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Abstract

Today’s cloud network platforms allow tenants to con-
struct sophisticated virtual network topologies among
their VMs on a shared physical network infrastructure.
However, these platforms provide little support for ten-
ants to diagnose problems in their virtual networks.
Network virtualization hides the underlying infrastruc-
ture from tenants as well as prevents deploying exist-
ing network diagnosis tools. This paper makes a case
for providing virtual network diagnosis as a service in
the cloud. We identify a set of technical challenges in
providing such a service and propose a Virtual Network
Diagnosis (VND) framework. VND exposes abstract
configuration and query interfaces for cloud tenants to
troubleshoot their virtual networks. It controls software
switches to collect flow traces, distributes traces stor-
age, and executes distributed queries for different ten-
ants for network diagnosis. It reduces the data collection
and processing overhead by performing local flow cap-
ture and on-demand query execution. Our experiments
validate VND’s functionality and shows its feasibility
in terms of quick service response and acceptable over-
head; our simulation proves the VND architecture scales
to the size of a real data center network.

1 Introduction

Recent progress on network virtualization has made it
possible to run multiple virtual networks on a shared
physical network, and decouple the virtual network con-
figuration from the underlying physical network. To-
day, cloud tenants can specify sophisticated logical net-

Copyright © 2013 by the Association for Computing Machinery, Inc.
(ACM). Permission to make digital or hard copies of portions of this
work for personal or classroom use is granted without fee provided
that the copies are not made or distributed for profit or commercial ad-
vantage and that copies bear this notice and the full citation on the first
page in print or the first screen in digital media. Copyrights for com-
ponents of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers, or to redistribute to lists, requires prior specific per-
mission and/or a fee.

SoCC’13, 1-3 Oct. 2013, Santa Clara, California, USA.
ACM 978-1-4503-2428-1.
http://dx.doi.org/10.1145/2523616.2523621

work topologies among their virtual machines (VMs)
and other network appliances, such as routers or mid-
dleboxes, and flexibly define policies on different virtual
links [7, 4]. The underlying infrastructure then takes care
of the realization of the virtual networks by: for example,
deploying VMs and virtual appliances, instantiating the
virtual links, setting up traffic shapers/bandwidth reser-
vations as needed, and logically isolating the traffic of
different tenants (e.g., using VLANSs or tunnel IDs).

While virtual networks can be implemented in a num-
ber of ways, we focus on the common overlay-based ap-
proach adopted by several cloud networking platforms.
Examples that support such functionality include Open-
Stack Neutron [2], VMware/Nicira’s NVP [1], and IBM
DOVE [17]. Configuring the virtual networks requires
setting up tunnels between the deployed VM instances
and usually includes coordinated changes to the con-
figuration of several VMs, virtual switches, and poten-
tially physical switches and virtual/physical network ap-
pliances. Unfortunately, many things could go wrong in
such a complicated system. For example, misconfigura-
tion at the virtual network level might leave some VMs
disconnected, or receiving unintended flows, rogue VMs
might overload a virtual network with broadcast packets
on a particular virtual or physical switch.

Because virtualization abstracts the underlying de-
tails, cloud tenants lack the necessary visibility to per-
form troubleshooting. More specifically, tenants only
have access to their own virtual resources, and, crucially,
each virtual resource may map to multiple physical re-
sources, i.e., a virtual link may map to multiple physi-
cal links. When a problem arises, there is no way today
to systematically obtain the relevant data from the ap-
propriate locations and expose them to the tenant in a
meaningful way to facilitate diagnosis.

In this paper, we make the case for VND, a frame-
work that enables a cloud provider to offer sophisticated
virtual network diagnosis as a service to its tenants. Ex-
tracting the relevant data and exposing it to the tenant
forms the basis for VND. Yet, this is not trivial because
several requirements must be met when extracting and
exposing the data: we must preserve the abstracted view
that the tenant is operating on, ensure that data gathering
and transfer do not impact performance of ongoing con-
nections, preserve isolation across tenants, and enable
suitable analysis to be run on the data, while scaling to



large numbers of tenants in a cloud.

VND exposes interfaces for configuring diagnosis and
querying traffic traces to cloud tenants for troubleshoot-
ing their virtual networks. Tenants can specify a set of
flows to monitor, and investigate network problems by
querying their own traffic traces. VND controls the ap-
propriate software switches to collect flow traces and
distributes traffic traces of different tenants into “table
servers”. VND co-locates flow capture points with ta-
ble servers to limit the data collection overhead. All the
tenants’ diagnosis queries run on the distributed table
servers. To support diagnosis requests from many ten-
ants, VND moves data across the network only when a
query for that data is submitted.

Our design of VND leverages recent advances in soft-
ware defined networking to help meet the requirements
of maintaining the abstract view, ensuring low data gath-
ering overhead and isolation. By carefully choosing how
and where data collection and data aggregation hap-
pens, VND is designed to scale to many tenants. VND
is a significant improvement over existing proposals
for enterprise network diagnosis, such as NDB [12],
OFRewind [21], Anteater [18] and HSA [13], which ex-
pose all the raw network information. This leads to ob-
vious scale issues, but it also weakens isolation across
tenants and exposes crucial information about the infras-
tructure that may open the provider to attack.

We show that several typical network diagnosis use
cases can be easily implemented using the query inter-
face, including throughput, RTT and packet loss mon-
itoring. We demonstrate how VND can help to detect
and scale the bottleneck middlebox in a virtual network.
Our evaluation shows that the data collection can be
performed on hypervisor virtual switches without im-
pacting existing user traffic, and the queries can be exe-
cuted quickly on distributed table servers. For example,
throughput, RTT and packet loss can be monitored in
real time for a flow with several Gbps throughput. We
believe our work demonstrates the feasibility of provid-
ing a virtual network diagnosis service in a cloud.

The contributions of this paper can be summarized as
follows:

e our work is the first to address the problem of vir-
tual network diagnosis and the technical challenges
of providing such a service in the cloud;

e we propose the design of a VND framework for
cloud tenants to diagnose their virtual network and
application problems and also propose the service
interface to cloud tenants;

e we propose optimization techniques to reduce over-
head and achieve scalability for the VND frame-
work;

e we demonstrate the feasibility of VND through
a real implementation, and conduct experiments
measuring overhead along with simulations to
show scalability.

