
CS 880: Pseudorandomness and Derandomization 1/28/2013

Lecture 2: Pseudorandom Generators and Extractors

Instructors: Holger Dell and Dieter van Melkebeek Scribe: Nick Pappas

In the previous lecture we described the two main topics of the course: derandomization and
randomness extraction. In this lecture we introduce two key constructs in the pursuit of these topics,
namely pseudorandom generators and extractors, respectively. We also review some background
on finite fields that will be needed in future lectures.

1 Pseudorandom Generators

1.1 Definition

Intuitively, a pseudorandom generator (PRG) is a procedure that generates a pseudorandom dis-
tribution. A PRG shares the parameters of the underlying pseudorandom distribution: the class A
of algorithms to which the generated distribution looks random, and a bound ε on how different
the pseudorandom distribution can look from the uniform one for algorithms from A.

Definition 1 (Pseudorandom generator). An ε(r)-pseudorandom generator for A is a sequence
of mappings G = (Gr)r∈N where Gr : {0, 1}`(r) 7→ {0, 1}r such that (Gr(U`(r)))r∈N is ε(r)-pseudorandom
for A.

Thus, a PRG generates a pseudorandom distribution by taking a sample σ (called the seed) from
the uniform distribution on {0, 1}`(r), and outputting Gr(σ). In addition to the parameters of the
underlying pseudorandom distribution, there are two more that interest us:

◦ the seed length `(r), which we want to be as small as possible as a function of r, and

◦ the computational complexity of the transformations Gr, which we would like to be low as a
function of its input length `(r).

1.2 Use for derandomization

At the cost of the evaluation of Gr and a deviation of at most ε(r) in the output distribution, the
use of an ε(r)-PRG for A allows us to effectively reduce the need for truly random bits from r down
to `(r), the seed length of the PRG. If the seed length is sufficiently small, we can then efficiently
compute the output distribution of any algorithm A ∈ A on a given input x to within ε(r) in
1-norm: cycle over all seeds σ and keep track of the statistics of A(x,Gr(σ)).

In particular, this allows us to fully derandomize decision procedures with error less than 1
2−ε(r).

Recall that a decision problem L can be represented as the set L ⊆ Σ∗ of all “yes”-instances, or
equivalently, as a mapping L : Σ∗ 7→ {0, 1}, where 0 represents “no”, and 1 represents “yes”. A
randomized decision procedure A for L has error at most η if for every x ∈ Σ∗

Pr[A(x, Ur) 6= L(x)] ≤ η.

If η < 1
2 − ε(r), we can deterministically decide L as follows using the ε(r)-PRG G for A. On

input x:

1

1. Cycle over all σ ∈ {0, 1}`(r) and compute A(x,Gr(σ)).

2. Output “yes” if more than half of the σ’s lead to acceptance, and “no” otherwise.

The correctness of the above procedure for deciding L follows because

Pr[A(x,Gr(U`(r))) 6= L(x)] ≤ Pr[A(x, Ur) 6= L(x)]

+
∣∣∣Pr[A(x,Gr(U`(r))) 6= L(x)]− Pr[A(x, Ur) 6= L(x)]

∣∣∣
<

(
1

2
− ε(r)

)
+ ε(r) =

1

2
.

What about the efficiency of the deterministic simulation? Suppose A runs in time t and uses at
most s bits of work space, and that evaluating G takes time tG and work space sG. Then the above
procedure runs in time O(2` · (tG + t)) and space O(`+sG +s). Note that, due to the factor of 2` in
the running time, there is not much point for the running time tG of the PRG to be substantially
less than 2`, at least not when the goal is full derandomization. In contrast, when the goal is to
reduce the amount of randomness from r to `(r), then we typically want the time complexity tG
of the PRG to be lower, e.g., polynomial in ` or in r. The latter situation occurs in cryptographic
applications of PRGs, among others.

What seed length `(r) can we hope for? Näıvely, one may think that ` = 0 may be within reach.
However, for the classes A that we will consider, this it too much to hope for. The reason is that
the same pseudorandom bit sequences Gr(σ) have to work well irrespective of which input x and
which algorithm A from our class A we are considering. This obliviousness usually imposes a lower
bound of Ω(log r) on the seed length `(r). Thus, the best we can hope for are PRGs with seed
length `(r) = Θ(log r). Such PRGs yield the following deterministic simulations for the class Ad

of all randomized decision procedures with error less than, say, 1/3 that run in time nd, and the
class A′d of all randomized decision procedures with error less than 1/3 that use d · log n bits of
work space and always halt. Recall that we use n to denote the length of the input x.

