6.1 Large-Sample Tests for a Population Mean

In chapter 4, we found that for a population with mean μ and standard deviation σ, $\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$ in two important cases:

- for \underline{n} for (almost) any population (then “\sim” is $\underline{\text{ }}/\underline{\text{}}$)
- for \underline{n} only for a normal population (then “\sim” is $\underline{\text{ }}/\underline{\text{}}$)

In chapter 5, we used “$\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$” to make confidence intervals for μ. In §6.1 we use this fact to test hypotheses about μ.

Definitions and a First Example

A hypothesis test checks whether a parameter value $\underline{\text{ }}/\underline{\text{}}$ with a sample. It considers

- H_0, the null hypothesis, which asserts that “any effect indicated by the sample is merely due to $\underline{\text{ }}/\underline{\text{}}$, and is $\underline{\text{ }}/\underline{\text{}}$ an effect in the population”; and
- H_1, the alternative hypothesis, which $\underline{\text{ }}/\underline{\text{}}$ H_0 and says “the effect in the sample is $\underline{\text{ }}/\underline{\text{}}$ in the population”

H_0 is presumed until evidence makes $\underline{\text{ }}/\underline{\text{}}$ it unreasonable.
e.g. An environmental standard specifies that the mean dissolved oxygen content \(X \) in a stream should be greater than 5 mg/L. One-liter water samples from 45 random stream locations have \(\bar{x} = 4.62 \text{ mg/L} \), with \(s = 0.92 \text{ mg/L} \). Is this strong evidence that the stream has a (population) mean \(O_2 \) content \(\mu \) less than 5 mg/L, suggesting that a nearby polluter should be penalized?

We test

- \(H_0 : \mu = 5 \) (this could be any \(\mu \geq 5 \), but \(\mu = 5 \) most favors the innocence of the factory) against

- \(H_1 : \mu < 5 \)

The *null distribution* of a statistic is its distribution under _______________________.\

e.g. Find (and draw) the null distribution of \(\bar{X} \), the sample mean oxygen content.

A *test statistic* compares the ______________________ value of a parameter to an ________________ of the parameter from sample data. A large value of the test statistic indicates an estimate ________________ from the parameter, which is evidence ________________ \(H_0 \).

e.g. Standardize \(\bar{X} \) to get the test statistic \(Z = \frac{\bar{X} - \mu}{\sigma_x} = _______________________ \), which tells how far \(\bar{X} \) is from \(\mu \), in standard deviations. Since \(\bar{x} = 4.62 \text{ mg/L} \), \(z = _______________________ \).

A test’s *P-value* is the probability, under \(H_0 \), of a result _______________________ as the value of the test statistic (draw). The smaller the P-value, the ________________ the evidence against \(H_0 \).

e.g. Find the P-value of the oxygen test. Should the polluter be penalized?
A Two-Sided Test

The preceding test is *one-sided* because a test statistic value in only ______________ of its distribution is evidence against H_0. Next is a *two-sided* test, in which a value in ______________ is evidence against H_0.

e.g. (p. 220 #6) A stainless steel powder is supposed to have a mean particle diameter of $\mu = 15$ μm. A random sample of 87 particles had a mean diameter of 15.2 μm, with standard deviation 1.8 μm. Test whether this is evidence that the powder doesn’t meet its specification.

We test $H_0 : \text{_______________} \text{against} \ H_1 : \text{_______________}$

The null distribution of \bar{X} is \ldots

Find the P-value. Does the powder meet its specification?

Summary

Suppose X_1, \cdots, X_n is a large ($n > 30$) random sample from a population with mean μ and standard deviation σ. To test that μ has a specified value, μ_0,

1. State null and alternative hypotheses, $H_0 : \mu = \mu_0$ and H_1 (below)

2. Check assumptions

3. Find the z-score, $z = \frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}}$ (if σ is unknown, use $\sigma \approx s$)

4. Find the P-value, which depends on H_1:
 $H_1 : \mu > \mu_0 \implies P$-value $= P(Z > z)$, the area right of z
 $H_1 : \mu < \mu_0 \implies P$-value $= P(Z < z)$, the area left of z
 $H_1 : \mu \neq \mu_0 \implies P$-value $= P(|Z| > |z|)$, the sum of areas left of $-|z|$ and right of $|z|$

5. Draw a conclusion.
Extra Example

A dynamic cone penetrometer (DCP) measures material resistance to penetration (mm/blow) as a cone is driven into pavement or subgrade. Suppose an airport runway requires a true average DCP value below 30. Its pavement will not be used unless there is strong evidence that the specification has been met. Measurements at a random sample of 52 locations in the runway had mean $\bar{x} = 28.76$ and standard deviation $s = 12.26$. Should the runway be used?