
To appear in the 6th International Symposium on High-Performance Computer Architecture (HPCA), Jan. 10 - Jan. 12, 2000, Toulouse, France

Improving the Throughput of Synchronization by Insertion of Delays

Ravi Rajwar,† Alain Kägi,‡ and James R. Goodman†

†Computer Sciences Department
University of Wisconsin-Madison
Madison, Wisconsin 53706 USA
{rajwar,goodman}@cs.wisc.edu

‡Microprocessor Research Labs
Intel Corporation

Hillsboro, Oregon 97124 USA
alain.kagi@intel.com

ns
ese

-
ss
he
ot
late

is

es
s).
n

-
o
rs:

for
ry

ata
ly
-

n.
f the

re
ly.
s,
to-
e
k
he

e
h-

by
til
Abstract
Efficiency of synchronization mechanisms can limit the

parallel performance of many shared-memory applica-
tions. In addition, the ever increasing performance gap
between processor and interprocessor communication may
further compromise the scalability of these primitives. Ide-
ally, synchronization primitives should provide high per-
formance under both high and low contention without
requiring substantial programmer effort and software sup-
port. QOLB has been shown to offer substantial speedups
and to outperform other synchronization primitives consis-
tently [17], but at the cost of software support and protocol
complexity. This paper proposes the use of speculation and
delays to implement a purely hardware-based queueing
mechanism calledImplicit QOLB. Making use of the per-
vasiveness of the Load-Linked/Store-Conditional primi-
tives, we present a series of hardware mechanisms to
optimize performance for sharing patterns exhibited by
locks and associated data. The mechanisms do not require
any change to existing software or instruction sets. IQOLB
sits alongside the cache-coherence protocol and guides the
decisions the protocol makes with respect to lock (and
associated data) transfers. Preliminary evaluations indi-
cate that IQOLB may perform as well as, if not better than,
QOLB without the additional software and protocol com-
plexity.

1. Introduction

There are two key aspects to supporting efficient syn-
chronization in shared-memory multiprocessors: (1) recog-
nizing that an application has issued a synchronization
operation, and (2) exploiting this knowledge to maximize
performance. Unfortunately, in current memory systems,
synchronization requests are often hard to distinguish from
other memory requests.

While many papers [1, 2, 4, 9, 10, 11, 12, 21, 24] sug-
gest that maintaining a dichotomy in the cache coherence
protocol between regular memory and synchronization

requests can improve the execution of parallel applicatio
substantially, no commercial system has embraced th
techniques because of their perceived cost.

In this paper we propose to implement efficient syn
chronization by speculating about the programs’ acce
patterns and by possibly delaying coherence actions. T
benefits of this approach are threefold: (1) it does n
require requests to be differentiated; instead we specu
about the nature of a request, (2) no special instruction
required, (3) no recompilation is required to benefit from
our techniques (even without recompilation our techniqu
can outperform the best known synchronization method

To demonstrate the viability of our approach, we desig
and implementImplicit QOLB (IQOLB), which provides
the benefits of QOLB but without its drawbacks. We dem
onstrate that IQOLB can be implemented using tw
instructions commonly found on contemporary processo
Load-Linked and Store-Conditional.

Classic cache coherence protocols are optimized
memory access patterns of regular data. Yet, memo
access patterns for locks are different than for normal d
accesses. Typically, a lock variable is written (usual
involving an atomic read-modify-write operation) by a suc
cessful acquisition at the beginning of a critical sectio
The same processor then releases the lock at the end o
critical section by performing another write to it. During
the critical section, different processors waiting to acqui
the lock may read the value of the lock variable repeated
Such sharing behavior, while common for contended lock
is generally not well supported by cache coherence pro
cols. The external reads to the lock variable will force th
lock holder to relinquish exclusive ownership of the loc
variable. Thus, in order to release a contended lock, t
holder must re-acquire write permission.

Critical sections are often small, particularly those at th
lowest levels. Thus it may be possible to increase throug
put and reduce interprocessor communication traffic
delaying the transfer of a cache line containing a lock un

f

a
ue-
e

in-
e
of
r
ore
the

n,

s
st

fy-
-

n-
r-
g
is
es

to
s

ted
g

e

n-
ers,
g

y
d-

ns
d-
e
LL

is-
ns
e

he
no
ry
d.

od-
e

after the lock is released. This observation led to the pro-
posal for asynchronous prefetch[11], which allowed a pro-
cessor to request a lock, but provided information so that
the processor holding the lock could defer supplying the
cache line until after the lock was released. This concept
naturally extends to the notion of a queue of waiting pro-
cessors, each waiting its turn to acquire exclusive access to
the lock, and was the basis for QOLB [11], which exploited
the sharing pattern of lock variables and provided substan-
tial performance gains.

IQOLB guides the cache coherence protocol to make
intelligent—and sometimes delayed—choices. Speculat-
ing on whether an operation is a lock acquire or an atomic
read-modify-write (such as Fetch&Φ), the appropriate
cache coherence action is invoked. This speculation results
in a performance improvement of both a lock acquire oper-
ation and a traditional Fetch&Φ operation. These mecha-
nisms form the core of this paper and are detailed in
section 3.

We use the Load-Linked/Store-Conditional (LL/SC)
instructions to demonstrate a possible implementation of
IQOLB. These instructions have found widespread accep-
tance in modern processor architectures [18, 26, 32] under
different names. In section 2, we discuss QOLB and LL/SC
operations in depth. Our use does not require any change to
the architected semantics of the instructions, allowing
existing software using these instructions to benefit from
our mechanisms without requiring any changes or recom-
pilation.

2. Background and related work

QOLB, originally proposed by Goodman, Vernon, and
Woest [11], was the first proposal for a queue-based syn-
chronization primitive. QOLB maintains, in hardware, a
queue of processors waiting to acquire a lock. When the
processor at the head of the queue releases the lock, it
transfers the lock in a single message directly to the next
processor in line, if any. When a processor requests a lock,
it first allocates local space for the lock variable and then
sends a request for the cache line containing the lock or, if
it is currently unavailable, to join the QOLB queue of pro-
cessors waiting to acquire it. It then waits for the lock,
spinning locally until the lock is delivered. In this way,
QOLB can achieve a very efficient transfer of a lock: the
queue-based primitive optimizes lock hand-off and local
spinning avoids unnecessary network traffic while proces-
sors are waiting for the lock. Since every processor spins
on the same address without evicting or downgrading the
lock holder’s copy, it is possible to allocate protected data
in the same cache line as the lock—a strategy referred to as
collocation. This allows the protected data to be transferred
along with the lock and eliminates the read/write overhead

in the critical section. Details of an SCI implementation o
QOLB can be found elsewhere [15].

Kägi, Burger, and Goodman [17] showed that over
range of benchmarks and processor technologies, que
based locking and collocation are the most effectiv
aspects of QOLB. Their results also showed that local sp
ning provides marginal gains. An important result of th
work was in demonstrating consistent and large gains
QOLB over all other synchronization primitives studied fo
a range of benchmarks. These gains were much m
impressive than others had predicted, and underscored
magnitude of delay in acquiring data in a critical sectio
not just the lock.

