3.4 Functions of Random Variables

We study the mean and variance of a function of random variables, with special interest in the sample mean, $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$.

One Random Variable, X (continuous case; discrete is similar)

Multiplying by a constant a:

The mean of aX is

$$\mu_{aX} = E(aX) = \int_{-\infty}^{\infty} (ax)f(x) \, dx = \int_{-\infty}^{\infty} [a^2(x - \mu_X)^2] f(x) \, dx = \sigma^2_{aX}$$

The variance of aX is

$$\sigma^2_{aX} = E[(aX - a\mu_X)^2] = E[a^2(X - \mu_X)^2] = \int_{-\infty}^{\infty} [a^2(x - \mu_X)^2] f(x) \, dx$$

Adding a constant a:

The mean of $X + a$ is

$$\mu_{X+a} = E(X + a) = \int_{-\infty}^{\infty} (x + a)f(x) \, dx = \int_{-\infty}^{\infty} [(X + a) - (\mu_X + a)]^2 f(x) \, dx = \sigma^2_{X+a}$$

The variance of $X + a$ is

$$\sigma^2_{X+a} = E([X + a - (\mu_X + a)]^2) = \int_{-\infty}^{\infty} [a^2(x - \mu_X)^2] f(x) \, dx$$

Two Independent Random Variables, X and Y (discrete; continuous is similar)

X and Y are independent random variables \iff for all sets of numbers S and T,

$$P(X \in S \text{ and } Y \in T) = \cdots$$

(If we understand "$X \in S$" and "$Y \in T$" to be events, then this definition is like the one for independent events.) More generally, X_1, \cdots, X_n are independent \iff for all sets S_1, \cdots, S_n, $P(X_1 \in S_1 \text{ and } \cdots \text{ and } X_n \in S_n) = P(X_1 \in S_1) \cdots P(X_n \in S_n)$.
Mean of $X + Y$:

$$
\mu_{X+Y} = E(X + Y)
= \sum_x \sum_y (x + y)P(X = x, Y = y)
= \ldots
= \ldots
$$

Variance of $X + Y$:

$$
\sigma^2_{X+Y} = E \left[(X + Y - \mu_{X+Y})^2 \right]
= \sum_x \sum_y [(x + y) - (\mu_X + \mu_Y)]^2 P(X = x, Y = y)
= \sum_x \sum_y [(x - \mu_X) + (y - \mu_Y)]^2 P(X = x)P(Y = y), \text{ by independence}
= \sum_x \sum_y [(x - \mu_X)^2 + 2(x - \mu_X)(y - \mu_Y) + (y - \mu_Y)^2] p(x)p(y), \text{ using } P(X = x) = p(x)
= \sum_x (x - \mu_X)^2 p(x) \sum_y p(y) + 2 \sum_x \sum_y (xy - \mu_Y x - \mu_X y + \mu_X \mu_Y) p(x)p(y) + \sum_x p(x) \sum_y (y - \mu_Y)^2 p(y)
= \sigma^2_X + 2 \left[\sum_x xp(x) \sum_y yp(y) - \mu_Y \sum_x xp(x) \sum_y p(y) - \mu_X \sum_y yp(y) + \mu_X \mu_Y \sum_x p(x) \sum_y p(y) \right]
+ \sigma^2_Y
= \sigma^2_X + 2[\mu_X \mu_Y - \mu_Y \mu_X - \mu_X \mu_Y + \mu_X \mu_Y] + \sigma^2_Y
= \sigma^2_X + \sigma^2_Y.
$$

Generalize to Many Independent Random Variables, X_1, \ldots, X_n

- The mean of $X_1 + \cdots + X_n$ is $\mu_{X_1+\cdots+X_n} = \ldots$
- The variance of $X_1 + \cdots + X_n$ is $\sigma^2_{X_1+\cdots+X_n} = \ldots$

Now we can handle any linear combination, $c_1X_1 + \cdots + c_nX_n$, of independent random variables.

e.g. (p. 114 #1 (c)) If X and Y are independent with $\mu_X = 9.5, \mu_Y = 6.8, \sigma_X = .4$, and $\sigma_Y = .1$, then find the mean and standard deviation of $X + 4Y$.
Independence and Simple Random Samples

Before sampling, we can think of each item in a simple random sample as a ________________.

