Basic Concepts in Number Theory

Somesh Jha

1 Basics

Given a positive integer \(n \), we will write \(a \equiv b \pmod{n} \) as the remainder when \(a \) is divided by \(n \) (for example \(17 \equiv 3 \pmod{7} \) is equal to \(3 \) and \(-17 \equiv 4 \pmod{7} \) is equal to \(4 \)). If \(a \equiv b \pmod{n} \), then we write it as \(a \equiv b \pmod{n} \). The greatest common divisor and least common multiple of \(a \) and \(b \) are denoted by \(\gcd(a, b) \) and \(\text{lcm}(a, b) \), respectively. For example, \(\gcd(6, 15) = 3 \) and \(\text{lcm}(6, 15) = 30 \). Figure 1 gives an algorithm to compute \(\gcd(x, y) \). The algorithm returns an array of three numbers \([c, a, b] \) such that \(c = \gcd(x, y) \) and \(ax + by = \gcd(x, y) \).

Exercise 1 Execute the algorithm on \(x = 7 \) and \(y = 15 \).

The following theorem (called the Fermat’s Little Theorem (FLT)) is very useful.

Theorem 1 Let \(p \) be a prime. Any integer \(a \) satisfies \(a^p \equiv a \pmod{p} \), and any integer \(a \) not divisible by \(p \) satisfies \(a^{p-1} \equiv 1 \pmod{p} \).

2 Groups

Definition 1 A semigroup is a nonempty set \(G \) together with a binary operation on \(G \) which is:

- (associative) for all \(a, b, c \) in \(G \), \(a(bc) = (ab)c \)

A monoid is a semigroup \(G \) which contains a

- (identity) identity element \(e \in G \) such that \(ae = ea = a \) for all \(a \in G \).

A group is a monoid \(G \) such that

- (inverse) for every \(a \in G \) there exists a (two-sided) inverse element \(a^{-1} \in G \) such that \(a^{-1}a = aa^{-1} = e \)

Let \(Z_n \) be the set \(\{0, 1, 2, \cdots, n-1\} \). We add two numbers \(i \) and \(j \) in \(Z_n \) by computing \((i + j) \pmod{n} \). Note that \((Z_n, +) \) is a group (where + is the addition operation that was just described).

Exercise 2 Verify that \((Z_n, +) \) satisfies the three group laws.
long int *gcdEuler(long int x, long int y) {

 long int *result, *recursive_result;

 //malloc three elements for the result
 result = (long int *)malloc(sizeof(long int)*3);

 //the base step
 if (y == 0) {
 result[0] = x;
 result[1] = 1;
 result[2] = 0;
 return(result);
 }

 //the recursive step
 recursive_result = gcdEuler(y, x % y);
 result[0] = recursive_result[0];
 result[1] = recursive_result[2];

 //free the array from recursive_result
 free(recursive_result);

 return(result);
}

Figure 1: C code for computing gcd.
Let \(Z^*_n \) be all elements of \(Z_n \) that are relatively prime to \(n \), which can be written as
\[
\{ i \mid i \in Z_n \text{ and } \gcd(n, i) = 1 \}
\]
Recall that \(\gcd(a, b) \) is the greatest common divisor of \(a \) and \(b \). We multiply two elements \(i \) and \(j \) in \(Z^*_n \) as follows:
\[
(i \times j) \pmod{n}
\]
We now note that \((Z^*_n, \cdot) \) (where \(\cdot \) is the multiplication operation just described) is a group.
- It is clear that \(\cdot \) is associative.
- The element \(1 \in Z^*_n \) is the identity.
- Let \(i \in Z^*_n \). Since \(\gcd(n,i) = 1 \) there exists \(a \) and \(b \) such that
\[
an + bi = 1 \pmod{n}.
\]
In this case \(b' \cdot i = i \cdot b' = 1 \). Therefore, each element in \(Z^*_n \) has an inverse.

Note: For a prime \(p \), \(Z_p = \{0, 1, 2, \cdots, p-1\} \) and \(Z^*_p = \{1, 2, \cdots, p-1\} \).

The size of \(Z^*_n \) is denoted by \(\phi(n) \). Note that \(\phi(n) \) also denotes the number of elements in \(Z_n \) that are relatively prime to \(n \). If \(p \) is prime, we have the following two equations if \(p \) is prime:
\[
\phi(p) = p - 1
\]
\[
\phi(p^c) = p^c - p^{c-1}
\]
Given a number \(n \) with prime factorization \(p_1^{a_1} \cdots p_k^{a_k} \), we have the following equation:
\[
\phi(n) = \phi(p_1^{a_1}) \cdots \phi(p_k^{a_k})
\]

Example 1 Let \(n = 3^25^3 \). Then \(\phi(n) \) is calculated below:
\[
\phi(3^25^3) = \phi(3^2)\phi(5^3) = (3^2 - 3) \cdot (5^3 - 5^2) = 6 \cdot 100 = 600
\]

Definition 2 A group \(G \) is called cyclic if there exists an element \(g \in G \) such that \(\{g^0, g^1, g^2, \cdots\} \) is equal to \(G \). Element \(g \) is called a generator of \(G \).