The rest of this paper is organized as follows. Sec-
tion 2 introduces the challenges and necessity of a virtual
network diagnosis framework. Section 3 gives our VND
design addressing the challenges. Section 4 presents our
VND implementation. We evaluate VND feasibility in
Section 5 and conclude this paper in Section 6.

2 Background

2.1 Virtual Networks in the Cloud
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Figure 1: Virtual Overlay Networks

Figure 1 shows an example virtual network for a cloud
tenant. In this example, tenant virtual machines are or-
ganized into two subnets. The virtual machines in the
same IP subnets are in the same broadcast domain and
they communicate with external hosts via their subnet
gateway; the cloud platform can also provide network
services to the virtual networks such as a DHCP server
in a subnet, a load balancer or intrusion detection system
on a virtual link or a firewall on a gateway. The virtual
network is constructed as an overlay network running
on the physical network. In a large scale cloud environ-
ment, there could be a large number of tenant networks
running on the shared physical infrastructure.

The virtual machines run atop hypervisors and
connect to in-hypervisor virtual switches (e.g., Open
vSwitch). To decouple the virtual network from the
physical network, tunnels are set up among all the vir-
tual switches. Several tunneling techniques have been
proposed to support efficient encapsulation among vir-
tual switches, such as NVGRE, VXLAN, and STT. All
tenant traffic is sent through the tunnels with different
tunnel IDs in the encapsulation header used to achieve
isolation between tenants.



Routing and other network services are implemented
as logical or virtual components. For example, Open-
Stack supports routing across different networks using a
virtual router function which installs a distributed rout-
ing table on all of the hypervisors. Middlebox services
are implemented by directing traffic through multiple
virtual or physical middlebox appliances.

2.2 Challenges of Virtual Network
Diagnosis

Once the basic network is set up, configuring various as-
pects of the network, e.g., firewall rules, routing adjacen-
cies, etc., requires coordinated changes across multiple
elements in the tenant’s topology. A number of things
could go wrong in configuring such a complex system,
including incorrect virtual machine settings, or miscon-
figured gateways or middleboxes. To complicate matters
further, failures can occur in the underlying physical in-
frastructure elements which are not visible in the virtual
networks. Hence, diagnosing virtual networks in a large
scale cloud environment introduces several concomitant
technical challenges described further below.

Challenge 1: Preserving abstractions. Tenants work
with an abstract view of the network, and the diagnosis
approach should continue to preserve this abstract view.
Details of the physical locations from which data is be-
ing gathered should be hidden, allowing tenants to apply
analyze data that corresponds to their logical view of the
network.

Challenge 2: Low overhead network information
collection. Most network diagnostic mechanisms collect
information by tracing flows on network devices [12,
21]. In traditional enterprise and ISP networks, operators
and users rely on the built-in mechanisms on physical
switches and routers for network diagnosis such as Net-
Flow, sFlow or port mirroring. In the cloud environment,
however, the virtual network is constructed on software
components, such as virtual switches and virtual routers.
Trace capture for high throughput flows imposes signifi-
cant traffic volume into the network and switches. As the
cloud infrastructure is shared among tenants, the virtual
network diagnostic mechanisms must limit their impact
on switching performance and the effect on other tenant
or application flows.

Challenge 3: Scaling to many tenants. Providing
a network diagnosis service to a single tenant requires
collection of flows of interest and data analysis on the
(potentially distributed) flow data. All these operations
require either network bandwidth or CPU cycles. In a
large-scale cloud with a large number of tenants who
may request diagnosis services simultaneously, data col-
lection and analysis can impose significant bottlenecks
impacting both the speed and effectiveness of trou-

bleshooting and also affecting prevalent network traffic.

Challenge 4: Disambiguating and correlating
flows. To provide network diagnosis services for cloud
tenants, the service provider must be able to iden-
tify the right flows for different tenants and correlate
them among different network components. This prob-
lem is particularly challenging in cloud virtual overlay
networks for two reasons: (1) Tunneling/encapsulation
makes tracing tenant-specific traffic on intermediate
hops of a tunnel difficult; (2) middleboxes and other
services may transform packets, further complicating
correlation. For example, NATs rewrite the IP ad-
dresses/ports; a WAN optimizer can “compress” the pay-
load from multiple incoming packets into a few outgoing
packets, etc.

2.3 Limitations of Existing Tools

There are many network diagnosis tools designed for the
Internet or enterprise networks. These tools are designed
to diagnose network problems in various settings, but
due to the unique challenges of multi-tenant cloud envi-
ronments, they cannot be used to provide virtual network
diagnosis service. We discuss existing diagnosis tools in
two categories: tools deployed in the infrastructure and
tools deployed in the virtual machines.

Solutions deployed on network infrastructure, such as
NDB [12], OFRewind [21], Anteater [18], HSA [13],
Veriflow [14] and Frenetic [10] could be used in data
centers to troubleshoot problems in network states.
However, these tools expose all the raw network infor-
mation in the process. In the context of the cloud, this
violates isolation across tenants and may expose cru-
cial information about the infrastructure that introduces
vulnerability to potential attacks. In addition, these so-
lutions are either inefficient or insufficient for virtual
network diagnosis. For example, OFRewind collects
all control and data packets in the network, which in-
troduces significant overhead in the existing network.
NDB?’s trace collection granularity is constrained by the
existing routing rules, which is not flexible enough for
cloud tenants to diagnose specific application issues.
Anteater, HSA, and Veriflow model the network for-
warding behavior and can check the reachability or iso-
lation, which is limited to analyzing routing problems;
Frenetic focuses on operating each single switch with-
out considering the virtual network wide problems.

Many network monitoring or tracing tools, such as
tcpdump, SNAP [22] and X-Trace [9] can be deployed
in client virtual machines for network diagnosis. These
tools are usually heavy-weight, however, and it may not
be possible to apply these tools on virtual appliances,
such as a distributed virtual router or a firewall mid-
dlebox. Second, and more importantly, simply collect-



ing traffic traces is not enough to provide a virtual net-
work diagnosis service. In such a service, tenants also
need to be able to perform meaningful analysis that helps
them tie the observed problem to an issue with their
virtual network, or some underlying problem with the
provider’s infrastructure.

Thus, we need a new approach to enable virtual net-
work diagnosis, which involves trace collection and
analysis. This new approach should overcome the chal-
lenges in Section 2.2

3 VND Design

In this section, we describe the design of our virtual net-
work diagnosis framework (VND) to address the chal-
lenges outlined in the previous section. We show how
the VND architecture preserves data isolation and ab-
straction, and demonstrate VND’s applicability to exist-
ing cloud management platforms.