Over the years, various synchronization mechanism
have been proposed [29, 16, 11, 3, 13, 27, 25, 14]. Mo
synchronization operations use an atomic read-modi
write primitive. While not all architectures provide a syn
chronization primitive, they offer some form of instruction
that atomically swaps a value (either predefined or co
tained in a register) with one in memory. Conditional ve
sions of this instruction also exist—with the understandin
that the swap occurs only if the value read from memory
the same as a specified value. More complex primitiv
such as Fetch&Φ provide the ability to perform a simple
operation—usually an arithmetic addition or increments
a variable in memory. This provides valuable opportunitie
for parallel execution if theΦ operation satisfies certain
properties because multiple operations can be execu
concurrently through a procedure known as combinin
[12].

Many contemporary microprocessors provide th
LL/SC instructions to implement atomic read-modify-write
operations to cached memory locations. Fetch&Φ can be
implemented using the LL/SC operations. Such impleme
tations are useful for enqueue, dequeue, software barri
and ticket lock implementations in addition to providin
efficient ways to implement software barriers.

The LL/SC instructions were originally proposed b
Jensen, Hagensen, and Broughton [16] as Loa
Locked/Store-Conditional instructions. These instructio
expose the steps involved in performing the atomic rea
modify-write operation to the programmer and rely on th
cache coherence protocol to ensure correctness. The
instruction loads a memory location into a processor reg
ter. This is followed by an arbitrary sequence of operatio
involving the register. The SC then attempts to write th
same memory location as the previous LL operation. T
SC will succeed only if the hardware can guarantee that
other processor has successfully written to the memo
location since the most recent LL instruction was execute
Thus, a successful SC operation implies that a read-m
ify-write operation occurred atomically, completing at th

ta-
C

on
l

-
es
s.
g

of
d-
n
v-

l
ce

o
to

nd
ll
o

r-
at

re
m
y

the
er-
e

c-
LL
y
is
ry,
C.
.
ss-
pt
the
uffi-
at a
elf

or-
to
d

P1
time of the SC. In the case of a failure, the entire sequence
may be retried.

The LL/SC paradigm has been adapted for several
architectures—Load-Locked/Store-Conditional in the
Alpha [32], Load-and-Reserve/Store-Conditional in the
IBM PowerPC [26], and Load-Linked/Store-Conditional in
the MIPS [18]. In various implementations, a link flag and
registers are used to store the LL information. A register
typically stores the physical address to which the LL was
issued. The link flag is set when the LL is issued. The suc-
cess of the SC operation can only be determined at the
point of coherency, that is, at the time the write operation
can be performed on the designated memory location. If, at
that point, the link flag is still set, and no incoming invali-
date to the address in the locked physical address register is
encountered, the SC can successfully complete. Implemen-
tation details vary depending on the architecture and the
coherence mechanism; the semantic remains the same.

While the basic concept is elegant and simple, in theory
permitting the implementation of an arbitrarily complex
synchronization primitive, in practice it is difficult to
design a system that can reliably guarantee success of the
LL/SC sequence. Two obvious problems demonstrate the
difficulty: (1) a memory conflict that forces the cache line
corresponding to the LL address to be evicted, and (2) an
intervening page fault or interrupt resulting in large delays
between the LL and SC. The common solution used for (1)
is to prohibit memory operations that may result in an evic-
tion. Preventing memory operations may also solve the
problem in (2). It is hard to account for all possible actions
that may occur in an LL/SC sequence. In order to address
this, many architectures provide a set of guidelines and
requirements to increase the likelihood of a successful
LL/SC sequence.

For example, in the Alpha Architecture Handbook [8],
three pages of description are required to explain each of
the LL and SC instructions along with many restrictions.
Such restrictions include (1) that a write of a different word
on the same block (the size of a block being an implemen-
tation-dependent constant of some power of two, being no
smaller than a cache line, and no larger than a page) as the
target address may cause the SC to fail, (2) that numerous
system calls or traps will cause the link flag to be reset, (3)
that there be no instructions that access memory between
the LL and SC instructions, (4) that there be no taken
branches between the immediately preceding LL and SC
instructions (the processor may execute multiple LL
instructions before it attempts the SC), and (5) that a “large
number” of instructions not be executed between the LL
and SC. The term “large number” is not defined—though
they do require a minimum number of instructions every
implementation must execute between timer resets.

While the simplicity of these primitives makes them
appealing, and seemingly very general, the implemen
tion-aware architectural restrictions imposed on the LL/S
primitives tend to discourage creative use of the instructi
pair for operations more complex than traditiona
Fetch&Φ. Since LL/SC is optimistic, under high conten
tion, the performance of such atomic operations degrad
rapidly due to an increase in failed LL/SC sequence
Complex primitives therefore are generally built usin
LL/SC to implement an underlying lock operation.

In the next section, we propose an implementation
the LL/SC semantics that provides good atomic read-mo
ify-write performance even under high contention. We the
extend this mechanism to optimize for specific lock beha
iors.

This work is inspired by the work of Mukherjee and Hil
[28] who proposed to use prediction to speed up coheren
protocols, by the work of Kaxiras and Goodman [19] wh
discussed instruction- and address-based prediction
improve the performance of multiprocessor systems, a
Lai and Falsafi [22] who first designed and analyzed a fu
parallel system encompassing ideas from the first tw
papers.

3. Synchronization algorithms

In an LL/SC sequence, the objective is to modify a ta
get location atomically. Thus, it might seem obvious th
the initial request for data—initiated by the LL instruction
—should read the data for exclusive ownership. We a
unaware of any implementations that do this. A proble
with this approach is the difficulty in guaranteeing that an
processor will ever succeed. For example, consider
sequence of two processors P1 and P2 attempting to p
form an atomic operation on the same variable. Assum
that both processors successfully complete the LL instru
tion in short succession (say P1 succeeds first). If the
operation obtains a writable copy, P2’s LL operation ma
invalidate P1’s copy (and reset the link flag) before P1
able to complete the SC instruction. In turn, P1, on a ret
may destroy P2’s copy before P2 has performed its S
Thus, the two processors may enter a live-lock situation

In a given case of contention, which processor succe
fully completes an SC instruction does not matter, exce
that the system should not be so biased as to permit
same processor to succeed repeatedly. In general, it is s
cient if some processor can be guaranteed to succeed
non-zero rate (though this guarantee does not by its
assure that other processors will not starve).

This observation can be exploited to enhance the perf
mance of synchronization. If processor P1 is permitted
acquire a writable copy of the lock on a LL instruction, an
another processor P2 generates a similar request before

y
e
it
et-

n-
g

es-

es
e

ult
ly

c-
ss-
ain
ll,

ng

ors
me
ed
sor
ily,
the
e-
ors
the
oor

C
cial
che
ay
n
ts
a
e
c-
e
er-
c-
r’s
e
ard
er-
h-
executes the SC instruction, the maximum system through-
put can nevertheless be reached by allowing P1 to complete
its SC instruction before giving up the line to P2. This
behavior may appear unfair from the standpoint of the
cache coherence protocol, since P2 broadcasts its request
for ownership before P1 decides to write. However, if it can
be ascertained with a high probability that P1 will soon
write the variable, allowing it to hold onto the data long
enough to complete the SC operation successfully, the
number of external requests generated is reduced since oth-
erwise P1 will have to acquire the cache line again in order
to complete the sequence.

