Image Processing Toolbox

fspecial
Create predefined 2-D filter

Syntax

h = fspecial(type)

h = fspecial(type,parameters)

Description

h = fspecial(type) creates a two-dimensional filter h of the specified type.
fspecial returns h as a correlation kernel, which is the appropriate form to use with
imfilter. type is a string having one of these values.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'average'</td>
<td>Averaging filter</td>
</tr>
<tr>
<td>'disk'</td>
<td>Circular averaging filter (pillbox)</td>
</tr>
<tr>
<td>'gaussian'</td>
<td>Gaussian lowpass filter</td>
</tr>
<tr>
<td>'laplacian'</td>
<td>Approximates the two-dimensional Laplacian operator</td>
</tr>
<tr>
<td>'log'</td>
<td>Laplacian of Gaussian filter</td>
</tr>
<tr>
<td>'motion'</td>
<td>Approximates the linear motion of a camera</td>
</tr>
<tr>
<td>'prewitt'</td>
<td>Prewitt horizontal edge-emphasizing filter</td>
</tr>
<tr>
<td>'sobel'</td>
<td>Sobel horizontal edge-emphasizing filter</td>
</tr>
<tr>
<td>'unsharp'</td>
<td>Unsharp contrast enhancement filter</td>
</tr>
</tbody>
</table>

h = fspecial(type,parameters) accepts a filter type plus additional modifying parameters
particular to the type of filter chosen. If you omit these arguments, fspecial uses default
values for the parameters.

The following list shows the syntax for each filter type. Where applicable, additional
parameters are also shown.

- h = fspecial('average',hsize) returns an averaging filter h of size hsize.
The argument hsize can be a vector specifying the number of rows and columns in
h, or it can be a scalar, in which case h is a square matrix. The default value for
hsize is [3 3].

- `h = fspecial('disk',radius)` returns a circular averaging filter (pillbox) within the square matrix of side $2*radius+1$. The default radius is 5.
- `h = fspecial('gaussian',hsize,sigma)` returns a rotationally symmetric Gaussian lowpass filter of size `hsize` with standard deviation `sigma` (positive). `hsize` can be a vector specifying the number of rows and columns in `h`, or it can be a scalar, in which case `h` is a square matrix. The default value for `hsize` is [3 3]; the default value for `sigma` is 0.5.
- `h = fspecial('laplacian',alpha)` returns a 3-by-3 filter approximating the shape of the two-dimensional Laplacian operator. The parameter `alpha` controls the shape of the Laplacian and must be in the range 0.0 to 1.0. The default value for `alpha` is 0.2.
- `h = fspecial('log',hsize,sigma)` returns a rotationally symmetric Laplacian of Gaussian filter of size `hsize` with standard deviation `sigma` (positive). `hsize` can be a vector specifying the number of rows and columns in `h`, or it can be a scalar, in which case `h` is a square matrix. The default value for `hsize` is [5 5] and 0.5 for `sigma`.
- `h = fspecial('motion',len,theta)` returns a filter to approximate, once convolved with an image, the linear motion of a camera by `len` pixels, with an angle of `theta` degrees in a counterclockwise direction. The filter becomes a vector for horizontal and vertical motions. The default `len` is 9 and the default `theta` is 0, which corresponds to a horizontal motion of nine pixels.
- `h = fspecial('prewitt')` returns the 3-by-3 filter `h` (shown below) that emphasizes horizontal edges by approximating a vertical gradient. If you need to emphasize vertical edges, transpose the filter `h'`.

\[
\begin{bmatrix}
1 & 1 & 1 \\
0 & 0 & 0 \\
-1 & -1 & -1
\end{bmatrix}
\]

To find vertical edges, or for x-derivatives, use `h'`

- `h = fspecial('sobel')` returns a 3-by-3 filter `h` (shown below) that emphasizes horizontal edges using the smoothing effect by approximating a vertical gradient. If you need to emphasize vertical edges, transpose the filter `h'`.

\[
\begin{bmatrix}
1 & 2 & 1 \\
0 & 0 & 0 \\
-1 & -2 & -1
\end{bmatrix}
\]

- `h = fspecial('unsharp',alpha)` returns a 3-by-3 unsharp contrast enhancement filter. `fspecial` creates the unsharp filter from the negative of the Laplacian filter with parameter `alpha`. `alpha` controls the shape of the Laplacian and must be in the range 0.0 to 1.0. The default value for `alpha` is 0.2.

Note Do not be confused by the name of this filter: an unsharp filter is an image sharpening operator. The name comes from a publishing industry process in which an image is sharpened by subtracting a blurred (unsharp) version of the image from itself.
Class Support

his is of class double.

Example

I = imread('cameraman.tif');
subplot(2,2,1);
imshow(I); title('Original Image');

H = fspecial('motion',20,45);
MotionBlur = imfilter(I,H,'replicate');
subplot(2,2,2);
imshow(MotionBlur);title('Motion Blurred Image');

H = fspecial('disk',10);
blurred = imfilter(I,H,'replicate');
subplot(2,2,3);
imshow(blurred); title('Blurred Image');

H = fspecial('unsharp');
sharpened = imfilter(I,H,'replicate');
subplot(2,2,4);
imshow(sharpened); title('Sharpened Image');
Algorithms

`fspecial` creates Gaussian filters using

\[h_g(n_1, n_2) = e^{-\left(\frac{n_1^2 + n_2^2}{2\sigma^2}\right)} \]

\[h(n_1, n_2) = \frac{h_g(n_1, n_2)}{\sum_{n_1} \sum_{n_2} h_g} \]
fspecial creates Laplacian filters using
\[\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \]
\[\nabla^2 = \frac{4}{(\alpha + 1)} \begin{bmatrix} \alpha & \frac{1-\alpha}{4} & \frac{\alpha}{4} \\ \frac{1-\alpha}{4} & -1 & \frac{1-\alpha}{4} \\ \frac{\alpha}{4} & \frac{1-\alpha}{4} & \frac{\alpha}{4} \end{bmatrix} \]

fspecial creates Laplacian of Gaussian (LoG) filters using
\[h_g(n_1, n_2) = e^{-\left(n_1^2 + n_2^2\right)/(2\sigma^2)} \]
\[h(n_1, n_2) = \frac{\left(n_1^2 + n_2^2 - 2\sigma^2\right)h_g(n_1, n_2)}{2\pi\sigma^6 \sum_{n_1} \sum_{n_2} h_g} \]

fspecial creates averaging filters using
\[\text{ones}(n(1),n(2))/(n(1)*n(2)) \]

fspecial creates unsharp filters using
\[\frac{1}{(\alpha + 1)} \begin{bmatrix} -\alpha & \alpha - 1 & -\alpha \\ \alpha - 1 & \alpha + 5 & \alpha - 1 \\ -\alpha & \alpha - 1 & -\alpha \end{bmatrix} \]

See Also
conv2, edge, filter2, fsamp2, fwind1, fwind2, imfilter
del2 in the MATLAB Function Reference