Proposition 1.

(i) (Time-bounded setting) If there exists a 1
6 -PRG for Ad that has seed length `(r) = O(log r)

and is computable in time 2O(`), then Ad can be simulated deterministically in time nO(1).

(ii) (Space-bounded setting) If there exists a 1
6 -PRG for A′d that has seed length `(r) = O(log r)

and is computable using O(`) bits of work space, then A′d can be simulated deterministically
using O(log n) bits of work space.

This proposition follows from the above analysis because algorithms in Ad and in A′d need no more
than r ≤ nd random bits in total. This is because the algorithm needs at most one random bit per
computation step and because the algorithm runs for at most nd steps in either of the two settings.

1.3 Construction

In the rest of this course, we will construct PRGs for various interesting classes A of algorithms.
The name of the game is to exhibit some limitation in the way algorithms from A use their random
bits, and then exploit that limitation to construct a pseudorandom generator for A with short seed
length. For some more restrictive classes A, the limitation is not too difficult to point out; for

2

broader classes like Ad above, the limitation is not that clear, and we will resort to the mantra
from the previous lecture:

Whether something looks random to you, depends on your computational power.

The mantra has two sides to it. Let us first make one side more concrete – that the mere existence
of a nontrivial PRG G for a class A implies some computational limitation on the class A.

Proposition 2. If G is an ε(r)-PRG for A with ε(r) < 1/2 and seed length `(r) < r, then there
does not exist A ∈ A such that A(x, ρ) accepts if and only if there exists ρ′ in the range of Gr such
that ρ and ρ′ have the same prefix of length `(r) + 1.

Proof. Consider the predicate A(x, ρ) defined in the statement. By construction we have that

Pr[A(x,Gr(U`(r))) accepts] = 1 , (1)

whereas the fact that the range of Gr has size at most 2` implies that

Pr[A(x, Ur) accepts] ≤ 2`

2`+1
=

1

2
, (2)

so the probabilities on the left-hand sides of (1) and (2) differ by at least 1/2. On the other hand,
the pseudorandomness property of G would require those probabilities to differ by no more than
ε(r) < 1/2 if A were in A. �

We refer to Proposition 2 as yielding a hard problem for A. The hard problem given in Proposition 2
may seem somewhat unnatural in that it ignores its actual input x, but it does point at a limitation
in the way algorithms from A can use their random bits when a nontrivial PRG for A exists. This
is one side of the mantra.

The other side of the mantra – the one that is more interesting to us – is how to use such a
limitation to construct a good PRG for A, that is, how to use a hard problem to build a PRG. This
is known as the hardness-based approach to the construction of PRGs. It represents an important
avenue towards deterministic simulations of very broad classes of algorithms like Ad and A′d in
Proposition 1, and a substantial part of this course will be devoted to developing that approach.

Time-bounded setting. In order to obtain PRGs for the classes Ad, we usually construct PRGs
for their nonuniform counterparts. In fact, it suffices to construct a PRG G for the class Ã of
predicates A(·, ρ) that ignore their first input and can be decided by circuits of size at most r

.
= |ρ|.

This is because for every A′ ∈ Ad and every input x′ ∈ Σn on which A′ needs, say, r′ random bits,
there exists a predicate A ∈ Ã such that A(·, ρ) = A′(x′, ρ′), where |ρ| .= r = nO(d) and ρ′ denotes
the prefix of length r′ of ρ. Thus, taking the prefixes of length r′ of the output of Gr yields a PRG
for A.

Proposition 2 yields the following for Ã. Let G be an ε-PRG for Ã with ε < 1/2 and `(r) < r,
and consider the problem of deciding whether a given string of length `(r) + 1 is the prefix of some
string in the range of Gr. Proposition 2 implies that this problem cannot be decided by a Boolean
circuit of size r. Note that, if the PRG is computable in time 2O(`), then the problem can be

3

decided by a uniform algorithm in time 2O(`). Thus, for `(r) = O(log r) we obtain the following
implication:

the existence of a PRG for Ã that is computable in time
2O(`) and has seed length `(r) = O(log r)

(3)

⇓
the existence of a decision problem that is computable in time 2O(`)

and requires circuits of size 2Ω(`) on inputs of length `.
(4)

As for the reverse implication ⇑, we will see how to use a decision problem of type (4) to build
a PRG of type (3) [IW97], which by the above discussion and Proposition 1 implies that Ad can
be simulated deterministically in polynomial time. Thus, polynomial-time derandomizations of Ad

through PRGs for Ã are equivalent to the hardness condition (4).
The latter seems plausible, which is why we conjecture that every randomized decision procedure

can be simulated deterministically with only a polynomial overhead in running time. However, in
spite of half a century of research in circuit complexity, the validity of (4) remains open. In fact,
the same holds for weaker circuit lower bounds that are equivalent to PRGs for Ã computable in
time 2O(`) and with seed length between Θ(log r) and rΘ(1).

