples $\sim x_i$ for each player i
Goal: Test if players are implementing a Nash equilibrium using i.i.d. samples in large games

- Players: \([n]\)
- Actions of each player: \([m]\)
- Mixed strategy of player \(i\): \(x_i \in \Delta^m\)
- Data: i.i.d samples \(\sim x_i\) for each player \(i\)

✓ Feasible (with small slack)

Q: How many samples are sufficient?
Goal: Test if players are implementing a Nash equilibrium using i.i.d. samples in large games

- Players: \([n]\)
- Actions of each player: \([m]\)
- Mixed strategy of player \(i\): \(x_i \in \Delta^m\)
- Data: i.i.d samples \(\sim x_i\) for each player \(i\)

✓ Feasible (with small slack)

Q: How many samples are sufficient?

Our Result (informally)

A very small number of samples are sufficient for testing if players are implementing a Nash equilibrium.
Goal: Test if players are implementing a Nash equilibrium using i.i.d. samples in large games

- Players: \([n]\)
- Actions of each player: \([m]\)
- Mixed strategy of player \(i\): \(x_i \in \Delta^m\)
- Data: i.i.d samples \(\sim x_i\) for each player \(i\)

✓ Feasible (with small slack)

Q: How many samples are sufficient?

Our Result (informally)

\(O(\log m + \log n)\) samples are sufficient for testing if players are implementing a Nash equilibrium.
Goal: Test if players are implementing a Nash equilibrium using i.i.d. samples in large games

- Players: \([n]\)
- Actions of each player: \([m]\)
- Mixed strategy of player \(i\): \(x_i \in \Delta^m\)
- Data: i.i.d samples \(\sim x_i\) for each player \(i\)

✓ Feasible (with small slack)

Q: How many samples are sufficient?

Our Result (informally)

\(O \left(\frac{\log m + \log n}{\varepsilon^2} \right)\) samples are sufficient for testing if players are implementing a Nash equilibrium.

\(\varepsilon\): slack parameter in payoffs
Our Result (informally)

$O\left(\frac{\log m + \log n}{\varepsilon^2}\right)$ samples are sufficient for testing if players are implementing a Nash equilibrium.
Our Result (informally)

\(O \left(\frac{\log m + \log n}{\varepsilon^2} \right)\) samples are sufficient for testing if players are implementing a Nash equilibrium.

Nash Eq.: No player can benefit, in expectation, by unilateral deviation.

\(\varepsilon\)-Nash Eq.: No player can benefit more than \(\varepsilon\), in expectation, by unilateral deviation.
Our Result (informally)

\[O \left(\frac{\log m + \log n}{\varepsilon^2} \right) \] samples are sufficient for testing if players are implementing a Nash equilibrium.

Nash Eq.: No player can benefit, in expectation, by unilateral deviation.
\(\varepsilon \)-Nash Eq.: No player can benefit more than \(\varepsilon \), in expectation, by unilateral deviation.

\(s_i \leftarrow \text{empirical distribution over } O \left(\frac{\log m + \log n}{\varepsilon^2} \right) \text{ samples drawn from } x_i \)
Our Result (informally)

\[O\left(\frac{\log m + \log n}{\epsilon^2}\right) \] samples are sufficient for testing if players are implementing a Nash equilibrium.

Nash Eq.: No player can benefit, in expectation, by unilateral deviation.
\(\epsilon\)-Nash Eq.: No player can benefit more than \(\epsilon\), in expectation, by unilateral deviation.

\(s_i \leftarrow \) empirical distribution over \(O\left(\frac{\log m + \log n}{\epsilon^2}\right) \) samples drawn from \(x_i\)

Test whether or not the empirical distribution \(\prod_i s_i \) an \(\epsilon\)-Nash equilibrium.
Our Result (informally)

$O\left(\frac{\log m + \log n}{\varepsilon^2}\right)$ samples are sufficient for testing if players are implementing a Nash equilibrium.

$s_i \leftarrow$ empirical distribution over $O\left(\frac{\log m + \log n}{\varepsilon^2}\right)$ samples drawn from x_i

If $\prod_i x_i$ is a Nash eq. then $\prod_i s_i$ is an ε-Nash eq., w.h.p.
Our Result (informally)

\[O \left(\frac{\log m + \log n}{\varepsilon^2} \right) \] samples are sufficient for testing if players are implementing a Nash equilibrium.

\[s_i \leftarrow \text{empirical distribution over } O \left(\frac{\log m + \log n}{\varepsilon^2} \right) \text{ samples drawn from } x_i \]

If \(\prod_i x_i \) is a Nash eq. then \(\prod_i s_i \) is an \(\varepsilon \)-Nash eq., w.h.p.

