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ABSTRACT
Privacy-preserving protocols allow multiple parties with pri-
vate inputs to perform joint computation while preserving
the privacy of their respective inputs. An important cryp-
tographic primitive for designing privacy-preserving proto-
cols is secure function evaluation (SFE). The classic solution
for SFE by Yao uses a gate representation of the function
that the two parties want to jointly compute. Fairplay is
a system that implements the classic solution for SFE. In
this paper, we present a new protocol for SFE that uses a
graph-based representation of the function. Specifically we
use the graph-based representation called ordered binary de-
cision diagrams (OBDDs). For a large number of Boolean
functions, OBDDs are more succinct than the gate-based
representation. Preliminary experimental results based on
a prototype implementation shows that for several functions,
our protocol results in a smaller bandwidth than Fairplay.
For example, for the classic millionaire’s problem, our new
protocol results in a approximately 45% bandwidth reduc-
tion over Fairplay. Therefore, our protocols will be partic-
ularly useful for applications for environments with limited
bandwidth, such as applications for wireless and sensor net-
works.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: Security
and Protection

General Terms
Security, Algorithms, Theory

Keywords
Binary Decision Diagrams, Secure Function Evaluation

1. INTRODUCTION
The ease and transparency of information flow on the In-

ternet has heightened concerns of personal privacy [10, 25].
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Various Internet activities, such as Web surfing, email, and
other services leak sensitive information. As a result, there
has been interest in developing technologies [9, 13, 24] and
protocols to address these concerns. In particular, privacy-
preserving protocols [11, 12, 18, 20] that allow multiple par-
ties to perform joint computations without revealing their
private inputs have been the subject of much interest. Our
focus in this paper is on two party privacy-preserving pro-
tocols.

One of the fundamental cryptographic primitives for de-
signing privacy-preserving protocols is secure function eval-
uation (SFE). A protocol for SFE enables two parties A and
B with inputs x and y respectively to jointly compute a func-
tion f(x, y) while preserving the privacy of the two parties
(i.e., at the end of the protocol, party A only knows its input
x and the value of the function f(x, y), and similarly for B).
Yao showed that for a polynomial-time computable function
f , there exists a SFE protocol that executes in polynomial
time [15, 27] (details about this protocol can be found in
Goldreich’s book [14, Chapter 7]). Yao’s classic solution for
SFE has been used to design privacy-preserving protocols
for various applications [1]. The importance of Yao’s pro-
tocol spurred researchers to design a compiler that takes a
description of the function f and emits code corresponding
to Yao’s protocol for secure evaluation of f . Such com-
pilers, for example Fairplay [22], enable wider applicability
of SFE. MacKenzie et al. [21] implemented a compiler for
generating secure two-party protocols for a restricted but
important class of functions, which is particularly suited for
applications where the secret key is protected using thresh-
old cryptography. For most applications, the classic protocol
for SFE is quite expensive, which has led researchers to de-
velop more efficient privacy-preserving protocols for specific
problems [11, 12, 18, 20].

In the classic SFE protocol, the function f is represented
as circuit comprised of gates. Fairplay uses this circuit rep-
resentation of f . Ordered Binary Decision Diagrams (OB-
DDS) are a graph-based representation of Boolean functions
that have been used in a variety of applications in computer-
aided design, including symbolic model checking (a tech-
nique for verifying designs), verification of combinational
logic, and verification of finite-state concurrent systems [3,
7]. OBDDs can be readily extended to represent functions
with arbitrary domains and ranges.

Given an OBDD representation of the function to be jointly
computed by the two parties, Yao’s protocol can be directly
used by first converting the OBDD into a circuit. Convert-
ing an OBDD to a circuit, however, incurs a blow-up in
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the number of gates required. To empirically measure this
blowup, we implemented a compiler that takes an OBDD
and converts it into a circuit description that can be used
in Fairplay. On the average, this conversion from OBDD to
circuit resulted in a increase in size by a factor of 10. Details
of this experiment can be found in Section 4.

In this paper, we present a SFE algorithm that directly
uses an OBDD representation of the function f that the two
parties want to jointly compute. The advantage of using an
OBDD representation over the gate-representation is that
OBDDs are more succinct for certain widely used classes of
functions than the gate representation. For example, among
other functions, our results show the OBDD representation
is more efficient than the gate representation for 8-bit AND,
8-bit addition, and the millionaire’s and billionaire’s prob-
lems [27]. As a result, our protocol has reduced bandwidth
consumption over the classic Yao protocol implemented in
Fairplay. Because processor speeds have increased at a more
rapid pace than bandwidth availability over the past years,
network bandwidth is likely to be the bottleneck for a num-
ber of applications. In particular, our protocols are espe-
cially useful for applications operating over networks with
limited bandwidth, such as wireless and sensor networks.
Furthermore, we have empirically confirmed this statement
by implementing our protocol and comparing it with Fair-
play.

This paper makes the following contributions:

• We present a SFE protocol that uses the OBDD repre-
sentation of the function to be jointly computed by two
parties. Our new protocol along with the correctness
proof is provided in Section 3.

• Experimental results based upon a prototype imple-
mentation of our protocol demonstrate that for cer-
tain functions, our implementation results in a smaller
encrypted circuit than Fairplay. For example, for the
classic millionaire’s problem, our implementation re-
duces the bandwidth by approximately 45% over Fair-
play. Our implementation and experimental results
are described in Section 4.

In summary, this paper presents a new SFE protocol that
uses the OBDD representation. The OBDD representa-
tion is more efficient for several practical functions of inter-
est. For other functions, the circuit description (and there-
fore FairPlay) will be more efficient. This paper presents
a generic alternative to Boolean circuits that can be used
when appropriate.

2. ORDERED BINARY DECISION
DIAGRAMS (OBDDS)

Ordered binary decision diagrams (OBDDs) are a canon-
ical representation for Boolean formulas [3]. They are often
substantially more compact than traditional normal forms,
such as conjunctive normal form (CNF) and disjunctive nor-
mal form (DNF), and they can be manipulated efficiently.
Therefore, they are widely used for a variety of applications
in computer-aided design, including symbolic model check-
ing, verification of combinational logic, and verification of
finite-state concurrent systems [7]. A detailed discussion of
OBDDs can be found in Bryant’s seminal article [3].