Space-bounded setting. In the model where algorithms have two-way access to a stream of
random bits, a similar equivalence holds between plausible-but-open hardness conditions and space-
efficient derandomization via PRGs. The equivalence supports the common belief that every ran-
domized decision procedure can be simulated deterministically with only a constant-factor overhead
in work space.

Moreover – in contrast to the time-bounded setting – there are unconditional results in the
model with one-way access to the random bit stream. Results in that more restricted model are
most relevant because coin flips cannot be reread unless they are stored in memory, which is limited
in size. In particular, we will develop a PRG for A′d that has seed length O(log2 r) and is computable
using O(log r) work space [Nis92], thus yielding a full derandomization of A′d using space O(log2 n)
via PRGs. Currently no PRG for A′d is known that achieves a shorter seed length. Nevertheless,

there exists a full derandomization of A′d using work space O(log3/2 n) [SZ99]. In contrast to the
derandomizations obtained via PRGs as in Proposition 1, the latter deterministic simulation needs
access to the input and to the code of the underlying randomized algorithm. This discrepancy
points at the possibility that PRGs, though the canonical tool for derandomization, may not be
omnipotent.

2 Extractors

Just like PRGs are the canonical tool for derandomization, extractors are the canonical tool for
randomness extraction. Intuitively, an extractor is a procedure that takes a sample from a distri-
bution that contains randomness in a crude form and massages the sample such that the resulting
output distribution is close to a “pure” random source, that is, close to uniform.

The extractor can have some limited knowledge about the distribution, that is, the extractor
is only supposed to work for a certain class D of distributions D = (Dn)n∈N (where Dn is a
distribution on {0, 1}n). An additional parameter is a bound ε on the allowed deviation of the
output distribution from uniform.

4

Definition 2 (Extractor). An ε(n)-extractor for D is a sequence of mappings E = (En)n∈N where
En : {0, 1}n 7→ {0, 1}r(n) such that (∀D ∈ D)(∀∞n ∈ N)

dstat

(
En(Dn), Ur(n)

)
≤ ε(n) .

We would like r(n) to be as large a function of n as possible. It can never be larger than n, but
what values we can realize depends on the amount of crude randomness that is present in the
distributions D from D. For example, if the support of D is a singleton, then we cannot hope to
extract even a single bit of true randomness because D corresponds to some deterministic process.

We will discuss how to measure the amount of crude randomness in a distribution D and various
natural choices for D later. For now, let us contrast the notion of an extractor with that of a PRG.
The notions seem quite different: whereas PRGs stretch their inputs, extractors shrink them.
Nevertheless, there exists a close connection between extractors and hardness-based constructions
of pseudorandom generators [Tre01].

3 Finite Fields

We now present some basic properties of finite fields that will be needed in the course and may
not be familiar to all readers. We first show the existence of finite fields Fq with q = pk elements,
where p is a prime and k a positive integer. We then consider the efficiency of arithmetic within
finite fields, and conclude with a few remarks regarding uses of finite fields.

3.1 Preliminaries

We first recap the terminology we use. A group is a structure consisting of a universe G and a
binary operation + that is associative, has a neutral element (a.k.a. a unit), and such that every
element has an inverse. If + is commutative, the group is called commutative. A ring is a structure
consisting of a universe R and two binary operations + and · where: (R,+) forms a commutative
group, · is associative on R, and · distributes over +. If · is commutative, the ring is called
commutative. A field is a commutative ring with a multiplicative unit such that each element
other than the additive unit 0 has an inverse for ·. We often refer to (F,+) as the additive group
of the field and to (F \ {0}, ·) as the multiplicative group of the field.

The following proposition gives a useful sufficient condition for a finite ring to be a field.

Proposition 3. Consider a finite commutative ring R with a multiplicative unit that is different
from 0. Then R is a field if and only if for all a, b ∈ R, ab = 0 implies that a = 0 or b = 0.

Proof. Let the multiplicative unit of R be denoted by 1. We must only show that each element a
of R has a multiplicative inverse. We show this by showing that the mapping x 7→ a·x is a bijection.
If this is a bijection, then there is some element a′ such that a · a′ = 1. This a′ is the multiplicative
inverse of a.

