9.3 Two-Factor Experiments (part 2 of 2)

Assumptions

1. The design is ____________
2. The design is ____________
3. $K \geq ____$
4. Within each treatment ij, the observations X_{ij1}, \ldots, X_{ijK} are a ________________ from a ____________ population
5. All treatment populations have ________________

Checks include:

- A residual plot of residuals $X_{ijk} - \bar{X}_{ij}$ vs. fitted values \bar{X}_{ij}, made by plotting the points $\{(\bar{X}_{ij}, X_{ijk} - \bar{X}_{ij})\}$ checks for equal variances: points should show no ________________ and no ________________
- A ____________ probability plot of residuals $X_{ijk} - \bar{X}_{ij}$ should be \approx ________________

Test Statistics for Two-Way ANOVA

The test statistics require ____________ squares from ____________ squares from ________________.

Sample Means

- ____________ mean $\bar{X}_{ij} = \frac{1}{K} \sum_{k=1}^{K} X_{ijk}$
- ____________ mean $\bar{X}_{i.} = \frac{1}{J} \sum_{j=1}^{J} \bar{X}_{ij} = \frac{1}{JK} \sum_{j=1}^{J} \sum_{k=1}^{K} X_{ijk}$
- ____________ mean $\bar{X}_{.j} = \frac{1}{I} \sum_{i=1}^{I} \bar{X}_{ij} = \frac{1}{IK} \sum_{i=1}^{I} \sum_{k=1}^{K} X_{ijk}$
- ____________ mean $\bar{X}_{..} = \frac{1}{IJ} \sum_{i=1}^{I} \sum_{j=1}^{J} \bar{X}_{ij}$ (average of observations)

\[
[= \frac{1}{IJ} \sum_{i=1}^{I} \sum_{j=1}^{J} \bar{X}_{ij} \text{ (average of cell means)}
\]
\[
= \frac{1}{J} \sum_{i=1}^{I} \bar{X}_{i.} \text{ (average of row means)}
\]
\[
= \frac{1}{I} \sum_{j=1}^{J} \bar{X}_{.j} \text{ (average of column means)}
\]
e.g. Find sample means for the data (p. 437 #6) on tool lifetime vs. feed rate and speed. Estimate
the main effects $\{\alpha_i\}$ and $\{\beta_j\}$ and the interactions $\{\gamma_{ij}\}$.

<table>
<thead>
<tr>
<th>Feed Rate</th>
<th>Speed</th>
<th>Medium</th>
<th>Fast</th>
<th>Row Means</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light</td>
<td>Slow</td>
<td>$X_{11} = 59.675$</td>
<td>$X_{12} = 59.550$</td>
<td>$X_{13} = 55.200$</td>
</tr>
<tr>
<td></td>
<td>$\hat{\gamma}_{11} = -1.22$</td>
<td>$\hat{\gamma}_{12} = .87$</td>
<td>$\hat{\gamma}_{13} = .35$</td>
<td></td>
</tr>
<tr>
<td>Medium</td>
<td>$X_{21} = 51.2$</td>
<td>$X_{22} = 49.650$</td>
<td>$X_{23} = 47.125$</td>
<td>$\bar{X}_{2..} = _________$</td>
</tr>
<tr>
<td></td>
<td>$\hat{\gamma}_{21} = ________$</td>
<td>$\hat{\gamma}_{22} = -1.16$</td>
<td>$\hat{\gamma}_{23} = 1.14$</td>
<td></td>
</tr>
<tr>
<td>Heavy</td>
<td>$X_{31} = 44.8$</td>
<td>$X_{32} = 41.050$</td>
<td>$X_{33} = 36.450$</td>
<td>$\bar{X}_{3..} = 41.225$</td>
</tr>
<tr>
<td></td>
<td>$\hat{\gamma}_{31} = 2.20$</td>
<td>$\hat{\gamma}_{32} = -0.71$</td>
<td>$\hat{\gamma}_{33} = -1.49$</td>
<td></td>
</tr>
</tbody>
</table>

Column Means

$\bar{X}_{1..} = ________$ $\bar{X}_{2..} = 50.083$ $\bar{X}_{3..} = 46.258$ $\bar{X}_{...} = ________$

Notes:

- $I = _______$, $J = ________$, $K = _________$
- $\hat{X}_{21} = _________$, $\hat{X}_{2} = __________$
- $\hat{X}_{...} = __________$, $\hat{\alpha}_{2} = __________$
- $\hat{X}_{.1} = _________$, $\hat{\beta}_{1} = __________$
- $\hat{\gamma}_{21} = __________$