Given a Boolean function f(x1, x2, · · · , xn) of n variables
x1, · · · , xn and a total ordering on the n variables, the OBDD

for f , denoted by OBDD(f), is a rooted, directed acyclic
graph (DAG) with two types of vertices: terminal and non-
terminal vertices. OBDD(f) also has the following compo-
nents:

• Each vertex v has a level, denoted by level(v), between
0 and n. There is a distinguished vertex called root
whose level is 0.

• Each nonterminal vertex v is labeled by a variable
var(v) ∈ {x1, · · · , xn} and has two successors, low(v)
and high(v). Each terminal vertex is labeled with ei-
ther 0 or 1. There are only two terminal vertices in
an OBDD. Moreover, the labeling of vertices respects
the total ordering < on the variables, i.e., if u has a
nonterminal successor v, then var(u) < var(v).

Given an assignment A = 〈x1 ← b1, · · · , xn ← bn〉 to
the variables x1, · · · , xn the value of the Boolean function
f(b1, · · · , bn) can be found by starting at the root and fol-
lowing the path where the edges on the path are labeled
with b1, · · · , bn. OBDDs can also be used to represent func-
tions with finite range and domain. Let g be a function of
n Boolean variables with output that can be encoded by
k Boolean variables. The function g can be represented as
an array of k OBDDs where the i-th OBDD represents the
Boolean function corresponding to the i-th output bit of g.
For the rest of the paper we will assume that the function
f is a Boolean function, but our protocols can be easily ex-
tended for the case of functions with a finite range. We will
illustrate OBDDs with an example.

Example 1. Figure 1 shows the OBDD for the function
f(x1, x2, x3, x4) = (x1 = x2)∧(x3 = x4) of four variables
x1, x2, x3, x4 with the total ordering x1 < x2 < x3 < x4.

1

Notice that the ordering of the labels on the vertices on any
path from the root to the terminals of the OBDD corresponds
to the total ordering of the Boolean variables. Consider the
assignment 〈x1 ← 1, x2 ← 1, x3 ← 0, x4 ← 0〉. In the
OBDD shown in Figure 1, if we start at the root and follow
the edges corresponding to the assignment, we end up at
the terminal vertex labeled with 1. Therefore, the value of
f(1, 1, 0, 0) is 1.

One of the advantages of OBDDs is that they can be ma-
nipulated efficiently, i.e., given OBDDs for f and g, OB-
DDs for f ∧ g, f ∨ g, and ¬f can be computed efficiently.
We now describe an operation called restriction, which is
used in our protocol. Given a n variable Boolean function
f(x1, x2, · · · , xn) and a Boolean value b, f |xi←b is a Boolean
function of n−1 variables x1, · · · , xi−1, xi+1, · · · , xn defined
as follows:
f |xi←b (x1, · · · , xi−1, xi+1, · · · , xn) is equal to
f(x1, · · · , xi−1, b, xi+1, · · · , xn). Essentially f |xi←b is the
function obtained by substituting the value b for the variable
xi in the function f . Given the OBDD for f , the OBDD
for f |xi←b can be efficiently computed [3, Section 4]. The
restriction operation can be extended to multiple variables
in a straightforward manner, e.g., f |xi←b,xj←b′ can be com-
puted as (f |xi←b) |xj←b′ . We explain the algorithm using
our example; the reader is referred to [3] for details. Con-
sider the function f(x1, x2, x3, x4) described in example 1.

1OBDDs are sensitive to variable ordering, e.g., with the
ordering x1 < x3 < x2 < x4 the OBDD for (x1 = x2) ∧
(x3 = x4) has 11 nodes.

411



0 1

x1

x2

 0

x2

 1

 1

x3

 0

 0

 1

x4

 0

x4

 1

 1  0  0  1

Figure 1: OBDD for the function
f(x1, x2, x3, x4) = (x1 = x2) ∧ (x3 = x4).
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Figure 2: OBDD for the restriction f |x1←1,x3←0

where f(x1, x2, x3, x4) = (x1 = x2) ∧ (x3 = x4).

The OBDD corresponding to f |x1←1,x3←0 is shown in Fig-
ure 2. Since x1 ← 1, the root of OBDD (f |x1←1,x3←0) is
the left vertex labeled with x2. Consider the two vertices v1

and v2 labeled with x2. If v1 has an edge that points to the
vertex labeled with x3, then that edge is changed to point
to the right vertex labeled with x4 (because this is the ver-
tex reached if x3 is equal to 1). Notice that in the reduced
OBDD shown in Figure 2 the vertices that are labeled with
x1 and x3 have been eliminated.

3. TWO PARTY SFE WITH OBDDS
For our protocols, we require a symmetric encryption scheme

with two easily attained special properties [19], which are (1)
elusive range: an encryption under one key is in the range
of an encryption with a different key with negligible prob-
ability, and (2) efficiently verifiable range: given a key, a
user can efficiently verify that a ciphertext is in the range
of that key. These properties are required so that the re-
ceiver of the garbled OBDD can correctly decrypt nodes
in the OBDD. The formal definition of these properties by
Lindell and Pinkas [19] is provided with the proofs. An
example of a symmetric key encryption scheme that ful-
fills these properties is Ek(m) = (r , fk(r) ⊕ m ‖ 0n), where
f : {0, 1}n ×{0, 1}n → {0, 1}2n is a pseudo-random function

and r
R← {0, 1}n is a n-bit random sequence. Unless stated

otherwise, all symmetric key encryption schemes in this pa-
per, besides being semantically secure [14, Chapter 5], also
require these two properties.

Our protocol also uses a 1-out-of-2 oblivious transfer (de-
noted OT 2

1 ) protocol. A 1-out-of-k oblivious transfer OT k
1

is a protocol that lets Bob obtain one of k secrets held by
Alice, without Alice learning which secret Bob obtains.

We now give the protocol for securely computing an OBDD
between two parties where each party holds a part of the in-
put. Assume f is a Boolean function f(x1, x2, · · · , xn) of n

Boolean variables x1, x2, · · · , xn. Let OBDD(f) denote the
OBDD for f with the ordering x1 < x2 < · · · < xn. We
describe the protocol in stages. Protocol 1 described in Sec-
tion 3.1 assumes that Alice holds inputs corresponding to
the first k variables, and Bob has the inputs corresponding
to last n− k variables xk+1, . . . , xn. Protocol 2 described in
Section 3.2 allows arbitrary sharing of inputs, and it uses the
restriction operation on OBDDs described earlier to reduce
the bandwidth requirement of the protocol.