We suppose \(X_1, \cdots, X_n \) are ________________ if they’re from a simple random sample. (So, from §1.1, \(n \) is small compared to the population size \(N \): \(n < ______________ \).) They all have the same distribution as the population, so their distributions are the same: \(X_1, \cdots, X_n \) are independent and identically distributed (i.i.d.).

The Mean and Variance of a Sample Mean

Suppose \(X_1, \cdots, X_n \) are a simple random sample from a population with mean \(\mu \) and variance \(\sigma^2 \). Then the \(\{X_i\} \) are i.i.d., and, before sampling, \(\bar{X} \) is a ________________.

- The mean of \(\bar{X} \) is \(\mu_{\bar{X}} = \)

- The variance of \(\bar{X} \) is \(\sigma^2_{\bar{X}} = \)

- The standard deviation of \(\bar{X} \) is \(\sigma_{\bar{X}} = \)

To summarize, \(\mu_{\bar{X}} = \mu \) and \(\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}} \) (Don’t ________________.)

e.g. We use the average of four weighings on a lab scale, \(\bar{X} = \frac{1}{4}(X_1 + X_2 + X_3 + X_4) \), where the \(X_i \)s are i.i.d. with standard deviation \(\sigma \), because \(\sigma_{\bar{X}} = \)

Standard Deviations of Nonlinear Functions of Random Variables

Propagation of Error

We want to estimate the standard deviation of a nonlinear function \(f \) of a random variable \(X \). Recall the Taylor series expansion of an infinitely differentiable function \(f(x) \) near \(x = a \):

\[
f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \frac{f^{(3)}(a)}{3!}(x - a)^3 + \cdots
\]

The first two terms serve as an approximation: \(f(x) \approx ______________ \) (draw)

So to estimate \(\sigma_{f(X)} \), we can use \(\sigma_{f(X)} \approx ______________ \). This is the propagation of error formula.

e.g. (p. 112 Example #3.29) Suppose the radius \(R \) of a circle is measured to be 5.43 cm, with \(\sigma_R = .01 \) cm. Estimate the area of the circle, \(A = \pi R^2 \), and estimate \(\sigma_A \).
The Taylor approximation can be \[\frac{\partial f}{\partial x} \approx \frac{\partial f}{\partial y} \approx \frac{\partial f}{\partial z} \approx \] so use no more than two significant digits for \(\sigma_f(X) \).

Review (or Preview) of Partial Derivatives

The *partial derivative* of a function of several variables is its derivative with respect to \[\frac{\partial f}{\partial x} \approx \frac{\partial f}{\partial y} \approx \frac{\partial f}{\partial z} \approx \] with the others \[\frac{\partial f}{\partial y} = \frac{\partial f}{\partial z} = \] .

\[f(x,y,z) = x^3 + x^2 y + x z^3 \implies \frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = \frac{\partial f}{\partial z} = \]

\[V = \pi r^2 h \implies \frac{\partial V}{\partial r} = \frac{\partial V}{\partial h} = \]

Multivariate Propagation of Error

More generally, consider a multivariable function \(f(X_1, \cdots, X_n) \). If \(X_1, \cdots, X_n \) are independent random variables with small standard deviations \(\sigma_{X_1}, \cdots, \sigma_{X_n} \), then

\[
\sigma_{f(X_1, \cdots, X_n)} \approx \sqrt{\left(\frac{\partial f}{\partial X_1} \right)^2 \sigma_{X_1}^2 + \cdots + \left(\frac{\partial f}{\partial X_n} \right)^2 \sigma_{X_n}^2}
\]

where, in practice, we evaluate the partial derivatives at \((X_1, \cdots, X_n) \).

This is the *multivariate propagation of error* formula. It can help decide which \[\frac{\partial f}{\partial X_1} \approx \frac{\partial f}{\partial X_2} \approx \frac{\partial f}{\partial X_3} \approx \] are most responsible for random variation in a quantity calculated from several measurements.

\[T = 1.203 PV \] (when \(P \) is measured in kilopascals, \(T \) is measured in kelvins, and \(V \) is measured in liters).

(a) Assume \(P \) is measured to be 242.52 kPa, with \(\sigma_P = .03 \) kPa, and \(V \) is measured to be 10.103 L with, \(\sigma_V = .002 \) L. Estimate \(T \) and \(\sigma_T \).

(b) Which would reduce \(\sigma_T \) more: reducing \(\sigma_P \) to .01 kPa or reducing \(\sigma_V \) to .001 L?