1. Let $q(n)$ be a polynomial such that, for any $k \leftarrow \text{Gen}(1^n)$, $|\text{Enc}_k(0)| \leq q(n)$. Such a polynomial must exist because the encryption algorithm must run in an amount of time polynomial in n. Since the maximum encrypted length of 0 is bounded by $q(n)$, we would like our adversary to choose $m_0 = 0$ and m_1 so that m_1 will always encrypt to a string of length $> q(n)$. If the adversary can do this, it becomes trivial to determine which message was encrypted: if the ciphertext has length $\leq q(n)$, then the adversary knows that the algorithm encrypted m_0, and otherwise, that the algorithm encrypted m_1. This allows the adversary to win the indistinguishability experiment with probability 1, so Definition 3.8 cannot be satisfied.

We now show that the adversary can pick such a message m_1. Consider all strings of length $q(n) + 2$. Since there are $2^{q(n)+2}$ such strings and fewer than $2^{q(n)+1}$ strings of length $\leq q(n)$, there must be some string $s \in \{0, 1\}^{q(n)+2}$ that can only encrypt to strings of length $> q(n)$. If the adversary chooses $m_1 = s$, then he can always win the indistinguishability experiment, so Π cannot satisfy Definition 3.8, as desired.

2. (a) **Solution 1.** G' is not necessarily a pseudorandom generator. We say this because assuming that G' isn’t a pseudorandom generator doesn’t contradict the assumption that G is one.

If a polynomial-time algorithm D' can distinguish the output of G' from a random string, then a distinguisher D can do the same for the output of G when the second half of the seed consists of all 0’s. However, with a seed of length n (where n is even), only a $2^{-n/2}$ fraction of the seeds will end in $n/2$ 0’s, so D would only gain an advantage in an exponentially small number of cases.

Even if D' is able to flawlessly detect strings generated by G',

$$|\Pr[D(r) = 1] - \Pr[D(G(s)) = 1]|$$

would increase by at most $2 \cdot 2^{-n/2}$, which is negligibly small. This increase is not large enough to produce a contradiction, so G' is not necessarily a pseudorandom generator, as desired.

Solution 2. G' is not necessarily a pseudorandom generator. Let G be any pseudorandom generator with $|G(s)| > 2 \cdot |s|$, and consider the generator G^* defined as

$$G^*(s) := \begin{cases} 0^{G(s)} & \text{if } s \text{ ends with } \lfloor |s|/2 \rfloor \text{ 0's}, \\ G(s) & \text{otherwise}. \end{cases}$$

Claim. G^* is a pseudorandom generator.
Proof. We proceed by contradiction. Assume that D is a probabilistic polynomial-time distinguisher such that for all negligible functions negl and sufficiently large n,

$$|\Pr[D(r) = 1] - \Pr[D(G^*(s)) = 1]| > \text{negl}(n),$$

where r is chosen uniformly at random from $\{0, 1\}^{\ell(n)}$ and s is chosen uniformly at random from $\{0, 1\}^n$.

Then, consider the same distinguisher D applied to G. Since $G^*(s) \neq G(s)$ on at most a $2^{n/2+1}/2^n = 2^{-n/2+1}$ fraction of the possible values of s, we have that

$$|\Pr[D(r) = 1] - \Pr[D(G(s)) = 1]| > \text{negl}(n) - 2^{-n/2+1},$$

for any negligible function negl. However, since any negligible function negl_1 can be written as $\text{negl}_1 = \text{negl}_2 - 2^{-n/2+1}$ (this is easy to prove), this implies that

$$|\Pr[D(r) = 1] - \Pr[D(G(s)) = 1]| > \text{negl}(n)$$

for any negligible function negl, contradicting the assumption that G is a pseudorandom generator. Thus, G^* is a pseudorandom generator, as desired. \qed

Since G^* is a pseudorandom generator, it is possible that $G = G^*$. In this case, G' would trivially not be a pseudorandom generator because it would only output strings consisting of 0’s. Thus, G' is not necessarily a pseudorandom generator, as desired.