3.1 Protocol 1

For this protocol, we assume that Alice holds the inputs
(i1, . . . , ik) corresponding to the first k variables x1, . . . , xk,
and Bob has the inputs (ik+1, . . . , in) corresponding to last
n − k variables xk+1, . . . , xn. In our protocol, Alice and
Bob want to compute f(x1, · · · , xn) on their inputs using
the OBDD for f . As the outcome, Bob learns f(i1, . . . , in).
This protocol is described in Figure 3.

One of the difficulties in developing and proving the pro-
tocol is that OBDDs allow skipping of levels. For exam-
ple, Figure 4(a) shows the OBDD for the Boolean function
x1 ∧x2. Assume that the vertex at level 0 is labeled with x1

and vertices at level 1 are labeled with x2. Suppose Alice
owns variable x1 and Bob owns variable x2. If Alice’s input
is 1, then Bob follows one more edge than if Alice’s input
were 0, which allows Bob to determine Alice’s input. Com-
pare this to Figure 4(b), where a dummy vertex is added so
that, regardless of Alice’s input, Bob has to follow the same
number of edges. In this case, Bob learns nothing about
Alice’s input. Before Alice garbles the OBDDs, she adds
dummy vertices so that each path from the root to a termi-
nal node has the same number of edges. Alice adds dummy
nodes whenever OBDD(f) allows Bob to skip levels when
evaluating the OBDD on his share of the input. Recall that
the 0-successor and 1-successor of v is denoted by low(v)
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Input: Both parties’ inputs include the OBDD(f) for the Boolean function f(x1, x2, · · · , xn) with the ordering x1 < x2 <
· · · < xn. Furthermore, Alice holds the inputs (i1, . . . , ik) corresponding to the first k variables x1, . . . , xk, and Bob has the
inputs (ik+1, . . . , in).

1. Alice performs the following steps:

(a) She traverses the OBDD(f) using her input (i1, · · · , ik), which results in a node vinit at level k.

(b) She uniformly and independently at random creates (n−k) pairs of secrets (s0
1, s1

1), · · · , (s0
n−k , s1

n−k). In addition,

for each node v in the OBDD(f) whose level is between k and n − 1, Alice also creates a secret sv.

(c) She assigns a uniformly random label to each node whose level is between k and n. We refer to the randomly
assigned label of node v using the notation label(v).

(d) Next, Alice augments OBDD(f) with some number of dummy nodes (to ensure that Bob always traverses n− k
nodes in his phase of the protocol).

(e) Alice garbles all nodes whose level is between k and n− 1 in the following manner. Let v be a node in OBDD(f)

such k ≤ level(v) ≤ n − 1 and define level(v) = �. The encryption of node v, denoted by E(v), is a label and a
randomly ordered ciphertext pair

“
label(v) , Esv⊕s0

�−k+1
(label(low(v)) ‖ slow(v)) , Esv⊕s1

�−k+1
(label(high(v)) ‖ shigh(v))

”
,

where the labels are pre-pended to the secret with a separator symbol and the order of the ciphertexts is determined
by a fair coin flip. Roughly speaking, the secrets corresponding to the 0-successor and 1-successor of node v are
encrypted with the secret corresponding to v and its level.

Note that dummy nodes have the same structure as normal nodes, except that the ciphertext pair contain
encryptions of the same message since dummy nodes have the same 0 and 1-successors. Provided the encryption
scheme is semantically secure, this poses no problem since the keys are chosen uniformly at random.

Lastly, there are two terminal nodes of the form (b, label(tb)) for b = 0 or 1. Recall that OBDD(f) has two
terminal nodes, denoted as 0 and 1, that are at level n.

(f) Once Alice is done encrypting, she sends to Bob the encryption of all nodes whose level is between k and n and
the secret svinit corresponding to node vinit at level k. We called this the garbled OBDD.

2. Bob performs the following steps:

(a) He engages in n − k 1-out-of-2 oblivious transfers to obtain the secrets corresponding to his input. For example,
if his input ij is 0, then he obtains the (level) secret s0

j−k; otherwise, he obtains the secret s1
j−k.

(b) Now Bob is ready to start his computation. Suppose ik+1 = 0. With s0
1 and svinit , he decrypts both ciphertexts

in E(vinit) and decides which gives the correct result by using the verifiable range property of the encryption
scheme. Bob now has both slow(v) (the secret corresponding to the 0-successor of vinit) and label(low(v)) (which

tells Bob which encrypted node is used to evaluate his next input). Continuing this way, Bob eventually obtains a
label corresponding to one of the terminal nodes, which determines the result of the OBDD on the shared inputs.
Bob sends this result to Alice.

Figure 3: Protocol 1.

and high(v). For example, if node n at level j has node
n′′′ at level j + 3 as its 0-successor, then Alice inserts two
dummy nodes n′ and n′′ at level j +1 and j +2 respectively.
The 0-successor of node n is changed to n′, both 0 and 1-
successors of n′ are set to n′′, and both 0 and 1-successors
of n′′ are set to n′′′.

We prove correctness and security in the case of semi-
honest parties. In the semi-honest model, both parties are
assumed to perform computations and send messages ac-
cording to their prescribed actions in the protocol. They
may also record whatever they see during the protocol (i.e.
their own input and randomness, and the messages they re-
ceive). We refer readers to Goldreich’s book [14] for the com-
plete definitions. Claim 1 proves that the protocol shown
in Figure 3 is correct; that is, Bob computes the function
f(i1, · · · , in). Claim 2 proves that protocol 1 is secure in
the semi-honest model; that is, at the end of protocol 1,
Alice only knows its input and the value of the function
f(i1, · · · , in), and similarly for Bob. For our proofs, we re-
quire the definition of elusive range and efficiently verifiable
range from Lindell and Pinkas [19].

Definition 1. Let (G,E,D) be a symmetric key encryp-

tion scheme with key-generation, encryption, and decryption
algorithms. Denote the range of the scheme by Rangen(k) =
{Ek(x)}x∈{0,1}n . We say that

1. (G,E,D) has an elusive range if for every probabilistic
poly-time machine A, every polynomial p(·), and all
sufficiently large n, Prk←G(1n)[A(1n) ∈ Rangen(k)] <
1/p(n).

2. (G,E,D) has an efficiently verifiable range if there
exists a probabilistic poly-time machine M such that
M(1n, k, c) = 1 if and only if c ∈ Rangen(k).

Claim 1. If the encryption scheme has an elusive range
and the oblivious transfer protocol is secure, then Protocol 1
is correct for semi-honest Alice and Bob.

