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Abstract. Greedy machine learning algorithms suffer from shortsight-
edness, potentially returning suboptimal models due to limited explo-
ration of the search space. Greedy search misses useful refinements that
yield a significant gain only in conjunction with other conditions. Re-
lational learners, such as inductive logic programming algorithms, are
especially susceptible to this problem. Lookahead helps greedy search
overcome myopia; unfortunately it causes an exponential increase in ex-
ecution time. Furthermore, it may lead to overfitting. We propose a
heuristic for greedy relational learning algorithms that can be seen as an
efficient, limited form of lookahead. Our experimental evaluation shows
that the proposed heuristic yields models that are as accurate as models
generated using lookahead. It is also considerably faster than lookahead.

1 Introduction

Symbolic machine learning algorithms, such as rule or decision tree induction
algorithms, search a large space of candidate models to find a suitable model
[8]. Each search step consists of generating a new model and evaluating it on
the set of training examples. This is repeated until a sufficiently accurate model
is found. Näıvely enumerating all possible models is generally too computation-
ally expensive, therefore, machine learning algorithms employ intelligent search
strategies, such as greedy, randomized, or branch-and-bound search.

Greedy or hill-climbing search is often used because of its computational effi-
ciency. Greedy search constructs a sequence of models such that each model
is a locally optimal refinement of the previous model in the sequence. The
search ends after meeting a stop criterion, such as no refinement significantly
increases the evaluation score. The main disadvantage of greedy search is its
shortsightedness. Greedy search misses refinements that yield a high evalua-
tion score only in combination with further refinements. Inductive logic pro-
gramming (ILP) [7] algorithms are especially susceptible to this problem. ILP



algorithms use first-order logic to represent the data and models. Data are rep-
resented with facts and rules are represented by clauses. Consider the clause
happy(C)←account(C,A,B)∧B=high, which states that a customer of a bank is
happy if one of the customer’s accounts has a high balance. Greedy search will
fail to find the first literal of this clause because it is non-discriminating, that is,
it does not alter the evaluation score of the clause. The evaluation score (e.g.,
the accuracy of the clause) usually only depends on the number of positive and
negative examples covered by the clause. In our example, all customers have at
least one account. Therefore the examples covered, and consequently the eval-
uation scores of the clauses happy(C)←true and happy(C)←account(C,A,B),
are identical. Greedy search will thus never select the latter clause and therefore
never find our example clause.

Lookahead [9] helps greedy search overcome myopia. Instead of adding only
one literal at each search step, lookahead adds the best conjunction consisting
of at most n+1 literals, where n is the lookahead depth. With depth one looka-
head, our example clause could be learned in one refinement step. Unfortunately,
execution time increases exponentially with the lookahead depth.

In this paper, we propose a feature based evaluation score for literals that is
comparable to a limited form of depth one lookahead. Our score can be computed
efficiently from a set of tables that can be pre-computed with one pass over the
data. The resulting approach is computationally more efficient than lookahead
and yields models that have a comparable accuracy.

2 An Efficient Approximation to Lookahead

We first illustrate the idea behind our approach with the example task of pre-
dicting when a bank customer is happy. Consider evaluating the clause happy(C)
← account(C,A,B). In this case, variables A and B serve as output variables.
When computing the score of the clause, we can potentially glean information
from which constants bind to these variables. This information about bindings
can help guide the search towards which refinement to pick.

Assume we use accuracy as the scoring function. Then the refined clause
happy(C)←account(C,A,B) yields no benefit over the clause happy(C)←true
(because it covers the same examples). Even though both clauses have the same
score, intuitively the refined clause appears more promising. By looking at the
bindings for variable B we could observe, for example, that people who have an
account with a high account balance tend to be happy: variable B takes a binding
of high more frequently for Happy cases compared to Not Happy cases. Thus,
we can see that by placing a condition on the variable B in a future step – that
is, adding a literal with B as input – we might be able to get a clause with a high
accuracy.

By looking at the bindings for B, we have leveraged the fact that the constants
that bind to this variable are shared across several examples. It is more difficult
to perform this analysis for a variable such as A because it has a unique value
(account number) for every account. To illustrate how we might handle this type



of variables, assume that we have three unary predicates that take an account
number as input: savingAcc(A), checkingAcc(A), and moneyMarketAcc(A).
Even if all customers with money market accounts are happy, and all others
are not happy, the individual account numbers tell us nothing about whether a
customer is happy. The benefit comes from the fact that these account numbers
refer to money market accounts. Thus, we can assess the clause’s quality based
on which predicates, like moneyMarketAcc(A), hold for the bindings of variables.
Nevertheless, we wish to do this assessment without the full cost of lookahead.

