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ABSTRACT
Communication latencies within critical sections constitute a 
major bottleneck in some classes of emerging parallel workloads. 
In this paper, we argue for the use of Inferentially Queued Locks
(IQLs) [31], not just for efficient synchronization but also for 
reducing communication latencies, and we propose a novel mecha-
nism, Speculative Push (SP), aimed at reducing these communica-
tion latencies. With IQLs, the processor infers the existence, and 
limits, of a critical section from the use of synchronization instruc-
tions and joins a queue of lock requestors. The SP mechanism 
extracts information about program structure by observing IQLs. 
SP allows the cache controller, responding to a request for a cache 
line that likely includes a lock variable, to predict the data sets the 
requestor will modify within the associated critical section. The 
controller then pushes these lines from its own cache to the target 
cache, as well as writing them to memory. Overlapping the pro-
tected data transfer with that of the lock can substantially reduce 
the communication latencies within critical sections. By pushing 
data in exclusive state, the mechanism can collapse a read-modify-
write sequences within a critical section into a single local cache 
access. The write-back to memory allows the receiving cache to 
ignore the push. Neither mechanism requires any programmer or 
compiler support nor any instruction set changes. Our experiments 
demonstrate that IQLs and SP can improve performance of appli-
cations employing frequent synchronization.

Categories and Subject Descriptors
C.1.2 [Processor Architectures]: Multiple Data Stream 
Architectures (Multiprocessors) — Multiple-instruction-
stream, multiple-data-stream processors (MIMD)
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1  INTRODUCTION
The shared-memory programming model is now widely estab-
lished as a leading paradigm for parallel computing. The shared 
memory abstraction is particularly attractive for irregular applica-
tions, where reasoning about program behavior and predicting per-
formance may be difficult. Under the shared-memory model, in 
addition to holding values, memory also provides the means for 
synchronization and coordination of activities among processors. 
When multiple processors attempt to access a set of variables 
simultaneously and at least one processor updates at least one of 
the variables, a data race may occur wherein the execution out-
come depends on the relative speed of the operations and the result 
of memory accesses becomes unpredictable. The most common 
method used to resolve data races and to enforce mutually exclu-
sive accesses to regions of code, known as critical sections, is 
through the use of a lock.

Optimizing lock accesses associated with an actively shared 
critical section is both crucial and subtle: crucial because naïve 
locking algorithms can lead to disastrous performance [2, 3, 18, 
17], and subtle because multiple processors may access the lock 
even while that lock guarantees exclusive access to the data it pro-
tects. The protected data is often modified with the result that the 
efficient lock handling only reveals subsequent delays in accessing 
the protected data. A wide range of synchronization mechanisms 
have emerged over the years [34, 12, 3, 13, 28, 26], and while no 
common mechanism is available in all architectures, virtually all 
architectures provide a hardware means for acquiring a lock atom-
ically. Beyond this basic capability, numerous mechanisms have 
been proposed for enhancing the efficiency of locking in hardware, 
but to date very few implemented multiprocessor systems have 
incorporated these ideas.

It has been argued that parallel applications that spend too 
much time in critical sections could be restructured to minimize 
synchronization and in fact this is true of many structured scien-
tific applications. These applications are computationally inten-
sive, highly regular, and generally display easily exploitable 
parallelism. However, among new classes of programs emerging 
as important applications for parallel systems, online transaction 
processing workloads display radically different behavior from the 
traditional scientific applications: they are characterized by high 
communication miss rates [4, 20, 33]. A study by Ranganathan et 
al. [33] showed a large fraction of misses are generated within crit-
ical sections. For a given configuration of a 4-way system running 
the Oracle database engine, 20% of the execution time was spent 
servicing communication misses to dirty data in remote caches. 
These workloads are characterized by fine-grain updates of control 
data and frequent synchronization protecting such data. The pro-
tected data sets migrate among processors with the passing of the 
lock and contribute to a large portion of the access latencies to 



dirty data in remote caches. They also noted most of these cache 
misses targeted only a small fraction of the total number of cache 
lines experiencing misses.

Gharachorloo et al. also note a large portion of execution laten-
cies spent in critical sections [11]. With larger number of proces-
sors, faster processor speeds, and relatively increasing remote 
access latencies, processor stalls induced due to communication 
misses within critical sections will only increase and processors 
will be unable to generate misses early enough so as to hide mem-
ory access latencies to actively shared data. 

Paper contributions.  This paper addresses the problems out-
lined above by targeting the lock operations in conjunction with 
the data accesses protected by these locks. The paper makes two 
contributions: 

1. A case for Inferentially Queued Locks. This paper advocates 
the use of Inferentially Queued Locks (IQLs) [31], that is, 
devoting hardware to build an orderly queue of lock contend-
ers. The queue is speculative because the processor infers the 
existence, and limits, of a critical section from the use of syn-
chronization instructions. We show for the first time how to 
implement IQLs for a general directory-based system and with-
out making assumptions about the coherence interconnect.