Proof: First we show that every node in the garbled OBDD
sent to Bob can be evaluated correctly. For an encrypted
node v, let c0 and c1 be the first and second ciphertext
term. Suppose k is the key that Bob obtains to decrypt
the ciphertext in node v. Because the encryption scheme
is elusive and all the keys used in the garbled OBDD are
chosen uniformly and independently at random, it follows
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Figure 4: Adding dummy vertices

immediately that, except with negligible probability, only
one ciphertext in an encrypted node decrypts correctly; that
is, either c0 ∈ Range(k) or c1 ∈ Range(k) but not both.
Hence, except with negligible probability, every node in the
garbled OBDD can be evaluated correctly.

By induction, we show that the correct key is obtained for
every node input and output. The base case is the key svinit

and the keys s
ik+1
k+1 , . . . , sin

n (corresponding to Bob’s input)
obtained from Alice through the n − k oblivious transfers.
The inductive step at node v assumes that the correct label
(pointing Bob to node v) and node key sv was obtained in

the previous step. Furthermore, the correct level key sil
l was

obtained by executing an oblivious transfer protocol. Since
every node in the garbled OBDD can be evaluated correctly
and the garbled OBDD is built by a semi-honest Alice, Bob
obtains the correct label and key output at node v, which
concludes the inductive step. We can conclude that the
entire garbled OBDD can be evaluated to give the correct
result.2 �

Claim 2. If the encryption scheme is semantically secure
and has an efficiently verifiable elusive range, and the obliv-
ious transfer protocol is secure, then Protocol 1 is secure
against semi-honest Alice and Bob.

Proof of this claim is tedious and is given in Appendix A.

3.2 Protocol 2
The protocol presented in this section allows both Alice

and Bob to possess arbitrary input sets instead of assuming
that Alice (and also Bob) holds either the first k or the last
n − k input variables. In this new protocol, before garbling
the OBDD, Alice can reduce the size of the OBDD by elim-
inating vertices whose labels correspond to Alice’s inputs.
Let f(x1, · · · , xn) be the function to be computed and XA

denotes the inputs of Alice. Alice first computes the OBDD
for the restriction f |XA of f for the variables in its input set
XA. Alice then encrypts the reduced OBDD and sends it
to Bob. During the restriction operation, all vertices whose
labels correspond to Bob’s input should be included. If this
is not the case, then there is a risk that different restrictions
could produce different numbers of nodes, which would leak
information to Bob about Alice’s inputs. For example, in

2Note that the negligible probability of error during decryp-
tion can be removed by Alice first checking that every en-
crypted node decrypts correctly before sending the garbled
OBDD to Bob.

0

x2

0 1

x2

0 1

x2 x2

Figure 5(a) Figure 5(b) Figure 5(c)

Figure 5: OBDD restriction

Input: Both parties’ inputs include the OBDD(f) for the
Boolean function f(x1, x2, · · · , xn) with the ordering x1 <
x2 < · · · < xn. Furthermore, Alice holds the inputs for the
variables in the set XA and Bob holds the inputs for the
variables in the set XB = {x1, · · · , xn} − XA.

1. Alice performs the following steps:

(a) Alice computes the OBDD OA for the function
f |XA

. This is the restriction operation de-
scribed in Section 2.

(b) Alice encrypts the OBDD for the function f |XA

and sends it to Bob. This step is exactly the
same as for Protocol 1 described in Figure 3.
Alice also sends the secret corresponding to the
root of the OBDD OA.

2. The computation for Bob is exactly the same as that
for Protocol 1.

Figure 6: Protocol 2.

Figure 5(a), where Alice’s value is 0, there are only 2 nodes,
but in Figure 5(b), there are 3 nodes. Figure 5(c) shows the
result of retaining extra vertices, in which case there are 4
nodes regardless of Alice’s inputs. The description of this
protocol is given in Figure 6. The proof of correctness of
this protocol is almost identical to the one presented in Sec-
tion 3.1. Example 2 shows an execution of this protocol on
a small function.

Example 2. Assume that Alice and Bob want to compute
f(x1, x2) = x1 ∧ x2, where Alice has input x1 and Bob has
input x2, or in other words XA = {x1} and XB = {x2}.
Assume that x1 = 0 and x2 = 1. OBDD(f) with dummy
nodes is shown in figure 4(b). Alice computes the OBDD for
the function f |x1←0, which results in a structure shown in
Figure 5(c). Let the two nonterminal nodes in Figure 5(c) be
v1 and v2. First, Alice generates 2 secrets sv1 and sv2 , which
are assigned to the nodes v1 and v2, respectively. Alice also
generates random labels for the four nodes in Figure 5(c),
and generates a pair of secrets (s0

1, s
1
1). The garbled OBDD

corresponding to Figure 5(c) is shown below (terminal nodes
are shown as 0 and 1 and lab denotes label).

(lab(v1), Esv1⊕s0
1
(lab(0) ‖ s0), Esv1⊕s1

1
(lab(0) ‖ s0))

(lab(v2), Esv2⊕s0
1
(lab(0) ‖ s0), Esv2⊕s1

1
(lab(1) ‖ s1))

(0, lab(0))
(1, lab(1))

Alice reveals the secret sv1 corresponding node v1. Alice and
Bob engage in a 1-out-of-2 (OT 2

1 ) protocol and Bob obtains
the secret s1

1 (recall that x2 = 1). Bob can now decrypt the
second component of the first entry of the garbled OBDD
and obtain label(0) ‖ s0, and Bob can infer that the output
is 0.
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Claim 3. If the encryption scheme has an elusive range
and the oblivious transfer protocol is secure, then Protocol 2
is correct for semi-honest Alice and Bob.

Proof: The proof of this claim is exactly same as the proof
of Claim 1. One has to assume that the restriction operation
used by Alice is correct. �

Claim 4. If the encryption scheme is semantically secure
and has an efficiently verifiable elusive range, and the obliv-
ious transfer protocol is secure, then Protocol 2 is secure
against semi-honest Alice and Bob.

Proof of this claim is tedious and is given in Appendix A.

4. IMPLEMENTATION AND
EXPERIMENTAL RESULTS

In this section we describe various components of our im-
plementation (called SFE-OBDD), which is based on proto-
col 2 described in Section 3.2. We also present experimental
results comparing the performance of our implementation
against Fairplay. The following major conclusions can be
drawn from our experimental investigation:

• The restriction operation used in protocol 2 can signif-
icantly reduce the size of the OBDD, which can lead
to reduced bandwidth while executing the protocol.