A convenient way of visualizing this operation is
through the use of relativity arguments: unless P2 can
somehow observe the timing of P1’s SC request, it has no
way of knowing whether the request occurred before or
after it made its own conflicting request for the cache line.
Effectively, P2’s LL request can be said to have occurred
after P1’s SC request, even though in fact the LL request
was received before the SC request. Of course, a strict limit
must be maintained regarding the amount of time-warping
permitted. P1’s cache cannot be allowed to wait indefi-
nitely while delaying P2’s request for the cache line. Such
delay may also introduce concerns about memory ordering.
However, we observe that, while sequential consistency
constraints require a global ordering of events, that order
need not be the same as the order of requests observed on
the bus.

The concept of a delayed response becomes more inter-
esting in the presence of multiple requests. If processor P3
also issues an LL instruction, P1 cannot send writable cop-
ies to both P2 and P3. Here, the notion of time-warping can
be extended to reason about multiple requests. Assuming
that P2’s request is observed before P3’s, P2 can expect to
receive the cache line before P3, and can in fact be made
responsible for passing the data on to P3, perhaps after a
small additional delay to allow P2 to complete its LL/SC
sequence. In this way a queue of outstanding requests is
built up, even if every processor concurrently attempts to
acquire exclusive access to the cache line, and the line will
be passed in a writable state from one processor to the next,
in precisely the order in which the original requests
occurred.

This section has considered reading for ownership to
satisfy an LL instruction. Since the LL will likely be fol-
lowed shortly by an SC instruction, this solution is intu-
itively appealing, but under high contention it can provide
very poor performance, and even lead to a lack of forward
progress. We note, however, that the hardware could selec-
tively choose this option, speculating conservatively but
nevertheless saving the additional operation in the cases of
uncontended locks. For example, it might choose to request
ownership on the first LL instruction encountered after a

successful SC instruction. This would prohibit live-lock b
ensuring that the failure would only occur once. While w
haven’t investigated this algorithm in detail, we believe
would always perform as well as the baseline case, and b
ter under most circumstances.

In the following subsections, we explore the above co
cepts in detail and study a series of models for improvin
synchronization performance. Figure 1 depicts the progr
sion of these models. It starts with theBaselineor Tradi-
tional LL/SC model in the upper left corner and progress
downward through the different models described in th
next sections.

3.1. Baseline LL/SC implementation

This type of implementations corresponds to the defa
protocol used in many systems we studied, with possib
minor variations. In these implementations, the LL instru
tion fetches a memory location in a shared state. A succe
ful SC then requires a second network transaction to obt
an exclusive copy of the corresponding cache line. Overa
two network requests are generally required for performi
the atomic read-modify-write operation.

Figure 2 depicts a typical LL/SC sequence. Process
P1 and P2 each execute an LL instruction to the sa
memory location resulting in two read requests issu
simultaneously. After receiving a response, each proces
attempts the execution of the SC instruction. Necessar
one of the two processors obtains the exclusive copy of
data first, say P1, forcing P2 to reset its link flag. Ther
upon, P2 must retry the sequence. As more process
issue LL instructions to the same address concurrently,
number of such failed sequences increases, causing p
performance.

Though successful execution of a traditional LL/S
sequence requires two network requests, some spe
cases may require fewer requests. For example, if no ca
owns a copy of the targeted memory location, a cache m
obtain the cache line in a writable state. Also a well-know
programming trick may reduce the number of reques
required to perform an atomic memory operation [20]:
program may perform a write to an unused location in th
same cache line as the lock before issuing the LL instru
tion. Consequently, the line will be fetched in an exclusiv
state. In the absence of contention, the program can p
form the atomic operation with a single network transa
tion.This coding technique requires the programme
involvement and software modifications. Additionally, th
programmer must take great care to ensure that forw
progress constraints are met. Finally, this technique p
forms very poorly in the presence of contention. This tec
nique is shown as theAggressive baselinemethod in
Figure 1 (second frame from the top).

Figure 1. Overview

Baseline method
Conventional LL/SC
+ at least one processor succeeds
– requires 2 network transactions per RMW update, if there is sharing

Aggressive baseline
Baseline + RFO on LL
+ requires a single network transaction per RMW update
– livelock can occur if there is any contention

Delayed response
Aggressive baseline + delayed responses using LPRFO
+ builds a queue of requests
– may introduce unnecessary delays in lock operations

Implicit QOLB
Delayed response + speculation on LL/SC use
+ distinguishes between Fetch&Φ and lock acquire/release operations

Method identifier
Method’s salient features
+ pros
– cons

– collocation confined to cache line containing lock

Generalized implicit QOLB
Implicit QOLB + speculation on critical section’s data
+ supports generalized collocation of lock and protected data
– hard to optimize data transfers

Delayed response without queue retention
Delayed response with queue breakdown on RFO
+ guarantees maximum delay
– queue breaks down on lock release

Delayed response with queue retention
Delayed response with queue retention on RFO
+ queue retention guarantees ordering
– difficult to guarantee time bound

Implicit QOLB without queue retention
Speculation on LL/SC use with queue breakdown on RFO
+ guarantees maximum delay
– queue breaks down on lock release

Implicit QOLB with queue retention
Speculation on LL/SC use with queue retention on RFO
+ queue retention guarantees time bound
– difficult to guarantee time bound

ld
We
ver
usti-

lu-

er-

not
ing
for
rit-
t be
he
e
n
m
rd
Note that the hardware could also speculate about the
likelihood of success and request initially ownership of the
cache line containing the lock. It might, for example, spec-
ulate that success is likely at the first opportunity after a
successful SC instruction. In the absence of any contention,

this would only require a single network request, but wou
cause some additional failures under heavy contention.
could find no cases where this scheme increases traffic o
the base case, and believe that such a scheme can be j
fied even for conservative implementations.

3.2. LL/SC implementation with delayed response

The previous section discusses requesting data exc
sively to satisfy an LL instruction. While at first glance
intuitively appealing since it is likely that an SC instruction
will soon follow the LL instruction, we observe that this
solution can lead to a lack of forward progress and can p
form extremely poorly under high contention.

Based on these observations, our second extension
only proposes to request data exclusively upon execut
an LL instruction but also to delay processing a request
a copy that a cache controller believes is about to be w
ten. To guarantee correctness, however, this delay mus
finite and the cache controller should process other cac
requests with circumspection in order not to violate th
constraints of memory consistency. If an SC instructio
does not occur within a certain time, a time-out mechanis
guarantees that the cache controller will eventually forwa
the cache line to the requesting node.

SC rt,X

SC rt,X

P1 P2

LL rt,X LL rt,X

tim
e

readread

shared resp.

shared resp.

excl. req.

excl. req.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

excl. resp. → success

invalidate → force retry

global ordering

.

.

.

.

Figure 2. Traditional LL/SC sequence

c-
P1,
ers
a-
t
ly,
data
e
h

-
a

ne

all
. In
FO
nt
c,

a
he

e

On
the
cial
ck
The success of this scheme relies on the timer to trigger
infrequently. We believe that time-outs will indeed be
infrequent because architectural specifications typically
insist on a very limited amount of instructions between
pairs of LL and SC instructions.

