5.3 Confidence Intervals for Proportions

5.4 Small-Sample Confidence Intervals for a Population Mean

5.3 Confidence Intervals for Proportions

The Old Method

Let

- \(p = \frac{\text{#successes in population}}{\text{population size}} \) = population proportion of successes (a fixed, unknown \(p \))
 e.g. (from §5.1 lecture) \(p = \) U.S. unemployment rate

- \(X = \#\text{successes in } n \text{ independent Bernoulli trials with } P(\text{success}) = p \) \(X \sim \) ____________
 e.g. \(X = \#\text{unemployed in a random sample of size } n \) (“success” = “unemployed”)

- \(\hat{p} = \frac{\text{#successes in sample}}{\text{sample size}} = \) sample proportion of successes (a random ____________)
 So \(\hat{p} = \) _______ (= 7.9% in October 3, January, 2013, Gallup poll)

If \(np > 10 \) and \(n(1-p) > 10 \), then \(X \sim N(np, np(1-p)) \) (\(\approx \), from §4.8 CLT), so

\[\hat{p} \sim N(\mu_\hat{p} = \text{______}, \sigma^2_\hat{p} = \text{______}) = N(\text{______}, \text{______}) \]

We could use the §5.2 reasoning to derive a confidence interval for \(p \). Instead, for a different approach, here I’ll declare the interval and show that it has the advertised coverage.

Claim: the interval \(\hat{p} \pm z_{\alpha/2} \sigma_\hat{p} \) contains \(p \) for a proportion \(1 - \alpha \) of random samples.

Proof: \(P(p \in \text{interval}) = P(\hat{p} - z_{\alpha/2} \sigma_\hat{p} < p < \hat{p} + z_{\alpha/2} \sigma_\hat{p}) \)

But we don’t know \(\sigma_\hat{p} \) because we don’t know ______. For large \(n \), we can estimate it with ______

to say that an approximate 100\%(1 - \alpha) confidence interval for \(p \) is \(\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \).

e.g. (p. 193 #3a) Leakage from underground fuel tanks pollutes water. In a random sample of 87 gas stations, 13 had at least one leaking tank. Find a 95% confidence interval for the proportion \(p \) of stations with at least one leaking tank.
In many cases, using $p \approx \hat{p}$ (in $\sigma_{\hat{p}}$) makes this interval ___________ to have its claimed confidence.

The New Plus-Four Method

Recent research (1998) describes an improvement: add ___________ observations, ________ successes and ________ failures, to the sample. That is, define $\hat{n} = ________$ and $\hat{p} = ________$ (“p-tilde”) and use the “plus-four” interval

$$\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1 - \hat{p})}{\hat{n}}}$$

(Since $p \in [0, 1]$, ________ the interval if it extends outside [0, 1].)

e.g. (p. 193 #3a) Find the 95% plus-four confidence interval for p in the leaking tank example.

Choosing the Sample Size

For a desired margin of error m, we can find the required sample size:

$$m = \Rightarrow \hat{n} = \Rightarrow n =$$

(Note: the book forgot __________ in its derivation on pp. 191-192.)

This relies on an estimate \hat{p} from __________. If none is available, use $\hat{p} = ______$, which maximizes $\hat{p}(1 - \hat{p})$, ensuring that n will be large enough to give the desired margin.

e.g. (p. 193 #3c) How many stations must be checked for leaks to get an error margin of .04?

A Pattern to Notice

Many confidence intervals have the form

(point estimate) ± (margin of error)

= (point estimate) ± (table value for confidence) × [(estimated or true) standard deviation of point estimate]

= $\hat{\theta} \pm$ (table value for confidence) × $\sigma_{\hat{\theta}}$
5.4 Small-Sample Confidence Intervals for a Population Mean

In §5.2 we used the CLT to say that, for a large random sample \(X_1, \ldots, X_n\) from a population with mean \(\mu\) and standard deviation \(\sigma\), \(\bar{X} \sim \ldots\). We used this normal distribution to make a confidence interval for \(\mu\) around \(\bar{X}\). But the CLT is no help for a small sample: in this course, we’re \ldots.

However, for the special case that the population is \ldots, so that \(X_i \sim N(\mu, \sigma^2)\), we saw in §4.3 that \(\bar{X} \sim N(\mu, \frac{\sigma^2}{n})\) (\ldots), even for small \(n\).