• Our OBDD protocol outperforms Fairplay circuit in
terms of bandwidth in most functions in our bench-
mark. However, some functions which have inefficient
OBDD representations can perform far worse.

• Execution times of our implementation and Fairplay
are dominated by the oblivious-transfer protocol. Since
the oblivious-transfer component of our protocol and
the protocol used by Fairplay is the same, with re-
spect to execution times we did not observe as much
improvement as in bandwidth.

• Converting an OBDD into a circuit results in a blowup
in size. We implemented a reverse compiler that takes
an OBDD and converts it into a circuit description,
which can be used in Fairplay. Typically this con-
version from OBDD to circuit resulted in a blowup in
size by a factor of 5−10, depending on post-conversion
optimizations. However, if the original circuit is par-
ticularly inefficient, it is possible for some gain to be
achieved due to the canonical representation property
of OBDDs.

4.1 Implementation
Our implementation consists of the following components:

1. An implementation of protocol 2 as described in Sec-
tion 3.2.

2. Fairplay uses the secure hardware definition language
(SHDL) to describe circuits. Because we wanted to
compare the performance of our protocol with the Yao
circuit protocol on identical functions, we implemented
an OBDD compiler that takes as input a file describing
a function in SHDL, and produces the corresponding
OBDD. Note that both the SHDL used by Fairplay and
the BDD representation originate from the same high
level SFDL description, this means that the OBDD
and circuit are evaluating the same functions.

For the cryptographic primitives we use exactly the same
implementation as Fairplay. We use the 1-out-of-2 (OT 2

1 )
proposed by Noar and Pinkas [23], and the encryption func-
tion is Ek(m) was SHA − 1(k) ⊕ (m ‖ 0n).

Our OBDD compiler allows us to directly compare the ef-
ficiency of our implementation to Fairplay. The OBDD com-
piler takes as input a file containing an SHDL description
and produces a file containing the description of the corre-
sponding OBDD. This file can then be used as an input to
the SFE protocol. Our compiler uses the JavaBDD [16], and
BuDDy [5] libraries, which provide functions to construct
and manipulate OBDDs. It is well known that the size of
an OBDD can be sensitive to the ordering of variables [3].
In some cases, variable ordering can make the difference be-
tween a OBDD that is linear versus exponential in the num-
ber of variables. Our SHDL to OBDD compiler allows the
user to specify a particular variable ordering, which is use-
ful if the user has domain knowledge about the function.
If this is not practical, the compiler includes an optimizer
that attempts to automatically find a variable ordering that
yields an efficient OBDD, making use of heuristic functions
built into the BuDDy library. Although in general finding
the optimal variable ordering is NP-hard [2], we have found
that in practice the optimizer can find good orderings for
various functions we considered.

4.2 Experimental Results
We used various functions, some of which are included in

the Fairplay distribution, as test cases to perform a com-
parison of the Fairplay protocol with our OBDD-based SFE
protocol. The description of the functions are given in Fig-
ure 7. Each function was evaluated at several word sizes to
evaluate scalability.

For each function, Figure 8 shows the sizes of the OBDDs
and the corresponding circuit used by Fairplay. The size of
an OBDD is the number of vertices in it. The size of a Fair-
play circuit with n1 gates of arity 1, n2 gates of arity 2, and
n3 gates of arity 3 was computed as 2×n1 +4×n2 +8×n3

(this represents the number of entries in the truth table for
the circuit). For the OBDDs, we show the sizes of the origi-
nal OBDDs (in column marked as Original), with the dummy
nodes added (in column marked as Full), and after Alice has
performed the restriction operation on OBDDs with dummy
nodes (in column marked as Res). Recall that dummy nodes
are added so that regardless of Alice’s inputs Bob has to fol-
low the same number of edges. In protocol 2 Alice computes
the OBDD for restriction on its input of the function to be
jointly computed for the variable. These operations are de-
scribed in detail in Section 3. Two observations can be made
from Figure 8.

• Restriction can significantly reduce the size of the OBDD.
For example, for the function Mil16 restriction reduces
the size of the OBDD by more than half.

• Notice that for all functions except MUL8, MUL16,
KDS4, KDS8, and KDS16 the size of the OBDD after
restriction is smaller than the size of the circuit used
in Fairplay. This suggests the choice of when to use
our system over Fairplay depends on the function to
be computed.

Our experimental results were obtained using a pair of
machines connected on a local 100-megabit network. The
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And This is a circuit that computes the bitwise AND of two N bit numbers. Alice has N inputs, Bob has N
inputs, and there are N bits of output.

Add This is a circuit that computes the addition of two N bit numbers. Alice has N inputs, Bob has N inputs,
and there are N bits of output. The high bit is discarded.

Eq This is a simple equality comparator of two N-bit numbers. There is one bit of output.
Mul This is a circuit that computes the unsigned multiplication of two N bit numbers. Alice has N inputs, Bob

has N inputs, and there are N bits of output. The output is modulo 2N . We were unable to test N=16
because of exponential blowup in the BDD

KDS This is a circuit that implements a simply-keyed database lookup. Alice supplies N key/value pairs, and
Bob supplies a key. The output is the value of that key, or 0 if the key is not found. The keys are log2(N)
bits, and the data are 24 bits. We were unable to test N=16 because of exponential blowup in the BDD.

Mil This is the millionaire’s problem. Alice and Bob each have and N bit integer as inputs, and there is 1 bit of
output indicating if Alice’s input is larger than Bob’s.

Parity Alice and Bob each have N-bits of input. They want to jointly compute the parity of their combined input
bits. There is one bit of output.