In summary, this scheme allows a processor to perform
an atomic memory operation in a single network transac-
tion, most of the time.

The scheme works very well for atomic memory opera-
tions like Fetch&Φ. However, if the LL/SC sequence is
used to implement the primitives for a lock operation, there
is a performance problem. Lock operations have two
phases: acquire and release. During the acquire phase,
when P1 completes the acquire successfully, even if the
cache line containing the lock is passed on to the next wait-
ing processor, say P2, that processor will immediately dis-
cover that it cannot obtain the lock currently held by P1. At
this point P1’s cache no longer possesses a copy of the lock
and P2 must now wait for P1 to release the lock. For P1 to
release the lock, it will have to re-request ownership for the
cache line containing the lock. However, P1 is now forced
to wait for P2 to time-out (since P2 will never execute the
SC instruction it speculated about). This behavior results in
potentially poor performance in the case of locks. Further-
more, the situation worsens as more processors attempt to
acquire the same lock since the lock must now be passed
down the queue, waiting at each node until the time-out
forces its release.

To address the performance problem with our current
mechanism, we introduce the concept of priorities among
ownership requests and refine our protocol.

In the new scheme, instead of a read-for-ownership
(RFO) request, the LL instruction issues a “low-priority
read-for-ownership” (LPRFO) request. A response to an
LPRFO request can be delayed for a substantial, but
bounded, time duration determined by the time-out mecha-
nism. On the other hand, a normal read-for-ownership
request must be serviced within a small (a few cycles)
delay. Note that the two operations can easily be differenti-
ated: restrict LPRFO to LL instructions. Considering the
same scenario of a lock hand-off described earlier, a lock
release operation will result in a normal read-for-owner-
ship. The requestor obtains write permissions much faster
than in the original mechanism described in this sub-sec-
tion.

We call this improved mechanism theDelayed response
scheme (third frame from the top in Figure 1).

Figure 2 portrays a typical sequence of operation for the
delayed response scheme. It shows three processors issuing
concurrent LPRFO requests for the same address and it
shows these processors forming a queue, each processor
waiting for the previous one to complete the read-modify-
write operation. In the figure, P1 obtains an exclusive

response first. P1, now being responsible for the line, re
ognizes P2’s request but delays the actual response.
upon a successful completion of the SC operation, transf
the corresponding cache line to P2. In effect, our mech
nism introduces a delay (∆) between the time P2’s reques
reaches the network and the time P1 services it. Similar
P2 delays the response to P3’s request, and sends the
after a delay (∆'). Note that no processor need retry th
LL/SC sequence unlike what would typically happen wit
the traditional LL/SC method.

Our proposal still occasionally suffers from perfor
mance problems when dealing with locks. Thus, when
regular read-for-ownership is issued, the owner of the li
responds with little delay. An invalidation implied by the
request squashes the outstanding LPRFO requests on
other waiting processors, thus breaking down the queue
such an event, waiting processors reissue the LPR
requests and build a new queue, possibly in a differe
order. This event causes additional network traffi
although we believe less than the baseline protocol.

As an alternative, one can eliminate the problem of
queue breakdown by allowing a node to insert itself at t
head of the queue without breaking down the queue. W
call these alternativeswith and without queue retention.
Figure 1 shows both alternatives on the right-hand side.
observing a regular request for ownership, the head of
queue sends data along with a special marker. The spe
marker forces the requestor to transfer ownership ba
immediately once the write completes.

tim
e

global ordering

SC rt,X

P1

LL rt,X
.
.
.
.
.
.
.

.

.

.

P2

LL rt,X
.
.
.
.
.
.
.

.

.

.

P3

LL rt,X
.
.
.
.
.
.
.

.

.

LPRFO LPRFO LPRFO

excl. resp.

delayed excl. resp.

delayed excl. resp.

.

.

.

.
SC rt,X

.

.

.

.

.

.

.

.

.

.

.

.
SC rt,X

.

.

∆
∆’

Figure 3. LL/SC sequence with delayed response

fer
e
o
se)

o-
us
k

lly
it-

up

t a
h-
t

ck
ne

pt
e

he
r-

cu-
to
c-
t
-

ting
le
ot,
se
is-

e

nd

rs,

er

ter
ue
l-
of
ibly
i-
y.
o
that
er
es
on-
The presence of collocated data exacerbates the perfor-
mance problems of both alternatives. If the queue is not
preserved, reads and writes to collocated data result in fre-
quent queue breakdowns. If the queue is retained, the cache
line holding lock and data may traverse the network often
going back and forth between the head of the queue and the
node issuing regular RFOs. The latter scheme is also more
complex and may have problems guaranteeing bounded
delays.

In both alternatives, a time-out at the head of the queue
forwards the line along to the next processor in the queue.
In the event that the owner of the line evicts the lock line,
the ownership along with the data is transferred to the next
requestor, i.e., an eviction is treated as a time-out.

The notion of a time-out mechanism is not an attractive
requirement, and we have resorted to this mechanism only
after an extensive search for alternatives. We note, how-
ever, that the time-out mechanism can be fairly simple.
First, while it is necessary to maintain information about
multiple critical sections, it is not necessary to support
more than a single outstanding request requiring a time-
out. In general, the speculation is aimed at the lowest-level
critical sections, and we anticipate only marginal gains for
higher-level locks. Therefore, if a second, nested, critical
section is entered, the first can generally be discarded with
respect to speculation. Furthermore, the speculative delay
is optional, and can always be disposed of by responding at
once. Thus when a second request arrives, a controller with
only a single time-out can still make a choice between the
two, servicing one while speculatively delaying the other.

This ability to dispose of a speculative delay becomes
critical if the period of delay is significantly increased. In
the next section we explore the possibility of delaying
beyond the successful SC instruction.

3.3. Speculating on lock operations

So far, we have used the concept of delays to build a
queue of processors waiting to perform a read-modify-
write operation. We can further improve the performance
of synchronization, if we can speculate on the usage of
LL/SC sequences present in programs. If a sequence per-
forms a simple Fetch&Φ operation, we would like to apply
the protocol detailed in the previous section (the delayed
response method). Alternatively, if the sequence acquires a
lock to be released some time later, we would like to delay
requests until the program releases the lock (i.e., beyond
the execution of the SC instruction that acquires the lock).
As a result of this extended delay, we form a queue of lock
requestors in hardware similar to the queues in queue-
based locks (e.g., QOLB). Hence we call this method
Implicit QOLB or IQOLB. This method is shown near the
bottom of the overview chart in Figure 1.

The queue of lock requestors improves the lock trans
time, takes full advantage of collocation, and avoids th
problem of a cache line going back and forth between tw
caches as may occur in the previous (delayed respon
method.

Sizes of critical sections and network operations intr
duce delays larger than those with which the previo
method must deal. Delaying servicing of an external loc
request until that lock is released may substantia
increase the time a processor is blocked. To prevent wa
ing processors from being blocked and to prevent tying
resources unnecessarily, we introduce the notion of atear-
off copy[23]. The response is speculative in the sense tha
copy of the cache line’s current content is given away wit
out giving up ownership. An interesting side effect is tha
we are able to capture the effect of local spinning on a lo
variable and we allow the requestor to use the data at o
moment in time, but not retain it for later use. The recei
of a tear-off copy signals a successful insertion into th
queue of requestors. The tear-off copy provides t
requestor with information it needs: the lock is not cu
rently available, but will arrive as soon as available.

