Topics for lectures will be chosen from the list below. Exact coverage will reflect student interest and/or resistance.

1. **Computations in Elementary Number Theory.** (3 weeks)
 - Computation models, cost of arithmetic
 - Euclid’s algorithm, inverses mod \(n\)
 - Exponentiation
 - Chinese remainder theorem, residue arithmetic
 - Linear equations and linear systems
 - Generators, power residues, residue symbols
 - Solving equations in finite fields

2. **Primes.** (2 weeks)
 - Prime number theorem, density results
 - Pratt’s certificates
 - Randomized tests
 - Algorithmic applications of the ERH
 - AKS test

3. **Factorization.** (2 weeks)
 - Motivation: RSA and digital signatures
 - Reductions to factoring
 - Smooth numbers, random splitting model, factored random numbers
 - Exponential algorithms (Pollard rho etc.)
 - Quadratic sieve
 - Number field sieve

4. **Discrete Logarithms.** (2 weeks)
 - Motivation: Diffie-Hellman key exchange
 - Square-root algorithms: Shanks, Pollard, etc.
 - Lower bounds for generic algorithms
 - Index calculus methods

5. **Pseudo-Random Numbers.** (2 weeks)
 - Classic methods: iterated affine maps, shift registers
 - Boyar’s algorithm (prediction of Lehmer sequences)
 - Berlekamp-Massey algorithm (prediction of shift register sequences)
 - Lattice reduction and applications
 - “Unpredictable” generators

6. **Geometry-Based Algorithms.** (3 weeks)
 - Projective space and secret sharing
 - Algebraic curves
 - Elliptic curve cryptography
 - Factoring using elliptic curves
 - Limited-randomness algorithms
 - Analysis of iterated quadratic maps