Evaluation Methods and Challenges
Evaluation Methods

• Ideal method
 – Experimental Design: Run side-by-side experiments on a small fraction of randomly selected traffic with new method (treatment) and status quo (control)
 – Limitation
 • Often expensive and difficult to test large number of methods

• Problem: How do we evaluate methods offline on logged data?
 – Goal: To maximize clicks/revenue and not prediction accuracy on the entire system. Cost of predictive inaccuracy for different instances vary.
 • E.g. 100% error on a low CTR article may not matter much because it always co-occurs with a high CTR article that is predicted accurately
Usual Metrics

• Predictive accuracy
 – Root Mean Squared Error (RMSE)
 – Mean Absolute Error (MAE)
 – Area under the Curve, ROC

• Other rank based measures based on retrieval accuracy for top-k
 – Recall in test data
 • What Fraction of items that user actually liked in the test data were among the top-k recommended by the algorithm (fraction of hits, e.g. Karypsis, CIKM 2001)

• One flaw in several papers
 – Training and test split are not based on time.
 • Information leakage
 • Even in Netflix, this is the case to some extent
 – Time split per user, not per event. For instance, information may leak if models are based on user-user similarity.
Metrics continued..

- Recall per event based on Replay-Match method
 - Fraction of clicked events where the top recommended item matches the clicked one.

- This is good if logged data collected from a randomized serving scheme, with biased data this could be a problem
 - We will be inventing algorithms that provide recommendations that are similar to the current one
 - No reward for novel recommendations
Details on Replay-Match method (Li, Langford, et al)

• x: feature vector for a visit
• r = [r_1, r_2, ..., r_K]: reward vector for the K items in inventory
• h(x): recommendation algorithm to be evaluated
• Goal: Estimate expected reward for h(x)

\[E_{(x,r) \sim p} \left(\sum_i \Pr(h(x) = i) \cdot r_i \right) \]

• s(x): recommendation scheme that generated logged-data
• x_1,..,x_T: visits in the logged data
• r_{ti}: reward for visit t, where i = s(x_t)
Replay-Match continued

• Estimator

\[
\frac{1}{T} \sum_{t} \sum_{i} I(h(x_t) = i \text{ and } s(x_t) = i) \cdot r_{ti} \cdot \alpha_t
\]

• If importance weights and \((x_t, r_t) \text{ iid } \sim P\).

 – It can be shown estimator is unbiased

• E.g. if \(s(x)\) is random serving scheme, importance weights are uniform over the item set

• If \(s(x)\) is not random, importance weights have to be estimated through a model
Clicks on FP links influence downstream supply distribution.
Serving Content on Front Page: Click Shaping

• What do we want to optimize?
 • Current: Maximize clicks (maximize downstream supply from FP)
 • But consider the following
 – Article 1: CTR=5%, utility per click = 5
 – Article 2: CTR=4.9%, utility per click=10
 • By promoting 2, we lose 1 click/100 visits, gain 5 utils
 • If we do this for a large number of visits --- lose some clicks but obtain significant gains in utility?
 – E.g. lose 5% relative CTR, gain 40% in utility (revenue, engagement, etc)
Why call it Click Shaping?

- Supply distribution
- Changes

- SHAPING can happen with respect to any downstream metrics (like engagement)
Multi-Objective Optimization

\[\mathcal{P} = \{P_1, \ldots, P_K\} \]

\[A_t = (A_1, \ldots, A_n) \]

\[S = \{S_1, \ldots, S_m\} \]

\[\pi_t = (\pi_{1t}, \ldots, \pi_{Mt}) \]

- CTR of user segment \(i \) on article \(j \): \(p_{ij} \)
- Time duration of \(i \) on \(j \): \(d_{ij} \)
Multi-Objective Program

- Scalarization

\[\lambda \cdot \text{TotalClicks}(\mathbf{x}) + (1 - \lambda) \cdot \text{Downstream}(\mathbf{x}) \]

\[x_{ij} = \begin{cases}
1, & \text{if } j = \arg \max_i \lambda \cdot p_{ij} + (1 - \lambda) \cdot p_{ij} d_{ij} \\
0, & \text{otherwise}
\end{cases} \]

Goal Programming

\[\text{maximize } \text{Downstream}(\mathbf{x}) \]

\[\text{st. } \text{TotalClicks}(\mathbf{x}) \geq \alpha \cdot \text{TotalClicks}^* \]

Simplex constraints on \(x_{ij} \) is always applied

Constraints are linear

Every 10 mins, solve \(x \)

Use this \(x \) as the serving scheme in the next 10 mins
Pareto-optimal solution (more in KDD 2011)
Summary

- Modern recommendation systems on the web crucially depend on extracting intelligence from massive amounts of data collected on a routine basis
- Lots of data and processing power not enough, the number of things we need to learn grows with data size
- Extracting grouping structures at coarser resolutions based on similarity (correlations) is important
 - ML has a big role to play here
- Continuous and adaptive experimentation in a judicious manner crucial to maximize performance
 - Again, ML has a big role to play
- Multi-objective optimization is often required, the objectives are application dependent.
 - ML has to work in close collaboration with engineering, product & business execs
Challenges
Recall: Some examples

• Simple version
 – I have an important module on my page, content inventory is obtained from a third party source which is further refined through editorial oversight. Can I algorithmically recommend content on this module? I want to drive up total CTR on this module.

• More advanced
 – I got X% lift in CTR. But I have additional information on other downstream utilities (e.g. dwell time). Can I increase downstream utility without losing too many clicks?

• Highly advanced
 – There are multiple modules running on my website. How do I take a holistic approach and perform a simultaneous optimization?
For the simple version

- Multi-position optimization
 - Explore/exploit, optimal subset selection

- Explore/Exploit strategies for large content pool and high dimensional problems
 - Some work on hierarchical bandits but more needs to be done

- Constructing user profiles from multiple sources with less than full coverage
 - Couple of papers at KDD 2011

- Content understanding

- Metrics to measure user engagement (other than CTR)
Other problems

• Whole page optimization
 – Incorporating correlations

• Incentivizing User generated content

• Incorporating Social information for better recommendation

• Multi-context Learning