Extracting Social Networks from Literary Fiction

David K. Elson
Nicholas Dames
Kathleen R. McKeown
Columbia University
Overview

- Social network extraction from literature
 - Large corpus of unstructured text
 - 19th Century British literature
 - Conversational network

- Hypotheses to prove or disprove from literary theory:
 1. Larger conversational networks tend to fragment
 2. Less face time (conversation) in cities than rural settings

- Method based on quoted speech
 - Identify who talks to whom
 - Extract graph features that evaluate hypotheses
Contributions

- We demonstrate a high-precision method for conversation network extraction

- Features of the networks provide evidence against both hypotheses
 - High-volume empirical evidence complements traditional literary theory
Table of contents

- Corpus and Literary Hypotheses
- Extracting Characters and Conversations
 - Chunking character names and nominals
 - Attributing quoted speech fragments to names
 - Detecting conversations between characters
 - Checking the accuracy of the extraction method
- Using Networks to Check Hypotheses
 - Extracting features
 - Results and Conclusions
Table of contents

- Corpus and Literary Hypotheses
- Extracting Characters and Conversations
 - Chunking character names and nominals
 - Attributing quoted speech fragments to names
 - Detecting conversations between characters
 - Checking the accuracy of the extraction method
- Using Networks to Check Hypotheses
 - Extracting features
 - Results and Conclusions
Corpus

- 60 titles, 1800-1903, >10 million words
- Ainsworth, Austen, Braddon, Bronte sisters, Bulwer-Lytton, Collins, Conan Doyle, Dickens, Disraeli, Edgeworth, Eliot, Galt, Gaskell, Gissing, Hardy, Hughes, James, Kingsley, Martineau, Meredith, Mitford, Reade, Scott, Stevenson, Stoker, Thackeray, Trollope, Wilde, Wood
- Mix of social settings (urban, rural), genres, formal properties (1st/3rd person telling)
Hypothesis #1

● Larger conversational networks (with more people) tend to fragment
 ● Franco Moretti: number of characters has a “qualitative, morphological” impact: at 10 or 20 characters, possible to include “distant and openly hostile groups”
 ● Terry Eagleton: in a large community, “most of our encounters consist of seeing rather than speaking, glimpsing each other as objects rather than conversing as fellow subjects” (Introduction to the English Novel)

● Can we show empirically that conversational networks with fewer people are more closely connected?
Hypothesis #2

- Less “face time” in urban novels than rural ones
 - Raymond Williams’s *The Country and The City*: Authors “offer to show people and their relationships in essentially knowable and communicable ways”
 - In the country, face-to-face relations of a restricted set of characters are the primary mode of social interaction
 - Cities promote a “social isolation” from “competitive indifference”

- Can we empirically show more rural conversation and connectedness?
An initial surprise

- The two hypotheses collapse into one if urban novels usually have more characters

- We did not find this to be the case. Urban and rural novels had the same number of characters
 - Counting named character entities with a nontrivial share (>2%) of mentions (non-incidental characters)

- We evaluate hypotheses separately
Table of contents

- Corpus and Literary Hypotheses

- Extracting Characters and Conversations
 - Chunking character names and nominals
 - Attributing quoted speech fragments to names
 - Detecting conversations between characters
 - Checking the accuracy of the extraction method

- Using Networks to Check Hypotheses
 - Extracting features
 - Results and Conclusions
Names and Nominals

- **Named entities** chunked with Stanford NER
- **Nominals** chunked with pattern matching
 - Determiner + modifier(s) + organism noun head
 - *Emma, her father, Mr. Knightley, the Governor’s daughter, some one*
- **Coreference for named entities**
 - Variations on long names projected by removing key words (such as titles)
 - *Mr. Ebenezer Scrooge → Scrooge*
- Gender assignment based on titles, first names
 - *Emma* in gender dictionary, *Mr. Knightley*
Table of contents

- Corpus and Literary Hypotheses
- Extracting Characters and Conversations
 - Chunking character names and nominals
 - Attributing quoted speech fragments to names
 - Detecting conversations between characters
 - Checking the accuracy of the extraction method
- Using Networks to Check Hypotheses
 - Extracting features
 - Results and Conclusions
Example (Austin)

“Take it,” said Emma, smiling, and pushing the paper towards Harriet– “it is for you. Take your own.”