Now suppose for the purpose of contradiction that x → a · x is not a bijection. Then we have
a ·x1 = a ·x2 for distinct x1, x2 ∈ R. Rearranging terms, we have a · (x1−x2) = 0 which contradicts
the hypothesis. �

Given a field F , we consider polynomials over a single variable with coefficients from F .

5

Exercise 1. The set of polynomials F [x] over F forms a commutative ring with a multiplicative
unit.

We will be interested in polynomials over F that do not factor over F , as defined presently.

Definition 3. Let F be a field. A polynomial g(x) with coefficients from F is called irreducible
over F if there are no two polynomials g1(x) and g2(x) with coefficients over F and of degree less
than g(x) such that g(x) = g1(x) · g2(x).

Example 4. Consider the polynomial g(x) = x3 +x+ 1 over Z2. We claim that g(x) is irreducible
over Z2. In principle, we must verify that each pair of polynomials of degree less than three over
Z2 multiplies to yield something other than g(x). The set of polynomials that must be checked is:
{1, x, 1 + x, x2, 1 + x2, x+ x2, 1 + x+ x2}. In this case we can also argue as follows. Since g(x) has
degree 3, at least one of the factors of any factorization as g(x) = g1(x)g2(x) with g1(x) and g2(x)
of degree less than three, has to have degree exactly one. This implies that g(x) would have a zero
over Z2. However, g(0) = 1 = g(1).

An irreducible polynomial plays the role in the polynomial ring that prime numbers play in the
integers. The following is a property of irreducible polynomials that also holds for prime numbers
in the integers.

Proposition 5. Let g(x), g1(x), and g2(x) be polynomials over a field F . If g(x) is irreducible
over F , then g(x) divides g1(x) · g2(x) if and only if g(x) divides g1(x) or g(x) divides g2(x).

Proof (sketch). Just as an integer can be factored uniquely into its prime factors, a polynomial
over a field can be factored uniquely into irreducible polynomials. If g(x) divides g1(x) · g2(x), then
g(x) ·h(x) = g1(x) ·g2(x) for some polynomial h(x). If we view this equation in terms of the unique
factorization of each polynomial into irreducible polynomials, it becomes evident that g(x) must
divide either g1(x) or g2(x). �

The final building block we need is that of modular arithmetic. We assume the reader is familiar
with Zn, the integers modulo n. We can also use modular arithmetic over the ring of polynomials
over a field F .

Definition 4. Let F [x] be the ring of polynomials over a field F , and let g(x) be a polynomial with
coefficients from F . Then F [x]/g(x) is the ring of polynomials over F modulo g(x). Formally,
F [x]/g(x) contains an equivalence class for each polynomial that can result as a remainder upon
dividing by g(x), and arithmetic among the equivalence classes is performed modulo g(x).

Exercise 2. If F is a field and g(x) is a polynomial with coefficients from F , then F [x]/g(x) is
a finite commutative ring with a multiplicative unit. Further, if g(x) has degree d, the elements
of F [x]/g(x) are in one-to-one and onto correspondence with the polynomial of degree less than d
over F .

3.2 Existence

We have now set up the appropriate background to prove the existence of finite fields. We first
mention the finite fields that we are most familiar with.

6

Theorem 6. For all n ≥ 2, Zn is a commutative ring with a multiplicative unit. Zn is a field if
and only if n is prime.

The second part of Theorem 6 follows from Proposition 3 and demonstrates finite fields that are
suitable for many of our purposes. However, there are other finite fields we will need to make use
of. The following theorem is the main purpose of this section, demonstrating a finite field for all
prime powers.

Theorem 7. For prime p, and k ≥ 1 there is a field with pk elements.

Proof. Let Zp[x] be the ring of polynomials with coefficients from Zp, and Zp[x]/g(x) be the quotient
ring of polynomials modulo the polynomial g(x). By Exercise 2, Zp[x]/g(x) is a finite commutative
ring with a multiplicative unit. The theorem follows from the following two lemmas.

Lemma 8. Let k ≥ 1 be an integer and p a prime. There exists an irreducible polynomial of degree
k over Zp.

Proof (sketch). This can be proved by a careful counting argument showing that the number of
irreducible polynomials is positive. We do not present further details here. �

Lemma 9. Zp[x]/g(x) is a field if and only if g(x) is irreducible over Zp.

Proof. The elements of Zp[x]/g(x) are in one-to-one and onto correspondence with the polynomials
over Zp of degree less than the degree of g(x). A product of two elements is zero if and only if the
product of the corresponding polynomials is a multiple of g(x).