If \(\prod_i x_i \) is not a \(2\varepsilon \)-Nash eq. then \(\prod_i s_i \) is not an \(\varepsilon \)-Nash eq., w.h.p.
Our Result (informally)

\[O \left(\frac{\log m + \log n}{\varepsilon^2} \right) \] samples are sufficient for testing if players are implementing a Nash equilibrium.

\[s_i \leftarrow \text{empirical distribution over } O \left(\frac{\log m + \log n}{\varepsilon^2} \right) \text{ samples drawn from } x_i \]

If \(\prod_i x_i \) is a \(\delta \)-Nash eq. then \(\prod_i s_i \) is an \((\delta + \varepsilon) \)-Nash eq., w.h.p.

If \(\prod_i x_i \) is not a \(\delta + 2\varepsilon \)-Nash eq. then \(\prod_i s_i \) is not an \((\delta + \varepsilon) \)-Nash eq., w.h.p.
Our Result (informally)

\[O \left(\frac{\log m + \log n}{\epsilon^2} \right) \] samples are sufficient for testing if players are implementing a Nash equilibrium.

\[s_i \leftarrow \text{empirical distribution over} \ O \left(\frac{\log m + \log n}{\epsilon^2} \right) \] samples drawn from \(x_i \)

Main Theorem

If \(\prod_i x_i \) is a Nash eq. then \(\prod_i s_i \) is an \(\epsilon \)-Nash eq., w.h.p.

If \(\prod_i x_i \) is not a \(2\epsilon \)-Nash eq. then \(\prod_i s_i \) is not an \(\epsilon \)-Nash eq., w.h.p.
Main Theorem

If $\prod_i x_i$ is a Nash eq. then $\prod_i s_i$ is an ε-Nash eq., w.h.p.

If $\prod_i x_i$ is not a 2ε-Nash eq. then $\prod_i s_i$ is not an ε-Nash eq., w.h.p.
Proof Sketch

Main Theorem

If $\prod_i x_i$ is a Nash eq. then $\prod_i s_i$ is an ε-Nash eq., w.h.p.

n-player m-action game

x_i : Mixed strategy of player i

$O\left(\frac{\log m + \log n}{\varepsilon^2}\right)$ samples from each x_i

s_i : Empirical distribution associated with x_i
Proof Sketch

Main Theorem

If $\prod_i x_i$ is a Nash eq. then $\prod_i s_i$ is an ε-Nash eq., w.h.p.

n-player m-action game

x_i : Mixed strategy of player i

$O\left(\frac{\log m + \log n}{\varepsilon^2}\right)$ samples from each x_i

s_i : Empirical distribution associated with x_i

$u_i : [m]^n \rightarrow [0, 1]$, utility of player i
Proof Sketch

Main Theorem

If $\prod x_i$ is a Nash eq. then $\prod s_i$ is an ε-Nash eq., w.h.p.

n-player m-action game

x_i : Mixed strategy of player i

$O\left(\frac{\log m + \log n}{\varepsilon^2}\right)$ samples from each x_i

s_i : Empirical distribution associated with x_i

$u_i : [m]^n \rightarrow [0, 1]$, utility of player i

$x = \prod x_i$ is a **Nash eq.** if $u_i(a, x_{-i}) \leq u_i(x)$, for all $i, a \in [m]$.
Proof Sketch

Main Theorem

If $\prod_i x_i$ is a Nash eq. then $\prod_i s_i$ is an ε-Nash eq., w.h.p.

n-player m-action game

x_i : Mixed strategy of player i

$O\left(\frac{\log m + \log n}{\varepsilon^2}\right)$ samples from each x_i

s_i : Empirical distribution associated with x_i

$u_i : [m]^n \rightarrow [0, 1]$, utility of player i

$s = \prod_i s_i$ is an ε-Nash eq. if $u_i(a, s_{-i}) \leq u_i(s) + \varepsilon$, for all $i, a \in [m]$
Proof Sketch