Figure 7: Description of the functions used in our experiments. Each function was tested with N=4, N=8,
and N=16 except where indicated

BDD FairPlay
Original Full Res

Add4 32 40 22 56
Add8 72 96 54 128
Add16 152 208 118 272
And4 14 18 10 24
And8 26 34 18 48
And16 50 66 34 96
Eq4 18 24 11 102
Eq8 27 41 18 230
Eq16 51 81 34 486
KDS4 416 578 466 356
KDS8 4084 7149 6283 780
KDS16 * * * 2244
MUL4 54 75 28 114
MUL8 1685 1800 1087 586
MUL16 * * * 2682
Mil4 24 34 22 52
Mil8 46 70 40 116
Mil16 94 150 90 244
parity4 18 18 10 30
parity8 34 34 18 62
parity16 66 66 34 126

Figure 8: Size of the OBDDs and the circuit used
in Fairplay for functions shown in Figure 7. Val-
ues labeled “*” could not be converted to OBDDs
because of exponential blowup.

machines were configured with 3.0Ghz Intel Pentium4 pro-
cessors, 1 gigabyte of memory, and the Centos Linux 4.0 op-
erating system using a modified Linux 2.6.9 kernel. For each
function shown in Figure 7 we executed our OBDD-based
and Fairplay code on a Sun Microsystems Java 1.5.0 04
JVM. Alice was run on one machine, and Bob on the other.
For each execution, we measured the network bandwidth
used (number of bytes transferred between Alice and Bob)
and the execution time. The number reported for each trial
is the average of three trials. Figure 9 shows the size of the
garbled OBDD and garbled circuit in bytes and the network
bandwidth for our implementation and Fairplay. Recall that
the garbled OBDD is the structure that Alice sends to Bob
to evaluate. With respect to network bandwidth our imple-
mentation outperformed Fairplay for seven out of the nine
functions. We have implemented a reverse compiler that
takes as input an OBDD, and outputs an SHDL description
of a boolean circuit to evaluate the OBDD. This is performed
via a straightforward transformation that takes each node in
the OBDD and produces corresponding 3-input MUX gate
in the boolean circuit. Then, an optimization pass is run
using the same techniques described in [22]. The column
labeled as “Converted Fairplay” in Figure 9 shows the size
of the encrypted circuits produced by running the FairPlay
protocol on the converted BDDs. Note that in a few cases,
the converted circuit is actually more efficient than the cor-
responding Fairplay circuit. This occurs because FairPlay
is not guaranteed to produce an optimal circuit from the
function description. However, it is clear that our protocol
that directly uses OBDD is much more efficient than the
protocol produced by the reverse compiler.

Figures 10 and 11 show the execution times for SFE-
OBDD and Fairplay. The elapsed execution times (EET)
are shown in the last column. Columns 2-5 show the break-
down by sub-task, which are IPCG (initializations, parsing,
and garbling), CC (circuit communication, Alice sending the
garbled structure to Bob), OT (Oblivious Transfer, Bob ob-
taining secrets corresponding to its input), and EV (circuit
evaluation, Bob evaluating the garbled structure). These
sub-tasks were also used by the Fairplay paper [22]. In gen-
eral, because the time for OT dominates the execution time,
we only observe moderate improvement in SFE-BDD over
Fairplay for execution times.
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Function Size in bytes. Bandwidth in bytes
SFE-OBDD Fairplay Converted Fairplay SFE-OBDD Fairplay

Add4 970 1915 5382 3604 4684
Add8 1979 4214 11408 6590 9000
Add16 3992 8821 23442 12557 17645
And4 739 1080 1866 3373 3849
And8 1206 2153 3140 5813 6938
And16 2134 4299 5546 10696 13117
Eq4 582 2977 2690 3214 5716
Eq8 828 6527 3918 5434 11240
Eq16 1324 13626 7012 9892 22295
KDS4 14966 12248 65946 51219 13984
KDS8 185282 25608 682333 261077 27838
MUL4 1108 3286 8354 3739 6052
MUL8 32206 15706 288317 36814 20493
Mil4 892 1662 4278 3524 4399
Mil8 1400 3542 8248 6012 8256
Mil16 2790 7306 16859 11356 15972
parity4 577 1092 3237 3209 3830
parity8 828 2181 6172 5438 6897
parity16 1324 4359 11983 9889 13033

Figure 9: Size in bytes of the garbled OBDD, garbled circuit, and garbled circuit using the reverse compiler.
Network bandwidth in bytes.

Fn IPCG CC OT Eval EET
Add4 13.75% 5.62% 79.69% 0.94% 0.32
Add8 13.08% 3.80% 82.07% 1.05% 0.47
Add16 11.39% 2.36% 84.42% 1.83% 0.76
And4 12.42% 5.73% 81.21% 0.64% 0.31
And8 9.38% 4.02% 85.94% 0.67% 0.45
And16 7.44% 2.75% 89.39% 0.41% 0.73
Eq4 12.66% 5.38% 81.33% 0.63% 0.32
Eq8 9.33% 3.90% 86.12% 0.65% 0.46
Eq16 8.97% 2.48% 88.14% 0.41% 0.72
KDS4 4.79% 0.95% 93.86% 0.40% 2.52
KDS8 10.91% 1.69% 87.13% 0.27% 5.50
MUL4 14.77% 5.23% 79.38% 0.62% 0.33
MUL8 31.80% 4.11% 63.45% 0.63% 0.63
Mil4 13.44% 5.62% 80.00% 0.94% 0.32
Mil8 11.37% 3.86% 84.12% 0.64% 0.47
Mil16 10.55% 3.03% 85.88% 0.53% 0.76
parity4 10.67% 4.78% 83.71% 0.84% 0.36
parity8 9.37% 3.92% 86.06% 0.65% 0.46
parity16 8.55% 2.62% 88.41% 0.41% 0.72

Figure 10: Elapsed execution time (EET) in sec-
onds and their breakdowns into sub-tasks for SFE-
OBDD.

Fn IPCG CC OT Eval EET
Add4 17.65% 19.00% 63.12% 0.23% 0.44
Add8 16.13% 15.96% 67.38% 0.53% 0.56
Add16 10.74% 9.67% 79.12% 0.48% 0.84
And4 11.92% 20.44% 67.40% 0.24% 0.41
And8 11.78% 16.07% 71.96% 0.19% 0.54
And16 9.78% 6.35% 83.48% 0.38% 0.79
Eq4 19.51% 11.85% 68.15% 0.49% 0.41
Eq8 15.44% 16.52% 67.68% 0.36% 0.56
Eq16 13.23% 9.84% 76.70% 0.23% 0.85
KDS4 33.33% 12.75% 53.33% 0.58% 0.34
KDS8 35.98% 11.92% 51.43% 0.66% 0.45
MUL4 21.89% 2.16% 75.41% 0.54% 0.37
MUL8 21.75% 7.99% 69.89% 0.37% 0.54
Mil4 38.27% 8.26% 53.28% 0.19% 0.53
Mil8 16.98% 9.25% 73.40% 0.38% 0.53
Mil16 18.78% 9.01% 71.99% 0.22% 0.92
parity4 20.78% 11.25% 67.73% 0.24% 0.41
parity8 49.55% 0.39% 49.94% 0.13% 0.77
parity16 14.63% 1.15% 83.97% 0.25% 0.79