3.1 VND Service Operation

Figure 2 illustrates the operation of VND’s diagnosis
service, which takes input from the tenants and produces
the raw data, operational interfaces, and initial analysis
results. We assume the cloud has the architecture as de-
scribed in Section 2.1. There is a network controller that
knows the physical topology and all tenants’ virtual net-
work embedding information (i.e., an SDN controller).

First, when a tenant observes poor performance or
failure of his virtual network, he submits a diagnosis re-
quest to the VND control server (Figure 2(a)). The re-
quest describes the flows and components experiencing
problems. The control server, which is deployed by the
cloud administrator, accepts the tenant request and ob-
tains the physical infrastructure details like topology and
the tenant’s allocated resources. The control server then
translates the diagnosis request into a diagnosis policy.
The diagnosis policy includes a flow pattern to diagnose
(flow granularity such as IP, port, protocol, etc.), capture
point (the physical location to trace the flow), and stor-
age location (the physical server location for storage and
further analysis).

Then, the cloud controller deploys this diagnosis pol-
icy into the physical network to collect the flow traces
(Figure 2(b)). This deployment includes three aspects:
1) mirroring problematic flows’ packets at certain cap-
ture points (physical or virtual switches), 2) setting up
trace collectors to store and process the packet traces,
and 3) configuring routing rules from the capture point
to the collector for the dumped packets. Now the tenant
can monitor his problematic trace of his network appli-
cations.

Next, the tenant supplies a parse configuration that
specifies packet fields of interest and the raw packet
trace is parsed (Figure 2(c)), either offline after the data
collection, or online as the application runs. The raw
trace includes packets plus timestamps. The raw traces
are parsed into human-readable tables with columns for
each packet header field and rows for each packet; each
trace table denotes a packet trace at a certain capture
point. There is also a metadata table transformed from
the diagnosis policy. All of these tables collectively form
a diagnosis schema.

Finally, the tenant can diagnose the virtual network
problem based on the trace tables. The control server
provides an interface to the tenants through which they
can fetch the raw data, perform basic SQL-like opera-
tions on the tables and even use integrated diagnosis ap-
plications from the provider. This helps tenants diagnose
problems in their own applications or locate problems in
the virtual network. If the physical network has prob-
lems, tenants can still use VND to find the abnormal be-
havior (packet loss, latency, etc.) in observations of the
virtual components, so that they can report the abnor-
mality to the cloud administrator.

3.2 VND Architecture

olléet [Parse Tepant
on?l Cormg

!

Collect Config
& Topology

race Table 0| Serv ‘ Collection Policy ‘
N
ts id . - N

Query Executor

=)

§

l Parse Config ‘

¢

Query Execution

Figure 3: Virtual Network Diagnosis Framework

VND is composed of a control server and multi-
ple table servers (Figure 3). Table servers collect flow
traces from network devices (both physical and virtual),
perform initial parsing, and store data into distributed
data tables. The control server allows tenants to spec-
ify trace collection and parse configurations, and diag-
nose their virtual networks using abstract query inter-
faces. To reduce overhead, trace collection and analysis
begin only in reaction to the tenant’s diagnosis requests.

3.2.1 Control Server

The control server is the communication hub between
tenants, the cloud controller, and table servers. Its con-
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Figure 2: Diagnosis as a Service operation

figuration and query interfaces allow cloud tenants to
“peek into” problems in their logical networks with-
out having the provider to expose unnecessary informa-
tion about the infrastructure or other tenants. To decide
how to collect data, the control server needs interfaces
from the cloud controller to request virtual-to-physical
resource mapping (e.g., placement of VMs or middle-
boxes, tunnel endpoints) and interfaces to set up data
collection policies (e.g. flow mirroring rules, collector
VM setup, and communication tunnels between all VND
components).

1) Virtual Appliance Link : 11

2) Capture Point nodel

3) Flow Pattern field = value, ...
4) Capture Point node2
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Figure 4: Trace Collection Configuration format
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Figure 5: Trace Collection Example

The policy manager in the control server manages
the trace collection and parse configuration submitted by
cloud tenants. When a tenant encounters problems in its
virtual network, it can submit a trace collection config-
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Figure 6: Trace Collection Policy

uration (Figure 4) that specifies the flow of interest, e.g.,
flows related to a set of endpoints, or application types
(line 1, 2, 4, 6, 7). The pattern may be specified at dif-
ferent granularity, such as a particular TCP flow or all
traffic to/from a particular (virtual) IP address (line 3).

Figure 5 shows a trace collection configuration ex-
ample. A tenant deploys a load balancer and multiple
servers in his virtual network, and now he wants to di-
agnose the load balancer. He describes the problematic
appliance to be the node 1b (line 1), and captures both
the input and output (line 2, 9). The flow of interest is
the web service flow (port 80) between the host 10.0.0.6
and 10.0.0.8 (line 3-8). In the configuration, the tenant
only has the view of his virtual network (Figure 5(b))
and the infrastructure is not exposed to the tenant.

The policy manager combines the trace collection
configuration with network topology and the tenant’s
logical-to-physical mapping information. This is as-
sumed to be available at the SDN controller, e.g., sim-
ilar to a network information base [15] (not shown in
the figure). The policy manager then computes a collec-
tion policy (Figure 6(a)) that represents how flow traces
should be captured in the physical network. The policy
includes the flow pattern (line 2), the capture points in
the network (line 3), and the location of trace collec-
tors (line 4), which reside in the table servers to create
local network taps to collect trace data. The policy also
has the routing rules to dump the duplicated flows for
the capture point into the collector (line 5). We discuss



the capture point and table server allocation algorithm in
Section 3.4.1. Based on the policy, the cloud controller
sets up corresponding rules on the capture points to col-
lect the appropriate traces (e.g., matching and mirroring
traffic based on a flow identifier in OpenFlow), and it
starts the collectors in virtual machines and configures
routing rules between capture points and collectors (Fig-
ure 6(b)). We discuss how to avoid interference between
diagnostic rules and routing rules in Section 3.4.2.
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Figure 7: Parse Configuration and an Example

Cloud tenants also submit a parse configuration in
Figure 7(a) to perform initial parsing on the raw flow
trace. It has multiple parsing rules, with each rule hav-
ing filter and field lists that specify the packets of in-
terest and the header fields values to extract, as well
as the table columns to store the values. Based on the
parse configuration, the policy manager configures the
trace parser on table servers to parse the raw traffic
traces into multiple text tables, called trace tables, which
store the packet records with selected header fields. Fig-
ure 7(b) shows an example parse configuration, in which
all traces (line 1) in the current diagnosis are parsed.
All the layer-4 packets including TCP and UDP (line
2, 3) are the packets of interest. The packets’ 5-tuple
fields, i.e. source/destination IP, source/destination port
and protocol, are extracted and stored in tables. In this
configuration, the TCP and UDP’s source/destination
ports are stored in the same columns.