2. Speculative Push. This paper proposes a new technique, Spec-
ulative Push (SP), for reducing the miss latency associated with 
data accesses within critical sections. SP allows the cache con-
troller of a processor currently holding a lock not only to defer 
momentarily its response to a request for the cache line holding 
the lock, but to provide additional modified cache lines at the 
same time, anticipating misses likely to occur immediately 
after the requestor has acquired the lock. By overlapping the 
transfer of the data with the lock, the communication latency 
experienced within a critical section can be reduced. To our 
knowledge, this is the first hardware technique to convert data 
misses in a critical section from a multi-hop transaction to a 
local access. 

Intuition for IQLs.  IQLs are motivated by two observations 
about performance loss due to lock interference. First, when a pro-
cessor requests a lock for purposes of acquiring the lock, it will 
likely spin-wait upon discovering the lock is already held. If the 
response to this request is delayed briefly, any increase in the prob-
ability of the lock having been released will increase the success 
rate for the initial attempt, and thereby reduce total communica-
tion. The latency to acquire a held lock is optimal if such a request 
is serviced immediately after the lock is released. Second, if such a 
request is serviced immediately, that is, while the lock is still held, 
the release of the lock will probably be delayed, because releasing 
it will require the lock to be re-obtained in a writable state. Again, 
any delay resulting in an increase in the probability of the lock 
having been released is likely to improve performance, not only by 
reducing total communication, but also by avoiding a delay in 
releasing the lock. IQLs extend the notion of buffering external 
requests by applying it to cache lines inferred to contain a synchro-
nization variable. By delaying the service for a small and bounded 
period, and servicing the deferred request as soon as the lock is 
inferred to be released, many critical sections can be fully executed 
and the lock released without interference from other processors. 
In addition, the transfer of locks occurs directly between the two 
nodes involved without the coherence network being in the critical 
path. In the presence of frequent synchronization to migratory 
locks there is great benefit in optimizing the lock access: network 

contention is reduced, thus having a positive effect on memory 
system performance.

Intuition for SP.  The performance of any scheme optimizing 
data transfer within critical sections depends on the accuracy of 
correctly predicting which processor will acquire the lock and use 
the data. An advantage of IQLs is the early, accurate knowledge of 
the next owner of a lock. IQLs allow inference of the presence and 
extent of critical sections in programs. Assuming such knowledge 
of locations and sizes of these critical sections in a program, infor-
mation associated with these locks can easily be tracked. Once the 
pairing between critical sections and the data they protect has been 
established, SP forwards the actively shared data to the requesting 
processor, along with the lock. On acquiring the lock, the requestor 
finds in its cache the data it was unable to prefetch. SP forwards 
the data in an exclusive state thus allowing the processor to modify 
the cache line without experiencing a further delay it would other-
wise suffer if it had initially retrieved the line for reading.

For critical section accesses, SP has inherent advantages over 
more traditional approaches for latency reduction such as prefetch-
ing and compiler-assisted data forwarding. In situations of con-
tended locks, prefetching is not sufficient as the processor would 
spin waiting for the lock and would generate data requests only 
once the lock has been acquired. SP transfers data as soon as the 
data is ready to be forwarded and does not interfere with the execu-
tion of the processor performing the push. The speculative mecha-
nism can also adapt to run-time behavior. Speculative Push 
provides a double performance gain for data that is read before 
being written to: its initial access is overlapped with the lock trans-
fer, and it does not have to be upgraded for writing. 

We restrict SP to modified lines because, while some shared 
lines may also result in misses, such shared lines would already be 
present in the requestor's cache — data in cache lines previously 
read but not modified by the requestor in a previous execution of 
the same critical section would probably still be in the cache. 
Indeed, our experiments suggest that much of the benefit is derived 
simply from pushing cache lines into caches where they were 
present in an earlier execution.

Paper outline. In Section 2 we discuss IQLs and show how 
IQLs can be efficiently supported naturally in modern systems by 
using existing cache coherence protocols. We use a snoop and a 
directory-based protocol. Then we extend the base protocols to 
incorporate mechanisms for SP in Section 3. In Section 4 and 
Section 5 we present results. We discuss related work in Section 6
and conclude in Section 7.

2  INFERENTIALLY QUEUED LOCKS
Processors with non-blocking caches allow multiple outstanding 
requests to the memory system. Such processors use special buff-
ers such as miss status holding registers (MSHRs) [21] to track the 
pending memory requests. Multiprocessor systems use such struc-
tures to buffer requests from other processors to caches lines that 
are in a pending state.

Inferentially Queued Locks (IQLs) extend the notion of buffer-
ing external requests by applying it to cache lines inferred to con-
tain a synchronization variable. By delaying the service at most for 
a small and bounded period, and servicing the deferred request as 
soon as the lock is inferred to be released, many critical sections 
can be fully executed and the lock released without interference 
from other processors. 