Figure 11: Elapsed execution time (EET) in seconds
and their breakdowns into sub-tasks for Fairplay.
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5. FUTURE WORK
There are other optimizations to OBDDs that we have

not explored in this paper. For example, adding negated
edges to OBDDs can result in smaller structures for some
Boolean functions.3 Incorporating these optimizations in
our protocol while preserving privacy is a direction for fu-
ture work. There are several other OBDD-like representa-
tions developed by the computer-aided design and computer
aided verification research communities, such as Binary Mo-
ment Diagrams (BMDs) [4] and Hybrid Decision Diagrams
(HDDs) [8]. For a certain class of functions, these repre-
sentations are more succinct than OBDDs. For example,
BMDs can efficiently represent integer multiplication, which
cannot be represented efficiently at the bit-level with OB-
DDs. Extending our protocol for these representations is
an important direction of future research. Our vision is to
provide an option for all these representations in our system
so that a user can choose the representation that is suitable
for the problem.

OBDDs have been used for a variety of applications, such
efficient filtering in publish-subscribe systems [6], program
analysis [26], and planning [17]. In the future we will in-
vestigate whether our protocol can be extended to design
privacy-preserving algorithms for these applications.
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APPENDIX

A. PROOF OF CORRECTNESS

Proof: [Proof of Claim 2] Intuitively, Bob’s security follows
directly from the security of the 1-out-of-2 oblivious trans-
fer protocol he uses to obtain the secrets corresponding to
his input. Alice’s security follows from both the security
of the oblivious transfer protocol (allowing Bob to only ob-
tain only one key per node) and the semantic security of
the encryption scheme (which allows Bob to only decrypt
one entry in each node). We now flesh out the details by
providing a simulation proof from Alice and Bob’s view of
the protocol. Let x and y be the inputs of Alice and Bob
respectively and Π be a protocol for secure-function evalu-
ation of f(x, y). Let VIEWΠ

A(x, y) and VIEWΠ
B(x, y) be the

view of Alice and Bob for the run of the protocol Π on
input x and y (view of a party consists of its input, out-
put, and all messages it receives during the execution of
the protocol). In a simulation proof one needs to show two
probabilistic polynomial-time algorithms SA and SB such
that SA(x, f(x, y)) and SB(y, f(x, y)) are computationally
indistinguishable from VIEWΠ

A(x, y) and VIEWΠ
B(x, y), re-

spectively. For a precise definition of a simulation proof the
reader should refer to [14, Chapter 7].

We first consider the case where Alice is corrupt. Alice’s
view in an execution of Protocol 1 consists of her view of the
oblivious transfer protocol executions and the output of the
function from Bob at the end. We now build a simulator that
simulates Alice’s view given access only to her input and out-
put. Because the oblivious transfer protocol is secure, there
exists a simulator that can simulate the transcript of Al-
ice’s view of the oblivious transfer protocol without knowing
Bob’s input. On input (i1, . . . , ik, f(i1, . . . , in)), the simula-
tor first simulates Alice’s view of all n− k executions of the
oblivious transfer protocol by repeatedly running the obliv-
ious transfer protocol simulator. Using a standard hybrid
argument on the transcripts of all n − k executions oblivi-
ous transfer protocols, we see that if the oblivious transfer
protocol is secure, then the distributions of the simulated
and real combined transcripts of all n− k oblivious transfer
executions are indistinguishable with non-negligible proba-
bility.

Finally, the simulator writes f(i1, . . . , in) on the transcript
of Alice’s view. We now show that the distribution of the
output f is indistinguishable (except with negligible proba-
bility) from the real output, which amounts to showing that
Bob outputs f(i1, . . . , in)) correctly on a real interaction. By
the security of the oblivious transfer protocol, Bob is pro-
vided with the correct keys corresponding to its input during
each execution of the oblivious transfer protocol. Applying
claim 1, it follows immediately that, except with negligible
probability, Alice obtains the correct output from Bob, ex-
cept with negligible probability. Therefore, the distribution
of the simulated transcript is indistinguishable, except with
negligible probability, from a real transcript, concluding the
case when Alice is corrupt.

We now consider the case when Bob is corrupt. Given

(ik+1, . . . , in, f(i1, . . . , in)), the simulator S must simulate
both a garbled OBDD that Bob can use to correctly com-
pute f(i1, . . . , in), and Bob’s view of the n − k executions
of the oblivious transfer protocol. We first show how S sim-
ulates the n − k oblivious transfer protocol executions. As
in the previous case, because the oblivious transfer proto-
col is secure, there exists a simulator that can simulate the
transcript of Bob’s view of the oblivious transfer protocol
without knowing Alice’s input. Therefore, S simulates Bob’s
view of all n−k executions of the oblivious transfer protocol
by running the oblivious transfer protocol simulator n − k
times. Using a standard hybrid argument on the transcripts
of the oblivious transfer protocols, we see that if the oblivi-
ous transfer protocol is secure, then the distributions of the
simulated and real transcripts of all n − k oblivious trans-
fer executions are indistinguishable except with negligible
probability.

We now show how S builds a garbled OBDD that Bob can
use to successfully compute f(i1, . . . , in). Since S does not
know i1, . . . , ik, it cannot generate the garbled OBDD ac-
cording to the protocol instructions. Instead, S generates a
garbled OBDD that always evaluates to f(i1, . . . , in) regard-
less of the keys used. Such a garbled OBDD is built by first
generating a chain of n− k garbled nodes nk+1, . . . , nn such
that Bob’s computation starts at nk+1 and proceeds along
the chain through nk+2 and so on, before ending at node nn;
note that there is one such node for every level from k + 1
to n. To ensure the computation always proceeds along this
chain, both ciphertexts in garbled nodes nk+1, . . . , nn−1 are
encryptions (under different keys) of the same label-key mes-
sage such that the label points to the next node along the
chain and the node key combined with the level key allows
successful decryption of that node; for example, simulated
node nj for k + 1 ≤ j ≤ n − 1 has the form

“
label(nj) , Esnj

⊕s0
l
(label(nj+1) ‖ snj+1)

Esnj
⊕s1

l
(label(nj+1) ‖ snj+1)

”
.