Fact 1 The group \(Z^*_p \) is cyclic. Moreover, there are algorithms for finding the generator for \(Z^*_p \).

Example 2 Consider \(Z^*_5 = \{1, 2, 3, 4\} \). Note that \(2^2 \equiv 4 \pmod{5}, 2^3 \equiv 3 \pmod{5} \), and \(2^4 \equiv 1 \pmod{5} \). Therefore, \(2 \) is a generator for \(Z^*_5 \).
3 Chinese Remainder Theorem (CRT)

Theorem 2 Let \(m_1, \ldots, m_r \) be \(r \) positive integers that are relatively prime to each other, i.e., \(\gcd(m_i, m_j) = 1 \) for \(1 \leq i < j \leq r \). Consider the following system of equations:

\[
\begin{align*}
 x &\equiv a_1 \pmod{m_1} \\
 x &\equiv a_2 \pmod{m_2} \\
 &\vdots \\
 x &\equiv a_r \pmod{m_r}
\end{align*}
\]

The Chinese Remainder Theorem (CRT) states that:

- **[Existence]**: There exists a solution to the system of equations.

- **[Uniqueness]**: Two solutions to the system of equations are congruent modulo \(M \) (where \(M = m_1m_2 \cdots m_r \)), i.e., any two solutions \(z_1 \) and \(z_2 \) to the system of equations given above satisfy \(z_1 \equiv z_2 \pmod{M} \).

[Uniqueness:]
First, we will prove the uniqueness part of CRT. Let \(z_1 \) and \(z_2 \) be two solutions to the following system of equations:

\[
\begin{align*}
 x &\equiv a_1 \pmod{m_1} \\
 x &\equiv a_2 \pmod{m_2} \\
 &\vdots \\
 x &\equiv a_r \pmod{m_r}
\end{align*}
\]

Since \(z_1 \equiv a_1 \pmod{m_1} \) and \(z_2 \equiv a_1 \pmod{m_1} \), \(z_1 \equiv z_2 \pmod{m_1} \). Therefore, \(m_1 | (z_1 - z_2) \). Similarly, \(m_i | (z_1 - z_2) \) for \(1 \leq i \leq r \), which proves that \(M | (z_1 - z_2) \) (recall that \(m_i \)s are relatively prime to each other).

[Existence:]
Let \(M_i = \frac{M}{m_i} \). Note that \(\gcd(m_i, M_i) = 1 \) and for \(j \neq i, m_i \mid M_j \). Since \(\gcd(m_i, M_i) = 1 \) there exists a \(N_i \) such that \(M_iN_i \equiv 1 \pmod{m_i} \), i.e., \(N_i \) is the inverse of \(M_i \). The following integer is a solution to the system of equations:

\[
\sum_{i=1}^{r} a_i M_i N_i
\]

Since \(M_iN_i \equiv 1 \pmod{m_i} \) we have that \(a_iM_iN_i \equiv a_i \pmod{m_i} \). Recall that \(m_i | M_j \) for \(i \neq j \). Therefore, \(a_jM_jN_j \equiv 0 \pmod{m_i} \). Combining the two observations we obtain that \(\sum_{i=1}^{r} a_i M_i N_i \equiv a_i \pmod{m_i} \).

Example 3 Consider \(m_1 = 5 \) and \(m_2 = 7 \) and the following system of equations:

\[
\begin{align*}
 x &\equiv 2 \pmod{5} \\
 x &\equiv 3 \pmod{7}
\end{align*}
\]
Let z_1 and z_2 be two solutions to the equations given above. We have that $z_1 \equiv z_2 \pmod{5}$ and $z_1 \equiv z_2 \pmod{7}$. Therefore, $5 \mid (z_1 - z_2)$ and $7 \mid (z_1 - z_2)$. Since 5 and 7 are relatively prime, $35 \mid (z_1 - z_2)$. Therefore, $z_1 \equiv z_2 \pmod{35}$.

Let $M = 5 \times 7 = 35$, $M_1 = 7$, and $M_2 = 5$. We also have $N_1 = 3$ and $N_2 = 3$, and note that $M_1 N_1 \equiv 1 \pmod{5}$ and $M_2 N_2 \equiv 1 \pmod{7}$. Consider the following integer:

$$2 \times 7 \times 3 + 3 \times 5 \times 3 = 87$$

Note that $87 \equiv 2 \pmod{5}$ and $87 \equiv 3 \pmod{7}$.