<ts, src_ip, dst_ip, proto, src_port, dst_port>.

Based on trace tables, tenants can perform various di-
agnosis operations through a query interface provided
by the control server. The analysis manager in the con-
trol server takes the tenant’s query, schedules its exe-
cution on distributed query executors on table servers,
and returns the results to the tenant. In Section 3.3.1, we
discuss typical diagnosis tasks that can be easily imple-
mented using the query interface.

3.2.2 Table Server

A table server has three components, a trace collector, a
trace parser and a query executor. The raw packets from
the virtual NIC pass through these three components in a
stream. The trace collector dumps all packets and trans-
mits them to the trace parser. The trace parser which is
configured by the policy manager, parses each packet to
filter out packets of interest and extracts the specified
fields. The extraction results are stored by the query ex-
ecutor in trace tables.

A query executor can itself be viewed as a database
with its own tables; it can perform operations such as
search, join, etc. on data tables. Query executors in all
table servers form a distributed database which supports
inter-table operations. We choose a distributed approach
over a centralized one for two reasons. First, with dis-
tributed storage, VND only moves data when the query
requires it, so it avoids unnecessary data movement and
reduces network traffic overhead. Second, for all the
diagnostic applications discussed in Section 3.3.1, the
most common table operations are single-table opera-
tions. These operations can be executed independently
on each table server, so distributed storage helps to par-
allelize the data queries and avoid overloading a single
query processing node.

3.3 Trace Analysis

The tenant sends virtual network diagnostic requests via
a SQL interface, and the diagnostic query is executed
on the distributed query executors with distributed query
execution optimizations.

3.3.1 Diagnostic Interfaces and Applications

VND provides a SQL interface to tenants, on which vari-
ous network diagnosis operations can be developed. Ten-
ants can develop and issue diagnostic tasks themselves
or use diagnostic applications available from the cloud
provider. VND makes use of existing SQL operations
on relational databases, so that it supports a wide vari-
ety of diagnostic applications. Some of the queries are
single-table queries, and others need to combine mul-
tiple tables. Single table queries are useful to identify
anomalies in the input/output path of an appliance, for
example.

Filter: With filters, the tenant can focus on packets of
interest. For example, tenants may want to check ARP
packets to find address resolution problem, they may
want to check DNS packets for name resolution prob-
lems, and they may be interested in a certain kind of
traffic such as ssh or HTTP. These filters are actually
matching a field to a value and are easily described by a



standard SQL query of the form:
| select * from Table where field = value ‘
Statistics: The tenants may need distributions of traf-
fic on a certain field, such as MAC address, IP and port.
These distributions can be used to identify missing or
excessive traffic. Distribution computation first gets the
count of records, and then calculate the portion of each

distinct field value. These are described as:
varl = select field, count(*) from tab group by field

var2 = select count(*) from tab
for each record r in varl
Output <r.field, r.count/var2>

Groups: The unique groups among all packets
records gives a global view of all traffic types. For ex-
ample, identifying unique TCP connections of a web ser-
vice helps identifying client IP distribution. In SQL, it is
equivalent to finding the distinct field groups. Finding
unique group query is described as:

l select distinct fieldl, field2, ... from Table ‘

Throughput: Throughput has a direct impact on
application performance and is a direct indicator of
whether the network is congested. To monitor a flow’s
throughput we first group the packet records by times-
tamp and then output the sum of payload lengths in each
time slot. It can be implemented as follows:

# assume the timestamp unit is second

select ceil(ts), sum(payload_length) from table group by
ceil(ts)

Combining or comparing multiple tables can help to
find poorly behaving network appliances.

RTT: RTT is the round-trip delay for a packet in the
network. Latency is caused by queuing of packets in net-
work buffers, so RTT is a good indicator of network con-
gestion. To determine RTT, we need to find a packet and
its ACK, then use the difference of their timestamps to
estimate the RTT. Assume the trace tables have the fol-
lowing format:
<ts, id! , srcIP, dstIP, srcPort, dstPort, seq, ack, pay-
load_length>. RTT monitoring is designed as follows:
1) create view T1_f as select * from T1 where srcIP=IP1
and dstIP = IP2
2) create view T1_b as select * from T1 where dstIP=IP1
and srcIP = 1P2
3) create view RTT as select f.ts as t1, b.ts as t2 from T1_f
as f, T1_b as b where f.seq + f.payload_length = b.ack
4) select avg(t2-t1) from RTT
Note that the RTT computation discussed here is a sim-
plified version. The diagnostic application could handle
the more complicated logic of RTT computation in real
networks. For example, retransmitted packets can be ex-
cluded from the RTT computation; in the case of SACK,

Packet ID is used to identify each packet, and does not change
with hops. This ID can be calculated from unchanged fields in the
packets such as identification number in the IP header, sequence num-
ber in TCP header or hash of the payload.

a data packet’s acknowledgment may be in the SACK
field.

Delay at a hop: Delay time of a packet on a hop indi-
cates the packet processing time at that hop, which indi-
cates whether that hop is overloaded. To find the one-hop
delay, we correlate input and output packets, and then
calculate their timestamp difference. The SQL descrip-
tion 1s:

1) create view DELAY as select In.ts as t1, Out.ts as t2 from
In, Out where In.id = Out.id
2) select avg(t2-tl) from DELAY

Packet loss: Packet loss causes TCP congestion win-
dow decrease, and directly impacts application perfor-
mance. Finding packets loss at a hop requires identify-
ing the missing packet records between the input/output
tables of that hop. It is described as:

| select * from In where In.id not in (select id from Out) ‘

All the examples above are one-shot queries, and the
applications can periodically pull new data from the
VND executors. If an application wants to get a con-
tinuous data stream (e.g. traffic volume or RTT in each
second), a proxy can be added between the distributed
database and the application, which queries the database
periodically and pushes data to the application.