2.1 Features and Evaluation Scores

In the previous section, we have shown that class-wise counts for variable bind-
ings, computed either directly or indirectly via the predicates that hold for each
binding, yield extra information about the quality of a clause. In this section,
we formalize this idea.

Suppose we have clause c and need to evaluate the quality of extending c with
the literal l. Instead of just counting the number of examples in each class that
the resulting clause covers, we also compute information based on the bindings
for the output variables of l. We define a set of features for these bindings, which
can be pre-computed prior to running the learning algorithm. The first feature
is l itself. The other features are conjunctions of l with a second literal. The
second literal uses exactly one of l’s output variables as an input variable and
does not share any other variables with clause c1.

Definition 1 (Literal Features). Given a clause c and a literal l, the set of
features F(c, l) for l given c is defined as follows.

F(c, l) = { l } ∪ { l ∧ li | legal(c, l, li) }

legal(c, l, li) = #{(vars(l)− vars(c)) ∩ vars(li)} = 1 ∧ vars(li) ∩ vars(c) = ∅

with vars(x) the set of variables appearing in x. (# denotes set cardinality.)

Consider again the bank domain and suppose that the learner starts with
clause c = happy(C)←true and is about to evaluate literal l = account(C,A,B).
The first column of Table 1 lists the features F(c, l).

We define an evaluation score that incorporates information from the feature
set. Several feature representations are possible and each representation allows
different evaluation scores to be defined. The most general representation can
be found in column R1 of Table 1. The columns for customer c1 to customer cn

indicate for each customer which features hold. Column R2 of Table 1 shows a
second representation, which stores class-wise counts of the examples for which
each feature holds. Column R3 contains the most restrictive representation. Here
we only compute some score for each feature.

In the most general representation of the features (R1), each class of cus-
tomers (happy or unhappy) can be seen as a cluster with each instance being
1 The constraints are introduced to limit the number of features.



Table 1. Feature representations for the literal account(C,A,B) in the bank appli-
cation. (We assume that predicate arguments are typed; the same variable can only
appear at argument positions of the same type.)

R1 R2 R3
F(c, l) c1 . . . cn #Happy #Unhappy Score

account(C,A,B) 1 . . . 1 3000 3000 0.50
account(C,A,B)∧B=high 1 . . . 0 2600 0 0.93
account(C,A,B)∧B=medium 0 . . . 1 2000 1000 0.67
account(C,A,B)∧B=low 0 . . . 1 200 3000 0.03
account(C,A,B)∧card(A,R) 1 . . . 1 3000 3000 0.50
account(C,A,B)∧loan(A,L) 0 . . . 1 1000 2000 0.33
. . . . . . . . . . . . . . . . . . . . .

the feature representation of one of the training examples (i.e., a column of R1).
If the cluster of the happy customers is far apart from the cluster of unhappy cus-
tomers according to some distance metric, then the literal is potentially good at
separating the happy from the unhappy customers and should be assigned a high
score. For example, one could define the quality of the literal as the Euclidean
distance between the prototypes of the happy and the unhappy customers.

In this paper, we restrict ourselves to the least general representation (R3).
R3 represents each feature by a score (e.g., its classification accuracy). The score
of a literal is computed by aggregating the scores of its features. We choose to
compute the score of a literal as the maximum of the scores of the features. Note
that this choice can be compared to a limited form of depth one lookahead. Depth
one lookahead, however, imposes fewer restrictions. It allows conjunctions with
literals sharing no variables with l, literals that share more than one variable
with l, and that share variables with the rest of the clause.

2.2 Efficiently Computing Class-wise Counts

In this section, we show how to efficiently compute class-wise example counts
for the features, which corresponds to representation R2 in Table 1. Note that
R3 can be easily computed from R2. The algorithm for finding the class-wise
counts relies on a set of pre-computed tables.

We construct one table for each type. Each of these tables contains one
column for each predicate argument of that type. The table is indexed by the
constants in the domain of the type. Each cell Tt[x, p, a] of the table for type t
stores a Boolean indicating that predicate p holds if constant x is substituted
for argument a.

The ComputeCounts algorithm in Fig. 1 uses the pre-computed tables to
calculate the class-wise counts for the features. The algorithm creates a table
called Counts, which has a row for each feature and a column for each class.
The main loop of the algorithm iterates over the training examples. For each
training example, it computes which features hold in the array Holds (the array



procedure ComputeCounts(c, l)

1: c′ := c extended with l; V := vars(l)− vars(c)
2: for each training example e
3: if the condition of c′ holds for e
4: Holds[1] := 1; ∀i > 1 : Holds[i] := 0
5: for each binding X/x of a variable X ∈ V
6: for each column (p, a) of Ttype(X)

7: i such that predicate(li) = p ∧ argument(li, a) = X
8: if Ttype(X)[x, p, a] = 1 then Holds[i] := 1

9: ∀i : Counts[i][class(e)] := Counts[i][class(e)] + Holds[i]

10: return Counts

Fig. 1. An algorithm computing the class-wise example counts for the features.