Main Theorem

If $\prod_i x_i$ is a Nash eq. then $\prod_i s_i$ is an ε-Nash eq., w.h.p.

n-player m-action game

x_i : Mixed strategy of player i

$O \left(\frac{\log m + \log n}{\varepsilon^2} \right)$ samples from each x_i

s_i : Empirical distribution associated with x_i

$u_i : [m]^n \to [0, 1]$, utility of player i

To Prove

If $x = \prod_i x_i$ satisfies $u_i(a, x_{-i}) \leq u_i(x)$ then $s = \prod_i s_i$ satisfies, $u_i(a, s_{-i}) \leq u_i(s) + \varepsilon$ w.h.p.
Proof Sketch

Main Theorem

If $\prod_i x_i$ is a Nash eq. then $\prod_i s_i$ is an ε-Nash eq., w.h.p.

n-player m-action game
x_i : Mixed strategy of player i

$O\left(\frac{\log m + \log n}{\varepsilon^2}\right)$ samples from each x_i

s_i : Empirical distribution associated with x_i

$u_i : [m]^n \rightarrow [0, 1]$, utility of player i

To Prove

If $x = \prod_i x_i$ satisfies $u_i(a, x_{-i}) \leq u_i(x)$ then
$s = \prod_i s_i$ satisfies, $u_i(a, s_{-i}) \leq u_i(s) + \varepsilon$ w.h.p.
Proof Sketch

To Prove

If \(x = \prod_i x_i \) satisfies \(u_i(a, x_{-i}) \leq u_i(x) \) then
\(s = \prod_i s_i \) satisfies, \(u_i(a, s_{-i}) \leq u_i(s) + \varepsilon \) w.h.p.

Key Lemma

Let \(s_i^k \) be the empirical dist. over \(k \) i.i.d. samples from \(x_i \), for all \(i \). Then,

\[
\Pr(\left| u_i(a, s_{-i}^k) - u_i(a, x_{-i}) \right| \geq \varepsilon/2) \leq e^{-c\varepsilon^2 k} \quad a \in [m]
\]
Proof Sketch

To Prove

If \(x = \prod_i x_i \) satisfies \(u_i(a, x_i) \leq u_i(x) \) then
\(s = \prod_i s_i \) satisfies, \(u_i(a, s_i) \leq u_i(s) + \varepsilon \) w.h.p.

KeyLemma

Let \(s^k_i \) be the empirical dist. over \(k \) i.i.d. samples from \(x_i \), for all \(i \). Then,

\[
\Pr\left(|u_i(a, s^k_i) - u_i(a, x_i)| \geq \varepsilon/2 \right) \leq e^{-c\varepsilon^2k} \quad a \in [m]
\]

For \(n = 2 \) [LMM03], the concentration result follows from Hoeffding’s inequality.
Proof Sketch

To Prove

If \(x = \prod_i x_i \) satisfies \(u_i(a, x_i) \leq u_i(x) \) then \(s = \prod_i s_i \) satisfies, \(u_i(a, s_i) \leq u_i(s) + \varepsilon \) w.h.p.

Key Lemma

Let \(s_i^k \) be the empirical dist. over \(k \) i.i.d. samples from \(x_i \), for all \(i \). Then,

\[
\Pr(\left| u_i(a, s_i^k) - u_i(a, x_i) \right| \geq \varepsilon/2) \leq e^{-c\varepsilon^2 k} \quad a \in [m]
\]

For \(n \geq 3 \), more complicated arguments are required!
Since \(s \) is the product of empirical distributions.
Proof Sketch

To Prove

If \(x = \prod_i x_i \) satisfies \(u_i(a, x_{-i}) \leq u_i(x) \) then
\(s = \prod_i s_i \) satisfies, \(u_i(a, s_{-i}) \leq u_i(s) + \varepsilon \) w.h.p.

Key Lemma

Let \(s_i^k \) be the empirical dist. over \(k \) i.i.d. samples from \(x_i \), for all \(i \). Then,

\[
\Pr(|u_i(a, s_{-i}^k) - u_i(a, x_{-i})| \geq \varepsilon/2) \leq e^{-c\varepsilon^2 k} \quad a \in [m]
\]

\[
k = O\left(\frac{\log m + \log n}{\varepsilon^2} \right) \quad \Rightarrow \quad e^{-c\varepsilon^2 k} < \frac{1}{nm}
\]
Proof Sketch

To Prove

If \(x = \prod_i x_i \) satisfies \(u_i(a, x_{-i}) \leq u_i(x) \) then
\(s = \prod_i s_i \) satisfies, \(u_i(a, s_{-i}) \leq u_i(s) + \varepsilon \) w.h.p.