“Quoted Speech Attribution” problem (QSA)
Separate QSA Corpus

<table>
<thead>
<tr>
<th>Author</th>
<th>Title</th>
<th>Year</th>
<th># Quotes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jane Austen</td>
<td>Emma</td>
<td>1815</td>
<td>549</td>
</tr>
<tr>
<td>Charles Dickens</td>
<td>A Christmas Carol</td>
<td>1843</td>
<td>495</td>
</tr>
<tr>
<td>Gustave Flaubert</td>
<td>Madame Bovary</td>
<td>1856</td>
<td>514</td>
</tr>
<tr>
<td>Mark Twain</td>
<td>The Adventures of Tom Sawyer</td>
<td>1876</td>
<td>539</td>
</tr>
<tr>
<td>Sir Arthur Conan Doyle</td>
<td>“The Red-Headed League”</td>
<td>1890</td>
<td>524</td>
</tr>
<tr>
<td></td>
<td>“A Case of Identity”</td>
<td>1888</td>
<td></td>
</tr>
<tr>
<td></td>
<td>“The Boscombe Valley Mystery”</td>
<td>1888</td>
<td></td>
</tr>
<tr>
<td></td>
<td>“A Scandal in Bohemia”</td>
<td>1888</td>
<td></td>
</tr>
<tr>
<td>Anton Chekhov</td>
<td>“The Steppe”</td>
<td>1888</td>
<td>555</td>
</tr>
<tr>
<td></td>
<td>“The Lady with the Dog”</td>
<td>1899</td>
<td></td>
</tr>
<tr>
<td></td>
<td>“The Black Monk”</td>
<td>1894</td>
<td></td>
</tr>
</tbody>
</table>

- 111,000 words, 3,176 “quotes” *excerpt*
- Split into 1/3 development, 2/3 training/testing
Corpus Annotation

- **Candidate speakers** extracted for each quote
 - Each name or nominal within 10 paragraphs
- Mechanical Turk annotation
 - 3 annotators shown each quote and its candidates
 - They select speaker or thinker of the quote, if any
 - Can’t select pronouns, only their entities/nominals
- Agreement: Majority vote in 95% of cases
 - 93% of quotes “answerable”
 - Excerpt was long enough, and speaker was chunked
- Data released publicly
 - www.cs.columbia.edu/nlp/tools.cgi
Data “Abstraction”

- Pattern matching to reduce text to backoff symbols
 - Developed using 1/3 of corpus (development set)
 - Symbols are *quote- and candidate-specific*
 - Abstraction performed for every quote-candidate pair
- Formatting normalized
 - Multi-paragraph quotes condensed
 - Clauses with impertinent information removed

Symbols

- `<TARGET_QUOTE>`
- `<OTHER_QUOTE>`
- `<TARGET_PERSON>`
- `<OTHER_PERSON>`
- `<PRONOUN>`
- `<EXPRESS_VERB>`
Example Abstraction

"Dear Emma bears everything so well," said her father. "But, Mr. Knightley, she is really very sorry to lose poor Miss Taylor, and I am sure she will miss her more than she thinks for."

Emma turned away her head, divided between tears and smiles. "It is impossible that Emma should not miss such a companion," said Mr. Knightley. "We should not like her so well as we do, sir, if we could suppose it; but she knows how much the marriage is to Miss Taylor’s advantage."

<OTHER_QUOTE> <EXPRESS_VERB> <OTHER_PERSON> .
<OTHER_QUOTE>

<OTHER_PERSON> TURNED AWAY HER HEAD .
<TARGET_QUOTE> <EXPRESS_VERB> <TARGET_PERSON> .
<OTHER_QUOTE>
Intuition

- Many quotes can be reliably solved through syntactic patterns.
 - `<TARGET_QUOTE> <EXPRESS_VERB> <TARGET_PERSON> ➔` The person said the quote in 99% of the corpus
- **Dialogue Chains** of context-dependent quotes
 - “Quote,” said person. “Added quote by same person.”

- All these authors notate quotes roughly the same
 - Goal: To not overfit patterns to corpus
 - Estimate: 80-20 rule for “standard quote notation”
Syntactic Categories

<table>
<thead>
<tr>
<th>Category</th>
<th>Definition</th>
<th>Rate</th>
<th>Prediction</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backoff</td>
<td>n/a</td>
<td>.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Added Quote</td>
<td><QUOTE by Person1> <TARGET_QUOTE></td>
<td>.19</td>
<td>Person1</td>
<td>.95</td>
</tr>
<tr>
<td>Apparent Conversation</td>
<td><QUOTE by Person1> <QUOTE by Person2> <TARGET_QUOTE></td>
<td>.18</td>
<td>Person1</td>
<td>.96</td>
</tr>
<tr>
<td>Quote-Said-Person</td>
<td><TARGET_QUOTE> <VERB> <TARGET_PERSON Person1></td>
<td>.17</td>
<td>Person1</td>
<td>.99</td>
</tr>
<tr>
<td>Quote alone</td>
<td>Quote alone in paragraph.</td>
<td>.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anaphora</td>
<td><TARGET_QUOTE> <EXPRESS_VERB> <PRONOUN></td>
<td>.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quote-Person-Said</td>
<td><TARGET_QUOTE> <TARGET_PERSON Person1> <EXPRESS_VERB></td>
<td>.02</td>
<td>Person1</td>
<td>.92</td>
</tr>
</tbody>
</table>