Holds corresponds to a column of R2 in Table 1). Next, it increments the count
for each feature that holds, conditioning on the example’s class.

To compute which of the features hold for a given training example, the
algorithm executes the given clause c extended with literal l on the example. If
it covers the example, then the first element of Holds is set to one. We assume
here that the first feature is the literal itself. To compute whether or not the
other features hold, the algorithm looks at the bindings that are obtained for the
output variables V of l while executing the clause. For each binding of X ∈ V
to a constant x, it looks up the corresponding row in the pre-computed table
for X’s type. Each element in this row indicates if a given feature holds for this
binding. The algorithm records this in the array Holds. After all bindings have
been processed, Holds indicates the features that hold for the example. Holds
can now be used to update the class-wise counts.

ComputeCounts is more efficient than computing the required counts for each
of the features separately for two reasons. First, it computes the counts for all
features in one pass over the data. This is, clause c extended with l needs to be
executed only once on each example instead of once for each feature. Second, it
caches in pre-computed tables whether or not a given feature holds.

3 Experimental Evaluation

We compare the feature based evaluation of literals (FBE) presented in this
paper to lookahead. The conjecture is that (1) models built using FBE have a
comparable accuracy to models built using lookahead and (2) FBE is consider-
ably faster.

We test FBE in the ILP algorithm Tilde [2], that is available in ACE 1.2.9
[3]. Tilde induces first-order logical decision trees. Briefly, these are decision
trees similar to the ones of C4.5 [10], but the tests in the internal nodes are
expressed in first-order logic, meaning that each test is a conjunction of one or
more literals. We use the exhaustive lookahead feature of Tilde. For a lookahead
depth of n each node can contain at most n + 1 literals and these are found by



Table 2. Comparison of Tilde with our new FBE approach to Tilde with exhaustive
lookahead of depth 0 to 2. The columns represent the data set and its number of
positive/negative examples, the accuracy and AUPRC measured using cross-validation
(with 90% confidence intervals), the CPU time for the cross-validation (not including
loading of the data and pre-computing tables - the latter are small and range from
0.01 to 0.32 sec/fold), and the average tree size. Significant wins/losses of lookahead
versus FBE are indicated with ⊕ and 	 (significance level 0.01). All experiments are
performed on an Intel Xeon 3.3GHz / 4GB Linux system.

Data Method Accuracy AUPRC Time (sec) Size (nodes)

Muta188 L0 69.1 ± 7.5 70 ± 8 	 1 1.0
#p = 125 L1 74.5 ± 4.7 84 ± 7 62 11.8
#n = 63 L2 73.9 ± 6.7 79 ± 6 1455 11.8

FBE 76.6 ± 5.3 85 ± 8 13 14.8

Muta230 L0 63.9 ± 3.3 	 65 ± 4 	 1 1.7
#p = 138 L1 74.8 ± 5.8 84 ± 3 321 18.8
#n = 92 L2 73.5 ± 3.4 81 ± 7 2482 15.3

FBE 74.8 ± 4.7 86 ± 4 36 19.2

Financial L0 86.8 ± 0.7 	 13 ± 1 	 0 0.0
#p = 31 L1 96.6 ± 1.5 84 ± 9 25 2.0
#n = 203 L2 96.2 ± 1.8 81 ± 9 2716 1.4

FBE 96.6 ± 1.5 84 ± 9 13 2.0

Sisyphus A L0 62.1 ± 0.0 	 62 ± 0 	 3 0.0
#p = 10723 L1 94.9 ± 0.5 97 ± 1 4302 18.6
#n = 6544 L2 96.6 ± 0.2 ⊕ 98 ± 0 ⊕ 161253 22.7

FBE 94.8 ± 0.3 97 ± 1 779 17.4

Sisyphus B L0 71.4 ± 0.0 	 29 ± 0 	 1 0.0
#p = 3705 L1 75.9 ± 0.7 59 ± 1 5544 57.2
#n = 9229 L2 92.0 ± 0.3 ⊕ 86 ± 1 ⊕ 92053 14.6

FBE 76.1 ± 0.7 59 ± 2 223 43.1

UWCSE L0 93.6 ± 2.3 39 ± 17 20 25.4
#p = 113 L1 94.0 ± 2.3 29 ± 14 163 31.6
#n = 2711 L2 94.3 ± 2.3 33 ± 13 8098 24.6