Node nn is the terminal node and it is set to f(i1, . . . , in).
Once nk+1, . . . , nn is generated, the simulator generates a
number of “fake” nodes so that the simulated garbled OBDD
contains the correct number of nodes; this number can be
determined from OBDD(f). Fake nodes are nodes whose
ciphertext pair contain encryptions under different keys of
the same label-key message; in a fake node, the label, the
keys used to encrypt the ciphertext pair, and the label-key
message encrypted in the ciphertext pair are chosen ran-
domly.

All that remains is to show that the distribution of the
simulated garbled OBDD is indistinguishable from that of a
real garbled OBDD. We do this by using a standard hybrid
argument over the nodes in the garbled OBDD. Specifically,
we run hybrid experiments with garbled OBDDs where real
nodes are replaced by simulated nodes. We define the hybrid
distributions such that H0(i1, . . . , in) contains the real gar-
bled OBDD and HB(i1, . . . , in) contains the simulated gar-
bled OBDD where B is the number of non-dummy nodes in
the real garbled OBDD. We do not need to consider dummy
nodes in our hybrid experiment OBDDs because dummy
nodes have the same distribution as the simulated fake nodes
and do not affect our argument.

We now define the hybrid garbled OBDD in experiment
Hi(i1, . . . , in); the difficulty here is that the hybrid OBDD
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contains both real and simulated nodes but must still allow
Bob to correctly compute f(i1, . . . , in). First, we traverse
the real garbled OBDD and label a node as active if it is used
by Bob in the process of evaluating the OBDD and inactive
otherwise. Note that there will be only n − k active nodes.
Next, we order the nodes in the garbled OBDD by their
level with level j + 1 nodes placed ahead of level j + 2 and
so on; within the same level, nodes are ordered arbitrarily.
The hybrid OBDD is defined as follows: first take the real
garbled OBDD and replace the first i non-dummy nodes
as follows: inactive nodes are replaced with simulated fake
nodes. An active node at level j is altered by replacing its
current ciphertext pair with two encryptions of the label-
key message corresponding to the next active node at level
j + 1. These replacement ciphertexts are created with the
keys used to create the original ciphertext pair. Note that
the distribution of this altered active node is identical to
that of the simulated node nj in the node chain described
above. It is easy to see that a garbled OBDD built with
this definition has the same distribution as 1) a real garbled
OBDD when i = 0 (i.e. for H0), and 2) a simulated garbled
OBDD when i = B (i.e. for HB).

We are now ready to show that the distribution of the sim-
ulated garbled OBDD is indistinguishable from that of a real
garbled OBDD; that is, we will show that {H0(i1, . . . , in)} =
{HB(i1, . . . , in)}. Suppose to the contrary that the distri-
butions are distinguishable; that is, there exists a poly-time
distinguisher D that

|Pr[D(H0(i1, . . . , in)) = 1]−
Pr[D(HB(i1, . . . , in)) = 1] > 1/p|

for some polynomial p. Then there exists a j such that

|Pr[D(Hj−1(i1, . . . , in)) = 1]−
Pr[D(Hj(i1, . . . , in)) = 1] > 1/pB|

Using D, we now build an adversary that breaks the se-
mantic security of the encryption scheme used to encrypt
the garbled nodes. Recall in a semantic security game, the
adversary sends two messages m0, m1 to the challenger and
receives the encryption of mb for b = {0, 1}; the adversary’s
goal is to determine b. Let nj be the jth node and we de-
note its two ciphertext terms as cj

0 and cj
1. Note that node

nj in the hybrid OBDD in distribution H∗
j−1 is a real gar-

bled node, whereas the same node for distribution H∗
j is a

simulated garbled node; specifically, cj
0 and cj

1 in distribu-
tion H∗

j−1 are encryptions of different label-key messages,
whereas they are encryptions of the same label-key message
in distribution H∗

j . We exploit this fact to build the ad-
versary A that breaks semantic security of the encryption
scheme.

First, A creates the hybrid garbled OBDD corresponding
to the distribution H∗

j−1(i1, . . . , in). One of the two cipher-

texts cj
0 and cj

1 in node nj is an encryption of the label and
key for the active node nj+1, whereas the other ciphertext is
an encryption of the label and key for an inactive node. Let
�0 be the label-key message encrypted in cj

0 and �1 be that

encrypted in cj
1. Next, A sends �0 and �1 to the semantic

security challenger and receives c∗, which is an encryption
of either �0 or �1. Without loss of generality, let �0 be the
label-key message (contained in ciphertext cj

0) that leads to

the next active node. A replaces cj
1 with c∗ in node nj in the

garbled OBDD that it built in the first step, and then feeds
the altered OBDD together with the other required inputs

to the hybrid distinguisher D. Note that c∗ cannot be de-
crypted with the node and level keys for node nj . This fact,
however, does not prevent the garbled OBDD from being
evaluated correctly because c∗ replaces cj

1, which contains
the label and key to an inactive node, and would not be
successfully decrypted while evaluating the garbled OBDD
on the inputs (i1, . . . , in).

D eventually outputs a result stating that the input is of
distribution H∗

j−1 or H∗
j . If D outputs that the input is of

distribution H∗
j−1, then A outputs that c∗ is an encryption

of �1; otherwise A outputs that c∗ is an encryption of �0. No-
tice that if c∗ is an encryption of �0, then both ciphertexts in
node nj are encryptions of the same label-message, and the
input to D has distribution H∗

j . Similarly, if c∗ is an encryp-
tion of �1, then the input to D has distribution H∗

j−1. Since
D distinguishes between H∗

j−1 and H∗
j with non-negligible

probability, we see that A wins the semantic security game
with non-negligible advantage. Since we assume that the en-
cryption scheme is semantically secure, this implication is a
contradiction, and there is no such distinguisher D that dis-
tinguishes between H0(i1, . . . , in) and HB(i1, . . . , in); that
is, the distribution of the simulated garbled OBDD is indis-
tinguishable from that of a real garbled OBDD. Therefore,
Bob’s simulated view is indistinguishable, except with neg-
ligible probability, to the real view, concluding the proof.

�

Proof: [Proof Sketch for Claim 4] The full proof is very
similar for that in Claim 2, and we provide only a sketch.
The case when Alice is corrupt is identical to that in Claim 2.
We briefly discuss why the proof is also almost identical in
the case when Bob is corrupt. The main observation is that
the simulator S builds the simulated garbled OBDD in the
same way as in Claim 2 because there is no difference in how
Protocol 2 requires Bob to traverse the garbled nodes given
the same level keys. Therefore, the hybrid distributions are
defined the same way and the rest of the proof follows.

�
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