3.3.2 Distributed Query Execution
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Figure 8: Analysis Framework
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The data analysis framework in Figure 8 can be
viewed as running atop a distributed database. Each ten-
ant’s diagnosis forms a schema, including the metadata
table in the analysis manager and trace tables in the
query executors. The metadata table records how the ten-
ant’s traces are collected and parsed, and each tenant can
only access its own information as a view. The trace ta-
bles are parsed traces which are distributed to query ex-
ecutors.

When a query is submitted to the analysis manager,
the query is optimized to an execution plan as in typical
distributed databases [16]. In VND, each table is placed
locally at a query executor. This benefits the query exe-
cution: single-table operations do not need to move data
across the network, and multiple table operations can

(
(




predict the traffic volume introduced into the network,
so the analysis manager is able to decide each execu-
tor’s task to complete a query and make better execution
plans, for example, using dynamic programming.

3.4 Scalability Optimizations

Below, we describe a number of optimizations to im-
prove the scalability of VND as the size of the data cen-
ter and number of virtual network endpoints grow.

3.4.1 Local Table Server Placement

Replicating traffic from capture points to table servers is
a major source of both bandwidth and processing over-
head in VND. Flow capture points can be placed on
either virtual or physical switches. Assuming all appli-
ances (including tenant VMs, middleboxes and network
services) participate in the overlay as a VM, the physical
network works as a carrier of virtual links (tunnels) be-
tween these VMs. In this case, VND can always place
capture points on hypervisor virtual switches. Virtual
switches are the ends of virtual links, so it is easier to dis-
ambiguate traffic for different tenants here because pack-
ets captured there have been decapsulated from tunnels.
Also, if the capture point is placed on a physical switch,
the trace traffic must traverse the network to arrive at
the trace collector, adding to the bandwidth overhead.
Finally, current virtual switches, such as Open vSwitch
(OVS), can support flexible flow replication using Open-
Flow rules, which is supported in a relatively smaller
(though growing) number of physical network devices.
If a virtual network service is implemented in physical
appliances, the trace capture points can be placed in the
access switch or a virtual network gateway.

VND also places a table server locally on the same hy-
pervisor with its capture point, which helps keep all trace
collection traffic local to the hypervisor. Data movement
across the network is needed only when a distributed
query is executed. By allocating table servers in a dis-
tributed way around the data center, all data storage and
computation are distributed in the data center. So VND
is scalable with the cluster and the virtual network size.

3.4.2 Independent Flow Collection Rules

Open vSwitch (OVS) allows us to capture a specific
flow by installing OpenFlow rules to replicate the flow
to its local table server. However, there may already be
OpenFlow rules installed on the OVS for forwarding or
other purposes. We have to make sure that the flow col-
lection rules do not interfere with those existing rules.
Similar problems have been addressed by tools like Fre-
netic [10].

Table O Table 1
. goto Table 1
Flow without capture by default
Forwarding

goto Table 1 &
output tolcollector

Flow to capture

Collector

Figure 9: Flow capture with multiple tables

For example, if existing rules route flows by desti-
nation IP, and the tenant wants to monitor the port 80
traffic, the administrator needs to install the monitoring
rule for port 80, and also the overlapping flow space (IP,
port 80) of both rules. Otherwise the switch only uses
one rule for the overlap part and ignores the other. How-
ever, when the cloud controller updates a routing rule, it
must check whether there are diagnostic rules overlap-
ping with it; if so, the cloud controller needs to update
both the original rules and the overlapping rules. This
way of managing the diagnostic routing rules not only
causes excessive use of the routing table entries, but also
adds complexity to the existing routing policy and other
components.

VND solves this problem by using the multi-table op-
tion in Open vSwitch (Figure 9). We use two tables in
VND with flow collection rules installed in Table 0 and
forwarding rules written into Table 1. Table O is the first
consulted table for any packet, where there is a default
rule to forward packets to Table 1. When the administra-
tor wants to capture a certain flow, new rules are added
into Table 0 with actions that send packets to the table
server port and also forward to Table 1. Using this sim-
ple approach, we avoid flow capture rules impacting ex-
isting rules on the same switch.

3.5 Flow Correlation

In a virtual network, a flow usually traverses several
logical hops, such as virtual switches and middleboxes.
When cloud tenants experience poor network perfor-
mance or incorrect behavior in their virtual networks, the
ability to correlate flows and trace the flows along their
paths is necessary to locate the malfunctioning com-
ponents. For example, when multiple clients fetch files
from a set of back-end servers, and one of the servers
provides corrupted files, with flow correlation on its
path, one can follow the failed client’s flow in reverse
to the server to locate the malfunctioning server.

It is easy to identify a flow based on the packet header
if packets are simply forwarded by routers or switches.
However, middlebox devices may change the packet
header or even payload of incoming flows, which makes
it very difficult to correlate the traffic flows on their
paths. We summarize several flow trajectory scenarios



and discuss how flows can be correlated in these cases.

(1) Packets pass a virtual appliance with some of its
header fields unchanged. Examples of such appliances
are firewalls or intrusion detection systems. We define a
packet’s fingerprint (packet ID) on those fields to distin-
guish it from other packets. We use SQL to describe the
flow correlation:

| select * from T1, T2 join by id |

For example, the IP header has an identification field
which does not change with hops; the TCP header has a
sequence number which is unique in a flow if the packet
is not retransmitted. We can define a packet ID by IP.id
+ TCP.seq < 16. We add a field id in data tables to de-
scribe the packet ID. This ID can be used to correlate the
packets into and out of a middlebox.

(2) Some appliances, such as NAT and layer-4 load
balancers, may change the entire packet header but do
not change packet payloads. In this case, a flow can
be identified using its payload information. We define a
packet’s fingerprint (packet ID) as hash(payload) in the
trace table. So packets in both input and output traces
can still be joined by packet ID.

Recent work [8] proposes to add tags to the packets
and modify middleboxes to keep the tag, so that a mid-
dlebox’s ingress and egress packets can be mapped by
tags. Another approach is to treat middleboxes as opaque
and use a heuristic algorithm to find the mapping [19].
In the view of VND, both methods are giving the pack-
ets a fingerprint (in the latter case the fingerprint is not
strictly unique) — VND can support both methods.

(3) There are still cases where the packet header is
changed and the payload is not distinguishable from
the input and output of certain appliances. For example,
multiple clients fetch the same web pages from a set of
backend servers via a load balancer. A layer-4 load bal-
ancer usually breaks one TCP connection into two, that
is, the load balancer accepts the connection request from
the client and starts another connection with backend
servers. In this case, a flow’s header is totally changed;
the input and output packet headers have no relation. If
all clients fetch the same file, then the payload is also not
distinguishable among all flows.