Key Lemma

Let \(s_i^k \) be the empirical dist. over \(k \) i.i.d. samples from \(x_i \), for all \(i \). Then,
\[
\Pr\left(\left| u_i(a, s^k_{-i}) - u_i(a, x_{-i}) \right| \geq \varepsilon/2 \right) \leq e^{-c\varepsilon^2 k} \quad a \in [m]
\]

\[k = O \left(\frac{\log m + \log n}{\varepsilon^2} \right) \Rightarrow \text{Ineqs. hold w.h.p.} \]
\[\forall i \in [n], \forall a \in [m] \]
Proof Sketch

To Prove

If \(x = \prod_i x_i \) satisfies \(u_i(a, x_{-i}) \leq u_i(x) \) then
\(s = \prod_i s_i \) satisfies, \(u_i(a, s_{-i}) \leq u_i(s) + \varepsilon \) w.h.p.

Key Lemma

Let \(s_i^k \) be the empirical dist. over \(k \) i.i.d. samples from \(x_i \), for all \(i \). Then,

\[
\Pr(|u_i(a, s_{-i}^k) - u_i(a, x_{-i})| \geq \varepsilon/2) \leq e^{-c\varepsilon^2 k} \quad a \in [m]
\]

\[
u_i(a, s_{-i}) < u_i(a, x_{-i}) + \frac{\varepsilon}{2} \leq u_i(s_i, x_{-i}) + \frac{\varepsilon}{2} < u_i(s_i, s_{-i}) + \varepsilon
\]
Main Theorem ✓

If $\prod_i x_i$ is a Nash eq. then $\prod_i s_i$ is an ϵ-Nash eq., w.h.p.

$O\left(\frac{\log m + \log n}{\epsilon^2}\right)$ samples from each x_i

$s_i :$ Empirical distribution associated with x_i

Lower Bounds

$\Omega(\log m)$ samples are necessary [Althöfer ’94]

$\Omega(\log n)$ samples are necessary (2n players playing matching pennies in pairs)
Main Theorem

If $\prod_i x_i$ is a Nash eq. then $\prod_i s_i$ is an ε-Nash eq., w.h.p.

$O\left(\frac{\log m + \log n}{\varepsilon^2}\right)$ samples from each x_i

s_i: Empirical distribution associated with x_i

Small-Support Approximate Equilibrium

Every n-player m-action game admits a small-support ε-Nash eq.
Main Theorem

If $\prod_i x_i$ is a Nash eq. then $\prod_i s_i$ is an ε-Nash eq., w.h.p.

$O \left(\frac{\log m + \log n}{\varepsilon^2} \right)$ samples from each x_i

s_i: Empirical distribution associated with x_i

Small-Support Approximate Equilibrium

Every n-player m-action game admits an ε-Nash eq. in which the strategy of every player is a uniform distribution of support size at most $O \left(\frac{\log m + \log n}{\varepsilon^2} \right)$.
Main Theorem

If $\prod_i x_i$ is a Nash eq. then $\prod_i s_i$ is an ε-Nash eq., w.h.p.

Small-Support Approximate Equilibrium

Every n-player m-action game admits an ε-Nash eq. in which the strategy of each player is a uniform distribution of support size at most $O\left(\frac{\log m + \log n}{\varepsilon^2}\right)$.

Improves upon previously known support-size bounds

- $O\left(\frac{n^2 \log m}{\varepsilon^2}\right)$ [LMM03]
- $O\left(\frac{n \log m}{\varepsilon^2}\right)$ [HRS08]
Main Theorem

If $\prod_i x_i$ is a Nash eq. then $\prod_i s_i$ is an ε-Nash eq., w.h.p.

Small-Support Approximate Equilibrium

Every n-player m-action game admits an ε-Nash eq. in which the strategy of each player is a uniform distribution of support size at most $O \left(\frac{\log m + \log n}{\varepsilon^2} \right)$.