The entire cache line need not be returned as the spe
lative response. The primary effect of the response is
allow the requesting processor to complete its LL instru
tion, with the expectation that it will decide not to attemp
the SC instruction, but spin on the LL. Thus it is only nec
essary to return the actual word requested. The reques
processor can in fact use the returned value for multip
reads, subject to constraints of memory ordering. It cann
for example, read or write any other cache lines, then u
read the value again if it is supporting sequential cons
tency.

The basic sequence of operations involved in th
IQOLB method is:
1. Speculate that an LL instruction operates on a lock a

issue an LPRFO;
2. Delay ownership transfers to external lock requesto

but service them speculatively; and
3. Identify the instruction releasing the lock and transf

data to the next requestor in line.
Figure 4 illustrates three processors attempting to en

the same critical section concurrently. All processors iss
LPRFOs with P1 obtaining the associated lock first, fo
lowed by P2 and P3, in that order. There are two kinds
responses: (1) regular exclusive responses, poss
delayed, and (2) tear-off copies. Assuming the lock is in
tially free, P1 can enter the critical section immediatel
While in the critical section, it delays responding t
requests, sending speculative responses if it speculates
indeed P1 is holding a lock and not performing a simpl
Fetch&Φ. A speculative response frees network resourc
and allows the receiving processor to speculate on the c

rd
is
an

r
he

ross
r-

as
a
e
lly
ha-
an
k
od

er
n
o
By
le

nt
-

nt
C

a-

ce
as
s
ple
-

ire
es
ic-
n,
e
se
ion
-
l-
e
to
an

to
is
to
tent of the cache line containing the lock. P2 receives the
speculative response and learns that the lock is currently
held. P2 then spins locally waiting to receive the lock.
When P1 releases the lock (by writing the lock variable), it
transfers ownership of the cache line containing the lock to
P2. Upon receiving the lock, P2 can enter the critical sec-
tion.

Cache line eviction transfers ownership and data to the
next processor in line. Read requests to locks currently
held are speculatively satisfied by issuing tear-off copies.
This allows for a processor interested in querying the state
of the lock to proceed without being involved in the queue.

As before we refine the IQOLB method into two differ-
ent alternatives (denotedwith or without queue retention)
based on the course of action in the event of a write to a
lock line. When the lock owner and holder are the same,
the lock unset operation proceeds efficiently; the releaser
forwards the lock to the next requestor. The complication
occurs when the lock-holder and lock-owner are different.
In the first alternative (no queue retention) a write to the
lock causes an invalidation of all entries in the queue, forc-
ing all processors to re-acquire the lock. Of course, the
order of re-insertion may not match the original order. The
other alternative (the queue retention method) preserves the
queue. In this method, when a lock-holder requests write
permission, the owner responds to the request but requests
the cache line back immediately. All other processors
ignore this transaction and preserve the state of the queue.
This method avoids queue breakdown at the expense of a

more complex implementation, of fairness and of forwa
progress. A similar problem may occur if collocated data
present in the cache line and the line is evicted before
unset.

A point to remember is that performance will be poo
under the above scenario even with traditional locks. Cac
evictions are events that can degrade performance ac
all synchronization primitives and need to be handled co
rectly.

3.4. Prediction of lock acquires and releases

As discussed earlier, the LL instruction can be used
part of a simple Fetch&Φ operation or be used as part of
lock primitive. We have proposed two methods, th
delayed response method and IQOLB, which specifica
optimize each of these two cases. To decide which mec
nism to apply, one can speculate. IQOLB speculates on
LL instruction being used as part of implementing a loc
and optimizes accordingly. The delayed response meth
speculates on the LL instruction implementing a simpl
atomic read-modify-write and provides an optimizatio
specific to it. To obtain high performance, it is important t
have high prediction accuracies in such speculation.
speculating on the instruction being a basis for a simp
Fetch&Φ or a lock primitive, it will most often be the case
that the speculation is indeed correct. This is an importa
basis for the high confidence in our speculation. In our sim
ulations, the benchmarks always used LL/SC to impleme
locks and so we had perfect behavior. The instruction P
was used to index into a lock-predictor table. Our mech
nism for inferring an unset operation was as follows.

A lock operation is inferred by observing the sequen
of memory operations to an address. A lock operation h
an acquire phase (during which the LL/SC primitive i
employed) and a release phase which may be a sim
write operation to the lock variable. A predictor table con
sisting of the instruction PC associated with the acqu
(and possibly an address) is used. A lookup determin
whether this instruction was a lock operation and a pred
tion is made accordingly. Once a lock operation is see
one can predict with high confidence that this will be tru
for all future executions of the code. The pathological ca
can be detected by determining the accuracy of predict
and turning the predictor off. A lock operation is specu
lated by observing a successful LL/SC on a location fo
lowed sometime in the future by a write to the sam
location of the lock—this is necessary to prevent writes
collocated or falsely shared data being interpreted as
unset operation.

In addition to a lock predictor table, we need a table
keep track of locks currently held by the processor. This
required in order to be able to determine quickly when

tim
e

global ordering

P1

LL rt,X
.

SC rt,X

.

P2

LL rt,X
.
.
.
.
.
.
.

.
SC rt,X

.

P3

LL rt,X
.
.
.
.
.
.
.

.

.

LPRFO LPRFO LPRFO

excl. resp.

delayed excl. resp.

delayed excl. resp.

.

.

.

.

.

.

.

.
SC rt,X

∆

∆’

ST 0,X

cr
iti

ca
l

se
ct

io
n

tear-off

δ

lo
ca

l
sp

in
ni

ng
tear-off

cr
iti

ca
l

se
ct

io
n

ST 0,X

δ’

lo
ca

l
sp

in
ni

ng

ST 0,X

cr
iti

ca
l

se
ct

io
n

Figure 4. IQOLB sequence

Table 1. Baseline system

Processor
Instruction window
Issue mechanism
Branch predictor

64 entry reorder buffer, 32 entry load/store queue
out-of-order issue/commit of≤ 4 instructions per cycle, speculative loads
8K-entry gshare, 8-bit history; 2K-entry BTB with 2-bit saturating counters; 32-entry return address stack,
static sequential target predicted on a BTB miss

Cache subsystem
L1 data cache

L1 instruction cache
L2 unified cache

L1/L2 bus
Line size

64-KB, 2-way set associative, write-back, write-allocate, dual-ported, non-blocking.,≤ 8 outstanding misses,
1-cycle hit, MESI
64-KB, 2-way set associative, dual-ported, non-blocking,≤ 8 outstanding misses, 1-cycle hit
512-KB, 4-way set associative, write-back, write-allocated, non-blocking,≤16-outstanding misses, 6-cycle
hit (uncontended), MOESI
≤ 4 concurrent accesses to the L2, runs at processor speed
64 bytes

Memory bus
Address bus
Data network

split address/data buses, split transactions,≤ 117 outstanding requests
broadcast-based MOESI protocol, 12-cycle access latency
point-to-point crossbar, 40-cycles latency per cache line transfer

Memory 8-byte wide, 40-cycle access time for first part of cache line, 4-cycle time for subsequent accesses.