In this case, we use the flows’ creation time sequence
to correlate them. Usually, the load balancer listens to
a port continuously. When a connection from the client
is received, the load balancer creates a new thread in
which the load balancer connects to one of the backend
servers. So the first ACK from the client to the load
balancer (the 3rd step in the 3-way shake) indicates that
the client successfully connects with the load balancer;
then the load balancer creates a new thread to connect
to servers; the first SYN (Ist step in 3-way shake)
from the load balancer to the servers indicates the load
balancer has started to connect with the servers. So if

these two packets are ordered by arriving time sequence
respectively. These two packets of the same flow should
be in the same position in both sequences.

create table inbound as fields, order
create table outbound as fields, order
varl = select min(ts), fields from INPUT where ackflag=1
group by srclP, dstIP, srcPort, dstPort
index =0
for record in varl
insert into inbound <record, index++>
var2 = select min(ts), fields from OUTPUT where synflag=1
group by srclP, dstIP, srcPort, dstPort
index=0
for record in var2
insert into outbound <record, index++>

4 Implementation

We prototyped the VND on a small layer-2 cluster with 3
HP T5500 workstations and 1 HP Procurve switch. Each
workstation has 2 quad-core CPUs, a 10Gbps NIC and
12GB memory. The Open vSwitch and KVM hypervisor
are installed in each physical server to simulate the cloud
environment.

A table server is a virtual machine with a trace collec-
tor, a trace parser and a query executor. We implement
a table server as a virtual machine image which can be
deployed easily in the cluster. The trace collector and
trace parser are implemented in python using the pcap
and dpkt package.

The query executor and the analysis manager in the
control server are actually a distributed database system.
We use MySQL Cluster to achieve their functions. We
use MySQL daemon as the analysis manager and the
MySQL Cluster data node as the query executor.

Policy manager is designed as a component integrated
with the existing cloud management platform. We have
not implemented this because the current platform (e.g.
OpenStack) does not support the Openflow multi-table
feature (Openflow 1.3). Without multi-table supported
Openflow protocol, the routing control becomes very
complicated as discussed in Section 3.4.2. Currently, we
use shell scripts to set up cloud clusters and VND. In our
experiment setup, we make use of the OVS’s multi-table
features.

VND cluster (composed of a control server and ta-
ble servers) can be integrated with existing cloud plat-
forms. VND cluster can be implement as a virtual cluster
in the cloud, with the table servers as virtual machines
and overlay communication among table servers and the
control server. The difference between this virtual diag-
nostic cluster and a tenant’s virtual cluster is that 1) VND
is deployed by a network administrator, and 2) the VND
control server can send trace duplication request to the




cloud controller to dump the flow of interest.

5 Evaluation

We validate VND functions to diagnose virtual network
problems, measure its overhead to the existing system
and observe its performance as a service. There are two
sources of overhead introduced by VND: data collection
and query execution. Data collection is performed lo-
cally, so we only evaluate its effect on local hypervisor
and virtual machines. Query execution is a distributed
task, so we evaluate its global impact in terms of extra
traffic volume and its performance in terms of response
time.

5.1 Functional Validation

The symptoms of virtual network problems are reacha-
bility issues and performance issues. VND can cope with
both by analyzing the application flow trace. The reach-
ability issue can be easily found by track packets. In this
section, we focus on performance issues.

5.1.1 Bottlenecked Middlebox Detection

In virtual networks, middleboxes are usually used by a
cloud provider to achieve better network utilization or
security. In the cloud, middleboxes are also provided
to the tenants as services [20]. In these cases, the ten-
ant does not have direct access to the middlebox, which
makes its diagnosis difficult. In a virtual topology with
multiple middleboxes, especially when the middleboxes
form a chain, if a large amount traffic traverses the mid-
dlebox chain, one of the middleboxes may become a bot-
tleneck. The bottlenecked middlebox needs scaling up.
However, there is no general way to determine the bot-
tlenecked middlebox.

One solution is to try to scale each middlebox to see
whether there is performance improvement at the appli-
cation [4]. But this solution needs the application’s sup-
port and is not prompt enough. Another solution is to
monitor VM (we assume a tenant is using a software
middlebox in the VM) resource usage, which is still
not feasible due to middlebox heterogeneity [11]. Also
some resources, such as memory throughput, is hard to
measure. Network administrators can also check mid-
dlebox logs to find out problems. However, this requires
too much effort to become familiar with various middle-
boxes, moreover, the problem may be in the OS kernel.

Here we use VND to diagnose the bottleneck. We as-
sume a flow from a client to the server traverses a mid-
dlebox chain with a Redundancy Elimination (RE)[5]
and an Intrusion Detection System (IDS)[3]. In the case
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Figure 10: Chain Topology with Middlebox Scaling

that traffic volume increases, one of the two middleboxes
becomes the bottleneck and requires scale up.

At first, a client fetches data from the server at the
rate of about 100Mbps. Then at the 10th second, a sec-
ond client also connects to the server and starts to re-
ceive data from the server. Then client 1’s throughput
drops to about 60Mbps, and client 2’s throughput is also
about 60Mbps (Figure 11(a)). To find the bottleneck of
the whole chain topology, we use VND to deploy trace
capture at points A, B and C in the topology. We capture
all traffic with the server IP address. We start the diag-
nosis application in Section 3.3, and check the RTT at
each point. Figure 11(b)(c)(d) shows that at point A and
B the RTT increases significantly when the second flow
joins, and at point C the RTT does not change too much.
We use RTTy — RT Tg as the processing time at the RE
middlebox and RT Tg — RT T¢ as that of the IDS. It is ob-
vious that when traffic increases, the processing time at
the IDS increases by about 90% (Figure 11(e)(f)). We
deploy the packet loss diagnostic application to observe
the packet loss at each hop. Figure 11(g)(h) indicates
that when the second client joins, packet loss happens
at the IDS and no packets are lost at the RE. These ob-
servations indicate that the IDS becomes the bottleneck
of the whole chain. So the IDS should be scaled up as
in Figure 10(b). Then we can see that the throughput of
both flows increases to nearly 100Mbps, the delay at the
IDS decreases back to 3ms, and there is no packet loss at
the IDS. The RE middlebox has some packet loss, but it
does not impact the application performance. The logi-
cal chain topology with middleboxes is thus successfully
scaled.