Implies a $\text{poly} \left(m^n \left(\frac{\log m + \log n}{\varepsilon^2} \right) \right)$-time algorithm for determining ε-Nash eq.

Improves upon previous known computational bounds [LMM03, Nisan09, DP09]; in particular, for large number of players and constant number of actions per player: $N^{\log \log \log N}$
Test if players are implementing a **Nash equilibrium** using i.i.d samples in large games ✓

Test if players are implementing a **correlated equilibrium** using i.i.d samples in large games

Test if players are implementing a **coarse correlated equilibrium** using i.i.d samples in large games
Definition

Distribution x is said to be a **correlated equilibrium (CE)** if for all i and for all (switching rules) $f : [m] \rightarrow [m]$

$$
\mathbb{E}_{a \sim x} [u_i(f(a_i), a_{-i})] \leq \mathbb{E}_{a \sim x} [u_i(a)]
$$

Definition

Distribution y is said to be a **ε correlated equilibrium (ε-CE)** if for all i and for all (switching rules) $f : [m] \rightarrow [m]$

$$
\mathbb{E}_{a \sim y} [u_i(f(a_i), a_{-i})] \leq \mathbb{E}_{a \sim y} [u_i(a)] + \varepsilon
$$

x and s might not be product distributions.
Definition

Distribution x is said to be a **correlated equilibrium** (CE) if for all i and for all (switching rules) $f : [m] \rightarrow [m]$

$$
\mathbb{E}_{a \sim x} [u_i(f(a_i), a_{-i})] \leq \mathbb{E}_{a \sim x} [u_i(a)]
$$

Definition

Distribution y is said to be a **ε correlated equilibrium** (ε-CE) if for all i and for all (switching rules) $f : [m] \rightarrow [m]$

$$
\mathbb{E}_{a \sim y} [u_i(f(a_i), a_{-i})] \leq \mathbb{E}_{a \sim y} [u_i(a)] + \varepsilon
$$

Theorem

If x is a CE then the empirical distribution over $O\left(\frac{m \log m + \log n}{\varepsilon^2}\right)$ samples forms a ε-CE w.h.p.
Testing Results

<table>
<thead>
<tr>
<th>Equilibrium</th>
<th>Required # Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nash</td>
<td>$O \left(\frac{\log m + \log n}{\varepsilon^2} \right)$</td>
</tr>
<tr>
<td>Correlated</td>
<td>$O \left(\frac{m \log m + \log n}{\varepsilon^2} \right)$</td>
</tr>
<tr>
<td>Coarse Correlated</td>
<td>$O \left(\frac{\log m + \log n}{\varepsilon^2} \right)$</td>
</tr>
</tbody>
</table>

Small-Support Results

<table>
<thead>
<tr>
<th>Approximate Equilibrium</th>
<th>Support Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nash</td>
<td>$O \left(\frac{\log m + \log n}{\varepsilon^2} \right)$</td>
</tr>
<tr>
<td>Correlated</td>
<td>$O \left(\frac{\log m (\log m + \log n)}{\varepsilon^2} \right)$</td>
</tr>
<tr>
<td>Coarse Correlated</td>
<td>$O \left(\frac{\log m + \log n}{\varepsilon^2} \right)$</td>
</tr>
</tbody>
</table>
Testing Results

<table>
<thead>
<tr>
<th>Equilibrium</th>
<th>Required # Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nash</td>
<td>$O\left(\frac{\log m + \log n}{\varepsilon^2}\right)$</td>
</tr>
<tr>
<td>Correlated</td>
<td>$O\left(\frac{m \log m + \log n}{\varepsilon^2}\right)$</td>
</tr>
<tr>
<td>Coarse Correlated</td>
<td>$O\left(\log m + \log n\right)$</td>
</tr>
</tbody>
</table>

Small-Support Results

<table>
<thead>
<tr>
<th>Approximate Equilibrium</th>
<th>Support Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nash</td>
<td>$O\left(\frac{\log m + \log n}{\varepsilon^2}\right)$</td>
</tr>
<tr>
<td>Correlated</td>
<td>$O\left(\frac{\log m (\log m + \log n)}{\varepsilon^2}\right)$</td>
</tr>
<tr>
<td>Coarse Correlated</td>
<td>$O\left(\frac{\log m + \log n}{\varepsilon^2}\right)$</td>
</tr>
</tbody>
</table>

Thank you!