(Development set)
Initial Result: Notational Consistency

- 57% of the testing set is covered by the categories with predictions

- The category predictions solve these with 96% accuracy
Applying Learning Tools

- One model per category

- Features extracted are *quote- and candidate-specific*
 - Words and other characters between candidate and quote
 - Formatting, punctuation
 - Prevalence of other quotes by speaker
 - Prevalence of mentions of candidate
 - Number of names, quotes, words nearby
 - Type of word found immediately before and after quote
 - Length, other features about quote itself

- Binary classification into *speaker* or *non-speaker*
 - Each candidate a separate data point
Learning Parameters

- Multiple classifiers (from WEKA)
 - Logistic regression
 - J48
 - JRip

- Multiple ways to normalize feature vectors
 - None
 - Usual vector normalization (by unit vector)
 - Find average vector for all candidates considered for a quote; take distance between candidate and group norm

- Cross-validation on training/test set (2/3 of corpus)
Reconciliation methods

- From many binary decisions to one candidate selection:
 - Zero “candidate” \rightarrow no speaker, one “candidate” \rightarrow selection, 2+ “candidates” \rightarrow “unknown”
 - Find probabilities of speaker classification; take top-scoring candidate (above a threshold)
 - Hybrid of the above
 - Combine probabilities from multiple classifiers; take top-scoring candidate (above a threshold)
Results, testing set

<table>
<thead>
<tr>
<th>Syntactic Category</th>
<th>Rate</th>
<th>Top-performing solvers</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quote-Said-Person</td>
<td>.22</td>
<td>Syntactic category’s prediction Logistic + J48 combined</td>
<td>.99</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.96</td>
</tr>
<tr>
<td>Added quote</td>
<td>.19</td>
<td>Syntactic category’s prediction J48</td>
<td>.97</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.97</td>
</tr>
<tr>
<td>Backoff</td>
<td>.18</td>
<td>Logistic+J48+JRip</td>
<td>.64</td>
</tr>
<tr>
<td>Quote alone</td>
<td>.16</td>
<td>Logistic+J48+JRip</td>
<td>.63</td>
</tr>
<tr>
<td>Apparent conversation</td>
<td>.12</td>
<td>JRip Syntactic category’s prediction</td>
<td>.93</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.91</td>
</tr>
<tr>
<td>Anaphora trigram</td>
<td>.09</td>
<td>Logistic</td>
<td>.63</td>
</tr>
<tr>
<td>Quote-person-said</td>
<td>.04</td>
<td>JRip Syntactic category’s prediction</td>
<td>.97</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.93</td>
</tr>
<tr>
<td>Overall (using bold solvers)</td>
<td></td>
<td></td>
<td>.83</td>
</tr>
<tr>
<td>Baseline: Assume most recent character mention is speaker</td>
<td></td>
<td></td>
<td>.45</td>
</tr>
<tr>
<td>Baseline: Assume closest character mention is speaker</td>
<td></td>
<td></td>
<td>.52</td>
</tr>
</tbody>
</table>
Table of contents

- Corpus and Literary Hypotheses
- Extracting Characters and Conversations
 - Chunking character names and nominals
 - Attributing quoted speech fragments to names
 - Detecting conversations between characters
 - Checking the accuracy of the extraction method
- Using Networks to Check Hypotheses
 - Extracting features
 - Results and Conclusions
Precision-based metric

- Precision matters more than recall
 - False positives will give a false sense of connectedness
 - This tilts “in favor” of proving hypotheses (smaller networks are more connected)
 - Nonetheless, our results provide negative evidence

- Can still find connections
 - Need at least one “hit” to find a relationship
Conversation detection

- *Quote adjacency* heuristic for detecting conversations (edges in social network)

- Face-to-face conversations involve sequential quotes, possibly separated by non-quotes
 - Parameterized search radius (to tolerate intermediate quotes by others)

- Edge weight set to share of detected conversations
 - Node width set to share of name mentions
Edge weight

- Interwoven dialogue indicates substantial conversation

- High word count inside quotes adds to evidence of relationship
Meredith, The Egoist

Oval width proportional to share of name mentions
Edge weight proportional to share of spoken dialogue
Austen, *Pride and Prejudice*
Table of contents