(b) G' is a pseudorandom generator. We will prove this by contradiction—if G' is not a pseudorandom generator, then an adversary can use the knowledge of how to break G' to break G. Intuitively, this should work because the output of G' “looks like” the output of G on a half-length seed. If we can distinguish a string generated by G' from a random string, then we should be able to distinguish one generated by G from a random string as well.

On any input of length n, let G output a string of length $\ell(n)$, so G' outputs a string of length $\ell(n/2)$. Then, assume for the sake of contradiction that D is a probabilistic polynomial-time distinguisher such that for all negligible functions negl and sufficiently large n,

$$|\Pr[D(r) = 1] - \Pr[D(G'(s)) = 1]| > \text{negl}(n),$$

where r is chosen uniformly at random from $\{0, 1\}^{\ell(n/2)}$ and s is chosen uniformly at random from $\{0, 1\}^n$. In other words, we assume that D is an algorithm that can distinguish between random strings and strings generated by G'.

In particular, note that when the input is of length $2n$, we have that for any negligible function negl,

$$|\Pr[D(r) = 1] - \Pr[D(G'(s)) = 1]| > \text{negl}(2n),$$

where r is chosen uniformly at random from $\{0, 1\}^{\ell(n)}$ and s is chosen uniformly at random from $\{0, 1\}^{2n}$.

2
Now, we will use D as a distinguisher for G. Since G is a pseudorandom generator, there must exist a negligible function f such that

$$\left| \Pr[D(r) = 1] - \Pr[D(G(s)) = 1] \right| \leq f(n)$$

$$\iff \left| \Pr[D(r) = 1] - \Pr[D(G'(ss')) = 1] \right| \leq g(2n),$$

where r is chosen uniformly at random from $\{0, 1\}^\ell(n)$, s and s' are each chosen uniformly at random from $\{0, 1\}^n$, and $g(n) := f(n/2)$. However, since g is negligible (which is easily proven) and the concatenation of two strings of length n chosen uniformly at random is equivalent to a string of length $2n$ chosen uniformly at random, this contradicts equation (1). Thus, G' must be a pseudorandom generator, as desired.

3. Let n be the block length of the encryption scheme, and for simplicity assume that there is only one block. The following proof trivially generalizes to ℓ blocks, but this assumption simplifies the notation.

Consider the adversary that first outputs the messages $m_0 = 0^n$ and $m_1 = 1^n$, and receives the challenge ciphertext $c = IV||c_1$ (where $||$ denotes concatenation). Then, the adversary queries the encryption oracle on the plaintext $m' = m_0 \oplus IV \oplus (IV + 1)$, receiving the ciphertext $c' = (IV + 1)||c'_1$. If c is an encryption of m_0, then we should have $c_1 = c'_1$ since

$$c'_1 = F_k((IV + 1) \oplus m')$$
$$= F_k((IV + 1) \oplus m_0 \oplus IV \oplus (IV + 1))$$
$$= F_k(m_0 \oplus IV)$$
$$= c_1.$$

Similarly, if c is an encryption of m_1, then with $1 - \text{negl}(n)$ probability (for some negligible function negl) we should have $c_1 \neq c'_1$. Otherwise, we would have that $F_k(m_0 \oplus IV) = F_k(m_1 \oplus IV)$ with nonnegligible probability, so F_k would not be a pseudorandom permutation.

Thus, by outputting 0 if $c_1 = c'_1$ and 1 otherwise, this adversary will win the experiment with probability $\geq 1 - \text{negl}(n) > 1/2$, so the scheme is not CPA-secure, as desired.

4. Encryption can be parallelized easily for Output Feedback mode, but decryption can’t be. Both encryption and decryption can be parallelized easily for Counter mode.