5.1.2 Flow Trajectory

We now test the methods to correlate flows as described
in Section 3.5. First, we use packet fingerprints to cor-
relate the input and output packets of middleboxes. We
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Figure 11: Bottleneck Middlebox Locating

route a flow to traverse an RE and an IDS, then use
packet id (ip.Identification + tcp.Sequence < 16) to cor-
relate packets between each logical hops. We compare
two 0.5 GB traces and find that all packets are correlated
unless dropped at the hop.

Then we look into the load balancer case, in which
packets have no fingerprints. We use a load balancer
named haproxy, which breaks one TCP connection into
two. In haproxy, we use round robin to balance the flows.
We use iperf to generate traffic, whose payloads have a
high probability of being the same. So the packets have
no fingerprints to be distinguished from each other. We
sort connection built time of the client side and server
side, i.e., the 1st ACK packet from the client to the load
balancer and the 1st SYN from the load balancer to the
server, and correlate inbound and outbound flows by this
time sequence. We start 4000 iperf client flows to 10

iperf servers via a load balancer named haproxy; the
connections are set up by the haproxy as soon as pos-
sible, which takes 12 seconds. We use haproxy logs to
check the accuracy. We find that with the load of 330
connections per second in haproxy we can achieve 100%
accuracy on flow correlation. This is the fastest rate for
a haproxy in our VM to build connections. The result re-
veals that it is feasible to use time sequence to correlate
flows and VND provides flexible APIs to correlate flows
for a layer-4 load balancer.

5.2 Trace Collection

VND makes use of the extra processing capability of
virtual switches, so that flow capture does not impact
the existing tenant network traffic. However, it con-
sumes memory I/O throughput on servers, so flow cap-
ture could possibly impact some I/O intensive applica-
tions with rapid memory access in virtual machines. We
measure and model this overhead in our experiment.
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Figure 12: Network Overhead of Trace Collection

Network Overhead: With our optimization, trace du-
plication is performed by a virtual switch and the table
server is set up locally. This introduces extra network
traffic volume from the virtual switch to the table server.
We evaluate whether this trace duplication impacts ex-
isting network flows.

We set up 8 virtual machines on 2 hypervisors, and
start eight 1Gbps TCP flows between pairs of VMs run-
ning on the 2 hypervisors. We then use VND to cap-
ture one of them every minute. Figure 12(a) shows that
when the flows are mirrored into table servers, the origi-
nal flow’s throughput is not impacted by the flow capture
on OVS. The reason is that the total throughput of VM
traffic is limited by the 10Gbps NIC capacity. However,
the packet processing capacity of OVS is larger than
10Gbps, which makes it possible to perform extra flow
replication even when OVS is forwarding high through-
put flows.

We conduct an experiment to further understand the
packet processing capacity of OVS. In Figure 12(b), we
start a background flow between 2 hypervisors, which



traverses OVS and saturates the 10Gbps NIC. Then we
start one new TCP flow between two VMs on the same
hypervisor every minute to measure the left-over pro-
cessing capacity of OVS. The peak processing through-
put of OVS is around 18Gbps. Thus there is a significant
amount of packet processing capacity — up to 8Gbps —
on OVS to perform local flow replication even when the
10Gbps NIC is saturated.
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Figure 13: Memory Overhead of Trace Collection

Memory Overhead: Another overhead concern is
memory. The physical server can be more and more
powerful with more CPU, larger memory and more pe-
ripheral devices. However, the computer architecture
makes all internal data transfer go through the memory
and the bus, which is a potential bottleneck for cloud
servers with multiple VMs running various applications.
VND surely takes some memory throughput to dump
traces; we evaluate how much impact is introduced to
the virtual machine memory access.

In Figure 13(a), we run linux mbw benchmark in
virtual machines. In that benchmark, we allocate two
100MB memory spaces and call memcpy() to copy one
to another. Results show that 1 VM can only make use of
about 3GB/s memory bandwidth. As the number of VMs
increases, the aggregated memory throughput reaches
the upper bound, which is about 8GB/s.

We look into the influence of network traffic on mem-
ory throughput. We start 20 VMs on the hypervisor,
8 VMs run the memory benchmark, 6 VMs send net-
work traffic by iperf out to another physical server, and
6 VMs are used to dump traces. We control the net-
work throughput and aggregate the memory throughput.
The network throughput is constrained by the physical
NIC bandwidth, which is 10Gbps. When the network
traffic does not saturate the physical NIC, the mem-
ory benchmark saturates the remaining memory band-
width. We fit the memory-network throughput using lin-
ear regression. Figure 13(b) indicates the relationship
between aggregate network throughput and aggregate
memory throughput. The solid line is without flow cap-
ture; the dash line is when we dump all network traffic.
We assume the network throughput is N Gbps, and the

Table 1: Throughput Query

Period(s) 1 3 5 7 9
Execution(s) | 0.03 0.1 0.16 | 0.22 | 0.29
Traffic(MB) | <0.1 | <0.1 | <0.1 | <0.1 | <0.1

Table 2: RTT Query

Period(s) 1 3 5 7 9
Execution(s) | 0.1 029 | 049 | 0.69 0.9
TrafficMB) | <0.1 | <0.1 | <0.1 | <0.1 | <0.1

memory throughput is M GB/s. Without network traffic
dump, the network-memory throughput is

N+2.28M = 18.81,
and with network traffic dump, it is
N+2.05M =16.1

This result shows that each 1Gbps network traffic dump
costs an extra 59 MB/s of memory throughput.

Memory throughput overhead introduced by VND is
unavoidable. Our experiment quantifies the performance
impact introduced by the VND data collection on appli-
cation memory throughput. We advise that the cloud ad-
ministrator takes memory throughput into consideration
when allocating VMs for the tenants.

5.3 Data Query

We use the trace in the bottleneck middlebox detec-
tion experiment (Section 5.1.1). We monitor throughput,
RTT and packet loss, and observe its overhead and per-
formance in terms of response time. These three diag-
nostic applications represent different data table opera-
tions: aggregation, single-table join and multi-table join.

In throughput and RTT monitoring, we check them
periodically at different time granularity; we control the
checking period to observe the overhead and perfor-
mance. In packet loss monitoring, we sample packets
in one table and search for it in another; we control the
sample rate to observe the overhead and performance.

Data queries require data movement such that it con-
sumes network bandwidth. The VND network traffic can
be isolated from the tenant traffic by tunneling, and their
bandwidth allocation can also be scheduled together
with the tenant traffic by the cloud controller.