Sums of Squares

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Example DF SS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rows (SSA)</td>
<td>$I - 1$</td>
<td>$JK \sum \hat{\alpha}{i}^2 = JK \sum{i=1}^{I} (\bar{X}{i..} - \bar{X}{...})^2$</td>
<td>2 1718</td>
</tr>
<tr>
<td>Columns (SSB)</td>
<td>$J - 1$</td>
<td>$IK \sum \hat{\beta}{j}^2 = IK \sum{j=1}^{J} (\bar{X}{.j..} - \bar{X}{...})^2$</td>
<td>_ _ _ _ _ _ _ _</td>
</tr>
<tr>
<td>Interactions (SSAB)</td>
<td>$(I - 1)(J - 1)$</td>
<td>$K \sum \sum \hat{\gamma}{ij}^2 = K \sum{i=1}^{I} \sum_{j=1}^{J} (\bar{X}{ij..} - (\bar{X}{...} + \hat{\alpha}{i} + \hat{\beta}{j}))^2$</td>
<td>4 48.8</td>
</tr>
<tr>
<td>Error (SSE)</td>
<td>$IJ(K - 1)$</td>
<td>$\sum \sum \sum \text{residual}^2_{ijk} = \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} (X_{ijk} - \bar{X}_{ij..})^2$</td>
<td>27 197.5</td>
</tr>
<tr>
<td>Total (SST)</td>
<td>$IJK - 1$</td>
<td>$\sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} (X_{ijk} - \bar{X}_{...})^2$</td>
<td>35 2189</td>
</tr>
</tbody>
</table>
Mean Squares

Divide each sum of squares (SS) by \(\frac{I-1}{I-1}\) to get a corresponding mean square (MS):

<table>
<thead>
<tr>
<th>Mean Square</th>
<th>Use</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSA = (\frac{SSA}{I-1})</td>
<td>MSA (\Rightarrow) reject (H_0 : \alpha_1 = \cdots = \alpha_I = 0)</td>
<td>859.2</td>
</tr>
<tr>
<td>MSB = (\frac{SSB}{J-1})</td>
<td>MSB (\Rightarrow) reject (H_0 : \beta_1 = \cdots = \beta_J = 0)</td>
<td>---</td>
</tr>
<tr>
<td>MSAB = (\frac{SSAB}{(I-1)(J-1)})</td>
<td>MSAB (\Rightarrow) reject (H_0 : \gamma_1 = \cdots = \gamma_{IJ} = 0)</td>
<td>12.2</td>
</tr>
</tbody>
</table>

MSE is the mean square ______. It depends on distances between ______ and their ______ means, but not on row or column effects or interactions. It’s an estimate of ______, measuring random variation inherent in the process.

MSE = \(\frac{SSE}{IJ(K-1)}\)

Test Statistics

The test statistics are ratios of MSA, MSB, and MSAB to ______. Each ratio has an ______ distribution under its respective null hypothesis:

- \(H_0 : \alpha_1 = \cdots = \alpha_I = 0 \Rightarrow F = \frac{MSA}{MSE} \sim F_{I-1,IJ(K-1)}\)

- \(H_0 : \beta_1 = \cdots = \beta_J = 0 \Rightarrow F = \frac{MSE}{\text{______}} \sim F_{______,______}\)

- \(H_0 : \gamma_1 = \cdots = \gamma_{IJ} = 0 \Rightarrow F = \frac{MSAB}{MSE} \sim F_{(I-1)(J-1),IJ(K-1)}\)

In each case, the \(P\)-value is a ______ probability from the appropriate \(F\) distribution.
e.g. Answer the questions, “Does feed rate influence lifetime?” and “Does speed influence lifetime?”.

- Does the \(\gamma_{ij} \) model hold? That is, is \(\gamma_{ij} = 0 \) for all \(i \) and \(j \) (so that the model \(\mu_{ij} = \mu + \alpha_i + \beta_j + \gamma_{ij} \) becomes \(\mu_{ij} = \mu \)?)

\[H_0 : \gamma_{11} = \ldots = \gamma_{IJ} = 0 \]

\(F = \)

\(P\)-value =

Conclusion:

- If the additive model holds,
 - does feed rate influence lifetime?
 \[H_0 : \alpha_1 = \ldots = \alpha_I = 0 \]
 \(F = \)
 \(P\)-value =

Conclusion:

- does speed influence lifetime?
 \[H_0 : \beta_1 = \ldots = \beta_J = 0 \]
 \(F = \)
 \(P\)-value =

Conclusion:

The preceding work can be summarized in this two-way ANOVA table:

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rows (SSA)</td>
<td>2</td>
<td>1718.4</td>
<td>859.2</td>
<td>117.7</td>
<td><.001</td>
</tr>
<tr>
<td>Columns (SSB)</td>
<td>2</td>
<td>224.2</td>
<td>112.1</td>
<td>15.3</td>
<td><.001</td>
</tr>
<tr>
<td>Interactions (SSAB)</td>
<td>4</td>
<td>48.8</td>
<td>12.2</td>
<td>1.67</td>
<td>>.100</td>
</tr>
<tr>
<td>Error (SSE)</td>
<td>27</td>
<td>197.5</td>
<td>7.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (SST)</td>
<td>35</td>
<td>2188.8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Two-Way ANOVA when \(K = 1 \)

\(K = 1 \implies \text{SSE} = \) \(\implies \text{can't estimate within-treatment variation; \text{MSE} = \frac{\text{SSE}}{IJ(K-1)} = \ldots = \ldots \implies \text{no} \) \text{for row and column effects.} \)

But, if we assume the \(\ldots \) holds \(\ldots \), we can use \(\ldots \) for SSE, and \(\ldots \) for MSE, and proceed with \(\ldots \) for row and column effects.