If g(x) is not irreducible, then g(x) = g1(x) · g2(x) for some polynomials g1(x) and g2(x) of
degree less than the degree of g(x), meaning that for non-zero ring elements g1(x) and g2(x) their
product is zero. Then Zp[x]/g(x) is not a field by Proposition 3.

Let g(x) be irreducible. Suppose there are g1(x) and g2(x) whose product is a multiple of g(x)
(that is, whose product is zero in the ring). Then Proposition 5 tells us that g(x) must divide
at least one of g1(x) or g2(x), meaning at least one of g1(x) or g2(x) is zero in the ring. By
Proposition 3, Zp[x]/g(x) is a field. �

In fact, the construction given in Theorem 7 is enough to generate all possible finite fields, stated
formally in the following theorem whose proof we omit.

Theorem 10. Let F be a finite field. Then F has pk elements for some prime p and integer k ≥ 1.
Further, each finite field with pk elements is isomorphic.

We use Fq to denote a generic finite field with q = pk elements.

Example 11. Let us construct F23 using the irreducible polynomial of degree 3 from the example in
the first section. Therefore, F23 can be constructed as Z2[x]/(x3+x+1). Each element of the field is
viewed as a degree at most two polynomial, and can thus be specified with three bits. As an example
of multiplication in the field, (x2 + 1) · (x+ 1) = (x3 +x+x2 + 1) = (x3 +x+ 1) +x2 = 0 +x2 = x2.
As an example of addition in the field, (x2 + 1) + (x+ 1) = (x2 + x+ 1 + 1) = x2 + x.

7

3.3 Complexity

Theorem 7 only shows that finite fields of order pk exist. For a finite field to be of practical use, it
should be efficiently constructible, and arithmetic in the field should be efficient. We leave it as an
exercise to verify that arithmetic can be performed in Fpk in polynomial time once an irreducible
polynomial of degree k over Zp is found.

To efficiently construct Fpk , all that needs to be done is to find an irreducible polynomial of
degree k over Zp. We would like to be able to find such a polynomial in polynomial time, where the
input length is the number of bits needed to specify a degree k polynomial with coefficients in Zp,
that is, O(k · log p). It is unknown whether there is an algorithm running in time poly(k, log p) to
do this. The following is essentially the best known algorithm.

Theorem 12 ([Sho90]). There is a deterministic algorithm running in time poly(k, p) to find an
irreducible polynomial of degree k over Zp.

Notice that for small values of p this is in fact a polynomial time algorithm. In particular, this
shows that we can in polynomial time construct a suitable irreducible polynomial to construct F2n .
For most purposes, this is sufficient. If our requirements are even more lenient, we can do even
better. The following gives an explicit formula for irreducible polynomials for certain values of n.

Theorem 13 ([vL98], Thm 1.1.28). Let n = 2 ·3`−1. Then xn +xn/2 + 1 is irreducible over Z2.

3.4 Remarks

One common use of finite fields is to view data as elements of the finite field and take advantage of
the nice properties of polynomials over fields, e.g., that a degree d polynomial can have at most d
roots.

Finally, we remark on the distinction between formal polynomials and polynomials as functions.
A formal polynomial refers to the particular coefficients that specify it. Two formal polynomials
over a finite field F induce the same function if and only if they are equal modulo

∏
a∈F (x− a). In

particular, all polynomials of degree less than q over Fq induce different functions.

References

[IW97] Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits:
derandomizing the XOR lemma. In Proceedings of the 29th Annual Symposium on Theory
of Computing, STOC 1997, pages 220–229, 1997.

[Nis92] Noam Nisan. Pseudorandom generators for space-bounded computation. Combinatorica,
12(4):449–461, 1992.

[Sho90] V. Shoup. New algorithms for finding irreducible polynomials over finite fields. Mathematics
of Computation, 54:435–447, 1990.

[SZ99] Michael Saks and Shiyu Zhou. BPHSPACE(S) ⊆ DSPACE(S3/2). Journal of Computer
and System Sciences, 58(2):376–403, 1999.

[Tre01] Luca Trevisan. Extractors and pseudorandom generators. Journal of the ACM, 48(4):860–
879, 2001.

8

[vL98] J.J. van Lint. Introduction to Coding Theory. Springer-Verlag New York Inc., third edition,
1998.

9

	Pseudorandom Generators
	Definition
	Use for derandomization
	Construction

	Extractors
	Finite Fields
	Preliminaries
	Existence
	Complexity
	Remarks