5.3.1 Overhead

Storage: At each hop, the total traffic volume is 0.5GB,
so the total size of all traces is 1.5GB. After the traces
are parsed and dumped into the database, the table stor-
age costs only 10MB for tables and 10MB for logs. The



Table 3: Packet Loss Query

Samples/s 1EO 1E1 1E2 | 1E3 | 1E4
Execution(s) | <0.01 | <0.01 | 0.01 | 0.03 | 0.2
Traffic(MB) 0.1 0.1 02 | 05 | 34

storage for one diagnosis is not a big issue for current
cloud storage, and this storage space can be released af-
ter the diagnosis.

Network: The result of the throughput and the RTT
monitoring experiment in Table 1 and 2 show little net-
work traffic, because a local data table operation does
not cause any traffic and outputting the results generates
negligible traffic. Inter-table operations need data move-
ment, e.g. packet loss monitoring in our experiment. The
overhead is easy to predict: it is the record size multi-
plied by the number of records to move in the execution
period. Table 3 shows that with a 100Mbps flow, the ex-
tra traffic generated by packet loss detection is only a
few Mbps at the rate of 10,000 samples per second.

5.3.2 Performance

In throughput and RTT monitoring, the response time
shows strong linear relations with the checking period.
In throughput monitoring, one second’s traffic volume
of a 100Mbps flow can be processed in 0.03 second, so
we predict that at most 3Gbps flow’s throughput can be
monitored in real time. Similarly, at most 1Gbps flow’s
RTT can be monitored in real time.

In the packet loss case, VND can process 10,000
records in 0.2 second. Each record costs a fixed amount
of time; scaling this linearly, we predict that with 2-3
Gbps throughput, the packet loss can be detected in real
time.

5.4 Scalability

In this section, we discuss the scalability of the VND
framework. In a large-scale cloud environment, the scal-
ability challenge for the VND is to perform data collec-
tion from a large number of VMs and support diagno-
sis requests for a large number of tenants. Since VND
co-locates table servers with tenants’ VMs and only per-
forms data collection locally, data collection will not be
the scalability bottleneck when there is a large number of
VMs. The control server generates data collection poli-
cies and passes query commands and results between
tenants and table servers. Itis easy to add this logic to ex-
isting user-facing cloud control servers. Given that exist-
ing clouds, such as Amazon EC2 and Microsoft Azure,
have been able to support a large number of tenants
through web-based control servers, we believe the con-
trol server will not be a major scalability bottleneck ei-

ther. However, in a large-scale cloud, VND table servers
will need to perform real time data processing and ta-
ble queries for many tenants, which could become a ma-
jor scalability bottleneck. Therefore, our scalability dis-
cussion is focused on the query performance of table
servers.

To evaluate the table servers’ scalability, we perform
simulation analysis based on the statistics of real cloud
applications and our query performance measurements.
In the simulation, we make the following assumptions:

e The data center network has full bisection band-
width, so we simplify the physical network by
one big switch connecting all physical servers. The
physical NIC bandwidth is 10 Gbps.

e Typical enterprise cloud applications (e.g. interac-
tive and batch multi-tiered applications) use 2 to 20
VMs [7]. We assume each application is running in
one virtual network, so each virtual network has 2
to 20 VMs.

e The flow throughput between virtual machines fol-
lows a uniform distribution in [1, 100] Mbps [7].

e In each physical server, the virtual switch can pro-
cess up to 18 Gbps network traffic (Section 5.2).

e Throughput query is common in the network diag-
nosis. This query is intensive because it needs to
inspect all the packets. We assume each tenant is-
sues a throughput query of all the traffic in its vir-
tual network. Each executor can process query for
3 Gbps network traffic at real time (Section 5.3).

In the simulation, we first generate virtual networks
whose size and flow characteristics following our as-
sumptions, then allocate them (greedily to the server
with most available resources) to a data center with
10000 physical servers until the total link utilization
reaches a threshold. Then the tenants start to issue diag-
nostic requests. Each diagnostic request is capturing and
querying all the traffic in the tenant’s virtual network. If
there are enough resources left (trace duplication capa-
bility in the virtual switch and query processing capabil-
ity in the query executor), the tenant’s request consumes
its physical resources and succeeds; otherwise, the re-
quest is rejected and fails. As more and more requests
are being issued, there are fewer and fewer resources left
for the following diagnostic requests. We stop issuing
diagnostic requests when requests start to be rejected.
Then we calculate the portion of virtual networks that
is successfully diagnosed over the total virtual networks
allocated.

Data Collection: When total link utilization is under
80% (less than 150K tenants), all the virtual network



Table 4: Successful Queries in a Data Center

Tenants Count 18K| 54K [90K|126K|162K
Link Utilization(%) | 10 | 30 [ 50 | 70 | 90
Successful Query(%)|100(97.85|58.7| 41.9 | 32.5

traffic can be captured. Even if the total link utilization
is 90% (162K tenants), 98.6% virtual networks can be
diagnosed. Given that in a typical data center network,
the utilization of 80% links are lower than 10% and 99%
links are under 40% utilization [6], we conclude that in
a common case (total link utilization is lower than 30%)
all virtual network traffic can be captured without im-
pacting existing application traffic.

Data Query: In Table 4, when total link utilization
is under 30% (54K tenants), almost all queries succeed.
When total link utilization is high, the product of the
link utilization and the success query ratio is about 30%,
that is, 30% of the total link capacity can be queried at
“real time” successfully. Given that link utilization in the
typical data centers is normally lower than 30% [6], so
most tenants’ traffic can be queried at real time. If some
tenants relax the latency requirement of queries and do
offline data processing, the VND query can make even
better use of the spare resources without contending with
latency sensitive queries.

6 Conclusion

In this paper, we identify the virtual network diagno-
sis problem and articulate the challenges involved. We
propose VND to overcome these challenges, which is a
framework that allows a cloud provider to offer a sophis-
ticated virtual network diagnosis service to its tenants.
Our evaluation shows that by co-locating flow capture
points and table servers, VND can capture tenant’s traf-
fic flows without impacting their performance, and the
network diagnosis query can be executed quickly on dis-
tributed tables in response to tenants’ requests without
introducing too much extra network traffic. This archi-
tecture scales to the size of a real data center network.
To the best of our knowledge, ours is the first attempt at
addressing the virtual network diagnosis problem, and
VND is a feasible and useful solution.
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