Consistency model sequential consistency

or
ry
im-
h
ry
le-
s-
ry
er
r
nd
es
d-
-
re

nd
e

o
l

-
a-
c

e
a-
ot
delay a response. The table can be small. On a successful
LL/SC sequence, the table is updated. We do not need to
store information prior to success—as that is captured by
the LL instruction support in the form of link flags and
locked physical address registers etc. On a release of a
lock, the entry is removed from the table.

Now, the choice of optimizations is restricted to the
delayed response method or IQOLB. It can be ascertained
with a high degree of confidence that the instruction PC
(and additionally in combination with the address being
accessed) corresponds uniquely either to the simple
Fetch&Φ operation or to a lock primitive. In the rare (and
possibly impossible) case of the same PC actually corre-
sponding to two different types of uses, the misspeculation
recovery mechanism guarantees correct behavior.

4. Experimental methodology

We implement our proposal IQOLB (from here on we
will no longer distinguish between the variants regarding
queue retention, since we did not observe queue break-
down in our simulations) and compare its performance
against that of QOLB and a simple implementation of the
test&test&set algorithm using the LL/SC primitive. The
major objective is to determine whether IQOLB and
QOLB perform comparably. We are also interested in com-
paring our mechanism with the baseline LL/SC
implementation—a simple LL/SC-based test&test&set
implementation. The results do not attempt to take advan-
tage of potential collocation benefits.

4.1. Simulation environment

We use an execution-driven simulator developed f
performing detailed studies of modern shared-memo
multiprocessor systems. The simulator is based on the S
pleScalar Toolset [6] and allows both detailed and hig
performance simulations of distributed shared-memo
multiprocessor systems. The simulator performs a cyc
by-cycle simulation of an aggressive out-of-order proce
sor and a detailed event-driven simulation of the memo
hierarchy. The processor core is similar to the out-of-ord
core (“sim-outorder”) distributed with the SimpleScala
toolset. However, we model data movement accurately a
actually pass data values down the different pipeline stag
and memory hierarchy components. Also we model ban
width and port contention at all levels. While the simula
tion technique used in SimpleScalar is faster than our mo
detailed method, SimpleScalar’s method does not le
itself well to simulating multiprocessors and our techniqu
produces somewhat more accurate results.

Our simulator supports parallel applications written t
the PARMACS macros [5] and supports both the origina
SPLASH’s (fork, similar to the Unix fork model) and
SPLASH-2’s (sproc, similar to a light-weight thread
model) programming models [30, 33]. We use the Sim
pleScalar supplied toolset to compile libraries and applic
tions for our simulations (the compiler is based on gc
version 2.6.3). SimpleScalar’s ISA is very similar to th
MIPS instruction set [18]. Through SimpleScalar’s annot
tion mechanism, we have add instructions originally n

in
n

r

i-
ea-

me
de
ive

.
si-
d
er

or-

r-
-
n

nt
to
s
te
ell

o-

e
on-
,
fi-
se
to

ve
available in the SimpleScalar ISA. These instructions
include Swap, Load-Linked, Store-Conditional, EnQOLB,
and DeQOLB operating both on 8-bit and 32-bit quantities.

4.2. Target system

We model a bus-based multiprocessor system. An
aggressive split broadcast-based snooping address bus and
crossbar data bus connect the nodes of our system. Sun’s
Gigaplane [31] and Gigaplane-XB [7] inspired our bus
design. Each node consists of a processor, split first level
instruction and data caches, and a unified second level
cache. All caches are non-blocking. Each processor can
fetch, issue, and commit up to 4 instructions per cycle. We
also model a reorder buffer, a load/store queue, a branch
predictor, a branch target buffer (BTB), and return address
stack.

Table 1 summarizes the parameters of our simulated
hardware. We express all latencies in terms of processor
cycles.

4.3. Benchmarks

We use benchmarks drawn from SPLASH-2 [33]. These
applications are Barnes, Ocean (the contiguous version),
Radiosity, Raytrace, and Water-nsquared. Description of
these benchmarks appears in the original article. We com-
pile all benchmarks using the SimpleScalar compiler with
the option –O3. We list the problems that the benchmarks
solve and the inputs that we use in Table 2.

We measure L1 data cache miss rates of <1% for Bar-
nes, 3-10% for Ocean, 1-2% for Radiosity, 1-3% for Ray-
trace, <1% for Water-nsquared. These rates are very small
for all benchmarks and are similar to previous published
results [33]. Instruction cache misses were negligible.

Like any small set of benchmarks, little can be con-
cluded about the generality of results. The benchmarks
were chosen to demonstrate that the techniques work as
well as QOLB without collocation in those applications
where QOLB performs well

5. Results

We present the results for a 32-processor system
Table 3. We show the results for three synchronizatio
primitives: test&test&set (TTS) implemented with the
LL/SC instructions, QOLB (without collocation), and ou
new method IQOLB (also without collocation). All results
correspond to the execution time of the parallel section.

TTS is our base case and for this synchronization prim
tive we show the absolute speedup in parentheses. We m
sure absolute speedup as the fraction of the running ti
on a single node divided by the running time on a 32-no
system. All other numbers in Table 3 are speedups relat
to the base cases.

We observe that QOLB consistently outperforms TTS
Two benchmarks (Barnes and Water) are relatively insen
tive to the performance of synchronization primitives an
therefore display only moderate speedups. The oth
benchmarks are more sensitive to synchronization perf
mance and we measure speedups in excess of 30%.

The key result in Table 3 is that IQOLB tracks the pe
formance of QOLB very well. In particular, although usu
ally slower, IQOLB is never more than 2% slower tha
QOLB!

6. Concluding remarks

We have demonstrated the potential of two importa
mechanisms—speculation and the insertion of delays—
improve the performance of synchronization primitive
without software support. Preliminary evaluations indica
that these two mechanisms combined can perform as w
as, if not better than, other synchronization primitives pr
posed to date.

This work can be extended in multiple ways. First, w
have only evaluated the two above mechanisms in the c
text of improving the handling of locks. Some primitives
such as QOLB, not only support the transfer of locks ef
ciently, but also the transfer of data associated with tho
locks. We believe that we can apply these mechanisms
manage protected data as well locks. In fact, we belie

Table 2. Benchmarks

Benchmark Type of simulation Input

Barnes Barnes-Hut N-body 2,048 bodies, 11
iter.

Ocean contig. Hydrodynamic 130x130, 2 days

Radiosity Light distribution room, batch mode

Raytrace 3-D rendering car

Water-nsquared Water molecules 512 mols, 3 iter.

Table 3. Results

Synch.
primitive B

ar
ne

s

O
ce

an

R
ad

io
si

ty

R
ay

tr
ac

e

W
at

er
-n

sq

TTS w/ LL/SC (7.5) (6.0) (2.5) (1.5) (18.1)

QOLB 1.06 1.54 6.37 11.01 1.06

IQOLB 1.06 1.52 6.37 10.75 1.06

r-

.

-

n,
y.
le

i-

st.

rt

.

l

on

l
,

,
e

h-
d
,
,

nt

er

C-
.
n

d
n
nd
-
m-
that these mechanisms can handle protected data better
than QOLB does. Without evaluating this extension, we
refer to it asGeneralized implicit QOLB(shown at the bot-
tom of Figure 1).