- Corpus and Literary Hypotheses
- Extracting Characters and Conversations
 - Chunking character names and nominals
 - Attributing quoted speech fragments to names
 - Detecting conversations between characters
 - Checking the accuracy of the extraction method
- Using Networks to Check Hypotheses
 - Extracting features
 - Results and Conclusions
Accuracy-check design

- Two chapters taken from four works for manual annotation and evaluation of accuracy
 - *The Sign of the Four, Emma, David Copperfield* and *The Portrait of a Lady*
 - Over 40K words, 3 annotators

- Annotators told to identify *all* pairwise conversation edges
 - Including described (unquoted) speech
 - Require characters to be in the same place at the same time, speak in turns, be mutually aware

- Cast as a binary classification problem
 - In N x N matrix of characters
Accuracy-check Baselines

- **Baseline: Correlation heuristic**
 - Divide text into bins, count character mentions in each bin
 - Correlations in distributions between characters indicate relationship

- **Baseline: Spoken mention heuristic**
 - Count one character’s mention of another
 - Parameterize threshold for relationship
Accuracy-check results

- High inter-annotator agreement
 - Unanimous agreement in 95% of cases, Kappa=.82
 - 9% of possible interactions occurred

- Adjacency algorithm outperforms baselines

<table>
<thead>
<tr>
<th>Method</th>
<th>Precision</th>
<th>Recall</th>
<th>F-Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quoted speech adjacency</td>
<td>.95</td>
<td>.51</td>
<td>.67</td>
</tr>
<tr>
<td>Correlation baseline</td>
<td>.21</td>
<td>.65</td>
<td>.31</td>
</tr>
<tr>
<td>Spoken-mention baseline</td>
<td>.45</td>
<td>.49</td>
<td>.47</td>
</tr>
</tbody>
</table>

- Error analysis: Mix of reasons for misses
 - Indirect speech, anaphoric attributions, group conversations without adjacencies between all pairs
Table of contents

- Corpus and Literary Hypotheses
- Extracting Characters and Conversations
 - Chunking character names and nominals
 - Attributing quoted speech fragments to names
 - Detecting conversations between characters
 - Checking the accuracy of the extraction method
- Using Networks to Check Hypotheses
 - Extracting features
 - Results and Conclusions
Questions: Reminder

1) Do networks with more people fragment or stay connected?

2) Are rural networks more conversational (less isolating) than urban networks?
Variables for Correlation

- Number of characters, speaking or non-speaking
- Distribution of quotes among characters (even or lopsided)
- Amount of dialogue (normalized)
 - Cliques (number, rate)
- Average degree for each vertex
 - “How many conversation partners does each person have?”
- Graph density (normalized average degree)
 - “With what percent of the entire network does each person converse?”
Hypothesis 1: Impact of Network Size

- As the number of named characters increases, we expect:
 - Same or less total speech
 - Weak yes: Normalized number of quotes flat at $r=.16$
 - Less lopsided distribution of quotes among speakers
 - Yes: Share of quotes by top 3 speakers decreases at $r=-.61$
Hypothesis 1: Impact of Network Size

- As the number of named characters increases, we expect:
 - Lower density (fewer conversational partners as percentage of population)
 - **No**: Increases at $r=.30$. Larger networks are more connected
 - Same or fewer cliques
 - **No**: 3-clique rate increases at $r=.38$. Larger networks form cliques more often
Hypothesis 1: Impact of Network Size

- As the number of speakers increases, we expect:
 - Less overall dialogue ("glimpsing rather than speaking")
 - **No**: Increases at .50. Larger networks are more talkative
 - Lower density
 - **No**: Increases at .49. In larger networks, people know more of their neighbors
Hypothesis 2: Urban vs. Rural

- No variable changes significantly between urban and rural settings
 - Not even # characters and # speakers
 - Urban/rural setting works independently of large/small cast of characters
Alternate Explanation

- Surprisingly, text perspective dominates the shape of the network
 - 3rd person tellings: Significant increases in
 - Normalized number of quotes (p<.05)
 - Average degree (p<.005)
 - Graph density (p<.05)
 - Rate of 3-cliques (p<.005)
 - ...With no significant difference in number of characters or speakers
 - Hypothesis: First-person narrators not privy to other characters’ conversations with each other

- Caveat: Quoted-speech-adjacency is likely a sensitive metric for this effect
 - Extant relationships shift to reported, indirect speech
3rd Person Narrative

(Austen, *Persuasion*)

![Character Diagram]
“Close 3rd” Narrative
(Braddon, Lady Audley’s Secret)
1st Person Narrative

(Dickens, \textit{David Copperfield})