Standardizing gives \(Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}}\), but we don’t know \ldots. For large \(n\), we used \ldots, but this approximation \ldots for small \(n\). A new distribution solves this problem.

The Student’s \(t\) Distribution

Define the random variable \(T = \frac{\bar{X} - \mu}{s/\sqrt{n}}\). \(T\)’s distribution isn’t normal; it’s the Student’s \(t\) distribution with \(n-1\) degrees of freedom, denoted \(t_{n-1}\). (“Student” is a pseudonym for William Gosset, a statistician at \ldots.) Here are some of its properties:

- \(T\) is a sample version of a \ldots, estimating how far \(\bar{X}\) is from \ldots, in \ldots
- \(t_{n-1}\) looks like \(N(0, 1)\): symmetric about \ldots, \ldots-peaked, and \ldots-shaped
- \(T\)’s variance is \ldots than \(Z\)’s because estimating \(\sigma\) (\ldots) by \(s\) (\ldots) gives \(T\) more variation than \(Z\): \(t_{n-1}\) is shorter with thicker tails (draw \(N(0, 1)\) and \(t_{6-1}\))

- As \(n\) increases, \(t_{n-1}\) gets closer to \ldots (\(s\) becomes a \ldots of \(\sigma\)); in the limit as \(n \to \infty\), they’re \ldots

Let \(t_{n-1,\alpha}\) = the critical value \(t\) cutting off a \ldots area of \(\alpha\) from \(t_{n-1}\) (draw). Table A.3 (p. 523) gives \ldots tail probabilities, using \(\nu\) (“nu”) for \(n-1\).

e.g. Use Table A.3 to find the critical value \(t\)

- cutting off a right tail area of .05 from the \(t_{6-1}\) distribution: \(t_{5,05}\) = \ldots
- such that the area under the \(t_{22-1}\) curve between \(-t\) and \(t\) is 98%
- such that the area under the \(t_{25-1}\) curve left of \(t\) is .025
- such that the area under the \(t_{25-1}\) curve left of \(t\) is .70
Confidence Intervals Using the Student’s t Distribution

We can work from $T = \frac{\bar{X} - \mu}{s/\sqrt{n}} \sim t_{n-1}$ to a 100%(1 − α) confidence interval for μ.

Start with $P(-t_{n-1,\alpha/2} < T < t_{n-1,\alpha/2}) = 1 - \alpha$ (draw). It implies

$P(-t_{n-1,\alpha/2} < \frac{\bar{X} - \mu}{s/\sqrt{n}} < t_{n-1,\alpha/2}) = 1 - \alpha$, which we solve in two ways:

- for \bar{X} in the middle: $P(\mu - t_{n-1,\alpha/2} \frac{s}{\sqrt{n}} < \bar{X} < \mu + t_{n-1,\alpha/2} \frac{s}{\sqrt{n}}) = 1 - \alpha$ (draw)
- for μ: $P(\bar{X} - t_{n-1,\alpha/2} \frac{s}{\sqrt{n}} < \mu < \bar{X} + t_{n-1,\alpha/2} \frac{s}{\sqrt{n}}) = 1 - \alpha$ (add to drawing for a typical \bar{X})

That is, $\bar{X} \pm t_{n-1,\alpha/2} \frac{s}{\sqrt{n}}$ contains μ for a proportion 1 − α of random samples. It’s the 100%(1 − α) confidence interval for μ, for a small random sample from a _________ population with mean μ.

Example

e.g. We can study air bubbles in amber (fossilized tree resin) to learn what the atmosphere was like long ago. Amber bubbles from 85 million years ago (when __________ were around) have these percentages of nitrogen (N):

63.4 65.0 64.4 63.3 54.8 64.5 60.8 49.1 51.0

Assume this is a SRS from the atmosphere (some experts disagree). Find a 90% confidence interval for the mean percent of N in ancient air.

(Wiki says N is 78.1% today. Of which movie does this remind you? ______________)

Cautions

- The data must be (reasonably regarded as) a _________ from the population
- __________ are uncommon in data from normal distributions (§4.3), so don’t use this interval with data containing an __________
- Use t interval if data appear reasonably normal (roughly symmetric, single _____, no _________)