Secondly, we have only studied the use of these mecha-
nisms in the context of bus-based systems and with the
Load-Locked/Store-Conditional instructions. We believe
that our schemes can be adapted successfully to support
other configurations.

Finally, we have not examined attentively the interplay
between our methods and weaker form of memory consis-
tency models. Many multiprocessor systems today trade
looser memory ordering constraints for performance. It
would be interesting to study if weaker memory models
could further improve the performance of our mechanisms.

Acknowledgements

We thank Allan Gottlieb, Gil Neiger, Eric Rotenberg,
Steve Scott, and Craig Zilles for their comments. Finally,
this research was supported in part by an NSF Grant No.
CCR-9810114, NSF Grant No. CDA-9623632 (MID-
SHIPS), and various support from Intel Corporation.

References

[1] Sarita V. Adve and Mark D. Hill. Weak Ordering—A New
Definition. InProceedings of the 17th Annual International
Symposium on Computer Architecture, pages 2–14, May
1990.

[2] Anant Agarwal, Ricardo Bianchini, David Chaiken, Kirk L.
Johnson, David Kranz, John Kubiatowicz, Beng-Hong Lim,
Kenneth Mackenzie, and Donald Yeung. The MIT Alewife
Machine: Architecture and Performance. InProceedings of
the 22nd Annual International Symposium on Computer
Architecture, pages 2–13, June 1995.

[3] Thomas E. Anderson. The Performance of Spin Lock Alter-
natives for Shared-Memory Multiprocessors.IEEE Trans-
actions on Parallel and Distributed Systems, 1(1):6–16,
January 1990.

[4] Philip Bitar and Alvin M. Despain. Multiprocessor Cache
Synchronization: Issues, Innovations, Evolution. InPro-
ceedings of the 13th Annual International Symposium on
Computer Architecture, pages 424–433, June 1986.

[5] James Boyle, Ralph Butler, Terrence Disz, Barnett Glick-
field, Ewing Lusk, Ross Overbeek, James Patterson, and
Rick Stevens.Portable Programs for Parallel Processors.
Holt, Rinehart and Winston, New York, NY, 1987.

[6] Doug Burger and Todd M. Austin. The SimpleScalar Tool
Set, Version 2.0. Technical Report CS-TR-97-1342, Com-
puter Sciences Department, University of Wisconsin, Madi-
son, WI, June 1997.

[7] Alan Charlesworth, Andy Phelps, Ricki Williams, and Gary
Gilbert. Gigaplane-XB: Extending the Ultra Enterprise

Family. In Proceedings of the Symposium on High Perfo
mance Interconnects V, pages 97–112, August 1997.

[8] Compaq Computer Corporation, Houston, Texas.Alpha
Architecture Handbook, Version 4, February 1998.

[9] Michel Dubois, Christoph Scheurich, and Fayé Briggs
Memory Access Buffering in Multiprocessors. InProceed-
ings of the 13th Annual International Symposium on Com
puter Architecture, pages 434–442, June 1986.

[10] Kourosh Gharachorloo, Daniel Lenoski, James Laudo
Phillip Gibbons, Anoop Gupta, and John L. Henness
Memory Consistency and Event Ordering in Scalab
Shared-Memory Multiprocessors. InProceedings of the
17th Annual International Symposium on Computer Arch
tecture, pages 15–26, May 1990.

[11] James R. Goodman, Mary K. Vernon, and Philip J. Woe
Efficient Synchronization Primitives for Large-Scale
Cache-Coherent Shared-Memory Multiprocessors. InPro-
ceedings of the Third Symposium on Architectural Suppo
for Programming Languages and Operating Systems, pages
64–75, April 1989.

[12] Allan Gottlieb, Ralph Grishman, Clyde P. Kruskal, Kevin P
McAuliffe, Larry Rudolph, and Marc Snir. The NYU Ultra-
computer—Designing an MIMD Shared Memory Paralle
Computer.IEEE Transactions on Computers, C-32(2):175–
189, February 1983.

[13] Gary Graunke and Shreekant Thakkar. Synchronizati
Algorithms for Shared-Memory Multiprocessors.IEEE
Computer, 23(6):60–69, June 1990.

[14] John Heinlein.Optimized Multiprocessor Communication
and Synchronization Using a Programmable Protoco
Engine. PhD thesis, Stanford University, Stanford, CA
March 1998.

[15] Institute of Electrical and Electronics Engineers, New York
NY. IEEE Standard for the Scalable Coherent Interfac
(SCI), August 1993. ANSI/IEEE Std. 1596-1992.

[16] Eric H. Jensen, Gary W. Hagensen, and Jeffrey M. Broug
ton. A New Approach to Exclusive Data Access in Share
Memory Multiprocessors. Technical Report UCRL-97663
Lawrence Livermore National Laboratory, Livermore, CA
November 1987.

[17] Alain Kägi, Doug Burger, and James R. Goodman. Efficie
Synchronization: Let Them Eat QOLB. InProceedings of
the 24th Annual International Symposium on Comput
Architecture, pages 170–180, June 1997.

[18] Gerry Kane and Joe Heinrich.MIPS RISC Architecture.
Prentice-Hall, Upper Saddle River, NJ, 1992.

[19] Stefanos Kaxiras and James R. Goodman. Improving C
NUMA Performance Using Instruction-Based Prediction
In Proceedings of the Fifth International Symposium o
High-Performance Computer Architecture, pages 161–170,
January 1999.

[20] Sanjeev Kumar, Dongming Jiang, Rohit Chandra, an
Jaswinder Pal Singh. Evaluating Synchronization o
Shared Address Space Multiprocessors: Methodology a
Performance. InProceedings of the 1999 ACM SIGMET
RICS Conference on Measurements and Modeling of Co
puter Systems, pages 23–34, May 1999.

s

-

er

d

-

p
d

ff
h,
.
n
r-

,
-2
r-
l

[21] Jeffrey Kuskin, David Ofelt, Mark Heinrich, John Heinlein,
Richard Simoni, Kourosh Gharachorloo, John Chapin,
David Nakahira, Joel Baxter, Mark Horowitz, Anoop
Gupta, Mendel Rosenblum, and John L. Hennessy. The
Stanford FLASH Multiprocessor. InProceedings of the
21st Annual International Symposium on Computer Archi-
tecture, pages 302–313, April 1994.

[22] An-Chow Lai and Babak Falsafi. Memory Sharing Predic-
tor: The Key to a Speculative Coherent DSM. InProceed-
ings of the 26th Annual International Symposium on
Computer Architecture, pages 172–183, May 1999.

[23] Alvin R. Lebeck and David A. Wood. Dynamic Self-Invali-
dation: Reducing Coherence Overhead in Shared-Memory
Multiprocessors. InProceedings of the 22nd Annual Inter-
national Symposium on Computer Architecture, pages 48–
59, June 1995.

[24] Daniel Lenoski, James Laudon, Kourosh Gharachorloo,
Wolf-Dietrich Weber, Anoop Gupta, John L. Hennessy,
Mark Horowitz, and Monica Lam. The Stanford DASH
Multiprocessor.IEEE Computer, 25(3):63–79, March 1992.