FBE 95.0 ± 1.3 34 ± 19 74 45.2

Yeast L0 87.7 ± 0.4 	 68 ± 2 1479 82.0
#p = 1299 L1 88.0 ± 0.6 63 ± 2 	 3630 65.8
#n = 5456 L2 88.0 ± 0.5 	 62 ± 2 	 436062 62.4

FBE 88.8 ± 0.4 71 ± 1 3023 95.1

Carc L0 62.1 ± 4.5 66 ± 4 23 15.0
#p = 182 L1 60.3 ± 4.1 67 ± 4 1843 32.4
#n = 148 L2 60.0 ± 3.4 64 ± 4 2183 17.5

FBE 60.3 ± 4.3 67 ± 5 262 35.3

Bongard L0 98.1 ± 0.4 	 98 ± 1 	 90 11.4
#p = 671 L1 99.6 ± 0.3 100 ± 0 215 9.9
#n = 864 L2 100.0 ± 0.0 100 ± 0 22637 5.0

FBE 99.5 ± 0.3 100 ± 0 31 14.1



means of exhaustive search. The lookahead algorithm implemented in Tilde
provides a challenging baseline for comparison because it employs query-pack
execution [3], which has been shown to yield large gains in execution time in
combination with lookahead.

We have implemented FBE in Tilde. To compute the conjunction for a node
of the tree, we use greedy search with the FBE score to find a conjunction of at
most two literals. Therefore, our results are comparable to depth one lookahead.
The evaluation score of a literal is computed as the maximum of the informa-
tion gain ratios [10] computed for its features (the latter are computed using
ComputeCounts shown in Fig. 1).

We perform experiments on nine data sets: two versions of Mutagenesis
(Muta [7], p. 344), Financial [1], Sisyphus task A and B [4], UWCSE [5], Yeast
[5], Carcinogenesis (Carc [7], p. 345), and Bongard ([7], p. 136). Details of the
data sets can be found in the listed references. We run Tilde with FBE and
with exhaustive lookahead of depth 0 to 2. We estimate the predictive accuracy
and area under the precision-recall curve (AUPRC) [6] of the obtained models
using 10 fold stratified cross-validation for all data sets except UWCSE. For this
data set, we use the 5 folds provided by the original authors.

Table 2 presents the results. Most results confirm our hypothesis. The re-
sults obtained with FBE have comparable accuracy and AUPRC to those with
lookahead depth one (L1) and are never significantly worse. For six data sets
the accuracy (AUPRC) of FBE is significantly better than that of L0. Note that
for some data sets, Tilde fails to build a model without lookahead (cf. the Size
column). The reason is that none of the evaluated clauses yields a non-zero gain
in these cases. For the Sisyphus data sets, L2 performs significantly better than
FBE. Note that L2 is more expressive (it allows two literals in each node). It is
also 200-400 times slower on these data sets.

The FBE approach is always faster than L1 and L2. It is on average 7 times
faster than L1 and 200 times faster than L2. Of course, our approach trades
time for memory: it makes use of pre-computed tables. The memory required for
storing these tables was, however, limited: the memory overhead over the space
required for loading the system and the data was at most 12%.

4 Conclusions

Greedy machine learning algorithms and in particular Inductive Logic Program-
ming (ILP) algorithms suffer from shortsightedness resulting in accuracy-wise
suboptimal models. Lookahead helps greedy search overcome this shortcoming,
but incurs an exponential increase in execution time. In this paper, we propose
an alternative termed feature based evaluation (FBE). The idea behind feature
based evaluation is to compute the score of a refinement based on a number
of features that are defined for it. The particular instantiation of FBE that is
considered in this paper can be seen as a restricted form of lookahead. In an
experimental evaluation of the approach, we show that FBE yields models with



an accuracy comparable to that of models built with lookahead and that FBE
is considerably faster.

Other researchers have considered the problem of myopia in greedy ILP sys-
tems. Most approaches can be seen as a limited form of lookahead. These include
determinate literals, template based lookahead, and macro-operators. Besides
lookahead, beam-search has also been used. A comparison of systems implement-
ing these different approaches appears in [9]. Skewing [11] also reduces myopia of
greedy learners. Skewing is, however, less applicable to the type of myopia faced
by relational learners, which occurs for non-discriminating literals that introduce
useful new variables.

Interesting directions for further work include evaluating FBE in the con-
text of a rule learner, investigating other evaluation scores based on FBE (e.g.,
the Euclidean distance mentioned in Section 2.1), and testing FBE with higher
lookahead depths (e.g., to approximate depth two lookahead, one would add
features consisting of two literals in the set of pre-computed tables described in
Section 2.2).
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