[25] Beng-Hong Lim and Anant Agarwal. Reactive Synchroni-
zation Algorithms for Multiprocessors. InProceedings of
the Sixth Symposium on Architectural Support for Program-
ming Languages and Operating Systems, pages 25–35,
October 1994.

[26] Cathy May, Ed Silha, Rick Simpson, and Hank Warren, edi-
tors.The PowerPC Architecture: A Specification for a New
Family of RISC Processors. Morgan Kaufman, San Fran-
cisco, CA, second edition, May 1994.

[27] John M. Mellor-Crummey and Michael L. Scott. Algo-
rithms for Scalable Synchronization on Shared-Memory

Multiprocessors.ACM Transactions on Computer System,
9(1):21–65, February 1991.

[28] Shubhendu S. Mukherjee and Mark D. Hill. Using Predic
tion to Accelerate Coherence Protocols. InProceedings of
the 25th Annual International Symposium on Comput
Architecture, pages 179–190, June 1998.

[29] Larry Rudolph and Zary Segall. Dynamic Decentralize
Cache Schemes for MIMD Parallel Processors. InProceed-
ings of the 11th Annual International Symposium on Com
puter Architecture, pages 340–347, June 1984.

[30] Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoo
Gupta. SPLASH: Stanford Parallel Applications for Share
Memory.Computer Architecture News, 20(1):5–44, March
1992.

[31] Ashok Singhal, David Broniarczyk, Fred Cerauskis, Je
Price, Leo Yuan, Chris Cheng, Drew Doblar, Steve Fost
Nalini Agarwal, Kenneth Harvey, and Erik Hagersten
Gigaplane: A High Performance Bus for Large SMPs. I
Proceedings of the Symposium on High Performance Inte
connects IV, pages 41–52, August 1996.

[32] Richard L. Sites. Alpha AXP Architecture.Digital Techni-
cal Journal, 4(4):19–34, 1992.

[33] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie
Jaswinder Pal Singh, and Anoop Gupta. The SPLASH
Programs: Characterization and Methodological Conside
ations. In Proceedings of the 22nd Annual Internationa
Symposium on Computer Architecture, pages 24–36, June
1995.

	Abstract
	1. Introduction
	2. Background and related work
	3. Synchronization algorithms
	3.1. Baseline LL/SC implementation
	Figure 2. Traditional LL/SC sequence

	3.2. LL/SC implementation with delayed response
	Figure 3. LL/SC sequence with delayed response

	3.3. Speculating on lock operations
	1. Speculate that an LL instruction operates on a lock and issue an LPRFO;
	2. Delay ownership transfers to external lock requestors, but service them speculatively; and
	3. Identify the instruction releasing the lock and transfer data to the next requestor in line.
	Figure 4. IQOLB sequence

	3.4. Prediction of lock acquires and releases

	4. Experimental methodology
	4.1. Simulation environment
	4.2. Target system
	4.3. Benchmarks
	Table 2. Benchmarks

	5. Results
	Table 3. Results

	6. Concluding remarks
	[1] Sarita�V. Adve and Mark�D. Hill. Weak Ordering—A New Definition. In Proceedings of the 17th A...
	[2] Anant Agarwal, Ricardo Bianchini, David Chaiken, Kirk�L. Johnson, David Kranz, John Kubiatowi...
	[3] Thomas�E. Anderson. The Performance of Spin Lock Alternatives for Shared-Memory Multiprocesso...
	[4] Philip Bitar and Alvin�M. Despain. Multiprocessor Cache Synchronization: Issues, Innovations,...
	[5] James Boyle, Ralph Butler, Terrence Disz, Barnett Glickfield, Ewing Lusk, Ross Overbeek, Jame...
	[6] Doug Burger and Todd�M. Austin. The SimpleScalar Tool Set, Version 2.0. Technical Report CS-T...
	[7] Alan Charlesworth, Andy Phelps, Ricki Williams, and Gary Gilbert. Gigaplane-XB: Extending the...
	[8] Compaq Computer Corporation, Houston, Texas. Alpha Architecture Handbook, Version 4, February...
	[9] Michel Dubois, Christoph Scheurich, and Fayé Briggs. Memory Access Buffering in Multiprocesso...
	[10] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons, Anoop Gupta, and John�L...
	[11] James�R. Goodman, Mary�K. Vernon, and Philip�J. Woest. Efficient Synchronization Primitives ...
	[12] Allan Gottlieb, Ralph Grishman, Clyde�P. Kruskal, Kevin�P. McAuliffe, Larry Rudolph, and Mar...
	[13] Gary Graunke and Shreekant Thakkar. Synchronization Algorithms for Shared-Memory Multiproces...
	[14] John Heinlein. Optimized Multiprocessor Communication and Synchronization Using a Programmab...
	[15] Institute of Electrical and Electronics Engineers, New York, NY. IEEE Standard for the Scala...
	[16] Eric�H. Jensen, Gary�W. Hagensen, and Jeffrey�M. Broughton. A New Approach to Exclusive Data...
	[17] Alain Kägi, Doug Burger, and James�R. Goodman. Efficient Synchronization: Let Them Eat QOLB....
	[18] Gerry Kane and Joe Heinrich. MIPS RISC Architecture. Prentice-Hall, Upper Saddle River, NJ, ...
	[19] Stefanos Kaxiras and James�R. Goodman. Improving CC- NUMA Performance Using Instruction-Base...
	[20] Sanjeev Kumar, Dongming Jiang, Rohit Chandra, and Jaswinder�Pal Singh. Evaluating Synchroniz...
	[21] Jeffrey Kuskin, David Ofelt, Mark Heinrich, John Heinlein, Richard Simoni, Kourosh Gharachor...
	[22] An-Chow Lai and Babak Falsafi. Memory Sharing Predictor: The Key to a Speculative Coherent D...
	[23] Alvin�R. Lebeck and David�A. Wood. Dynamic Self-Invalidation: Reducing Coherence Overhead in...
	[24] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Wolf-Dietrich Weber, Anoop Gupta, John�L...
	[25] Beng-Hong Lim and Anant Agarwal. Reactive Synchronization Algorithms for Multiprocessors. In...
	[26] Cathy May, Ed�Silha, Rick Simpson, and Hank Warren, editors. The PowerPC Architecture: A Spe...
	[27] John�M. Mellor-Crummey and Michael�L. Scott. Algorithms for Scalable Synchronization on Shar...
	[28] Shubhendu�S. Mukherjee and Mark�D. Hill. Using Prediction to Accelerate Coherence Protocols....
	[29] Larry Rudolph and Zary Segall. Dynamic Decentralized Cache Schemes for MIMD Parallel Process...
	[30] Jaswinder�Pal Singh, Wolf-Dietrich Weber, and Anoop Gupta. SPLASH: Stanford Parallel Applica...
	[31] Ashok Singhal, David Broniarczyk, Fred Cerauskis, Jeff Price, Leo Yuan, Chris Cheng, Drew Do...
	[32] Richard�L. Sites. Alpha AXP Architecture. Digital Technical Journal, 4(4):19–34, 1992.
	[33] Steven�Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder�Pal Singh, and Anoop Gupta. The ...