In particular, the lock transfer occurs directly between the two 
nodes involved eliminating the coherence network from the critical 
path. Contrast IQLs with a conventional system that may require 



many additional network transactions to transfer a lock: a direc-
tory-based system may not be able to transfer the lock directly 
from producer to consumer passing instead the lock through an 
intermediate node (home), a lock release may require upgrade per-
missions from the directory, or a broadcast-based system may see 
repeated lock requests. This additional traffic may artificially aug-
ment the time that a lock is held, thus increasing the critical path of 
the overall computation.

The IQL method is speculative because the hardware does not 
have sufficient information, nor does it require such information, 
to prove even that a lock is being employed, but infers this infor-
mation from program behavior, and specifically infers acquire and 
release points delimiting a critical section.

In the next subsection, we discuss the basic mechanisms 
involved in IQLs. In Section 2.2 and Section 2.3, we discuss 
details of implementing IQLs on broadcast and directory systems.

2.1  Basic mechanisms
A processor can have a lock in two different ways: (1) a process 
running on the processor has acquired a logical entity, a lock, and 
(2) the cache has a shared or exclusive copy of a cache line con-
taining the lock. In the first case we refer to a lock as being 
acquired, held, or released. In the second case we refer to a lock-
line or lock variable as being present, requested, sent, or received. 
A requestor is a processor that has requested a lock-line and for 
which it may be inferred that this processor is attempting to 
acquire a lock. A responder is a processor holding a writable copy 
of a lock-line sought by a requestor. Predicting synchronization 
events, and distinguishing between simple atomic read-modify-
write operations, and the acquisition of a lock have been studied 
elsewhere [31]. We assume the processor has predicted, using a 
Lock Predictor Table (LPT) and based on previous executions of 
the code sequence, the event to be an acquiring of a lock. On a 
mispredict, performance may be degraded but the program will be 
correctly executed. 

We now outline the basic IQL mechanism as shown in 
Figure 1. The IQL protocol is invoked on actions, both local and 
external requests, involving cache lines predicted to contain lock 
variables. The local processor must track when it acquires a pre-
sumed lock and when it has the lock-line in its cache. The proces-
sor must also track the release of such a lock and initiate actions 
triggered by the release. A Lock State Table (LST) is used for this 
purpose. The LST is indexed by the PC address of the synchroniz-
ing instruction identifying the critical section. All predicted locks 
known to the cache controller through the LST are in one of four 
states: (1) INVALID: the lock-line is not present in the cache and 
the local processor (probably) does not hold the lock, (2) 
PRESENT: the lock-line is present in the local cache but the lock is 
not held by the local processor, (3) HELD: the local processor 

holds the lock, and (4) REQUESTED: the local processor has 
requested the lock but does not have the lock.

To assure that the IQL protocol is only invoked for predicted 
lock operations, a read-for-exclusive request (rd_X) is specially 
annotated as lower priority, rd_X_lp. This request can be deferred 
for a brief but bounded time. Otherwise it is identical to rd_X.

Figure 2 outlines a simplified state transition diagram for the 
LST. When a processor predicts a lock-acquire, a lock-line already 
present in the local cache is marked HELD in the LST otherwise 
space is allocated in the cache, and a rd_X_lp is issued and the cor-
responding LST entry is marked REQUESTED. When the request 
is eventually serviced, the LST entry transitions to HELD. A sub-
sequent write to the byte address predicted to be a lock (and thus 
predicted to correspond to a lock release) results in the LST entry 
being set to PRESENT. When a lock-line is evicted from the cache 
for whatever reason, including invalidation, the LST entry is 
marked INVALID. The LST is consulted on any incoming rd_X_lp 
request. If the LST entry for the requested cache line is in state 
PRESENT, the request is handled as any other read-for-exclusive 
(rd_X) request. If the cache line is in state HELD or 
REQUESTED, the line is marked for special action upon the 
release of the inferred lock, and the request is buffered in an 
MSHR. A subsequent inferred release of the lock triggers the ser-
vicing of the buffered rd_X_lp.

Since cache coherence protocols already serialize rd_X 
requests, a queue of requesting processors is easily constructed 
with minor support from the coherence protocol. The first rd_X_lp 
request transfers the apparent owner of the lock line to the 
requestor thus making it the recipient of any subsequent request. 
By this means, a queue of requesting processor is formed, with 
each processor receiving the lock-line sequentially in the order of 
the original request. Regular priority reads, whether for-exclusive 
or shared, are handled separately. Interactions between regular- 
and low-priority requests only occur in rare cases where the lock 
protocol is being violated, in the presence of false sharing, or the 
hardware has otherwise misspeculated.

We next discuss how IQLs can be supported on two popular 
design approaches: broadcast- and directory-based systems. We 
take two protocols from commercial systems and supplement them 
to support IQLs.

2.2  IQLs and broadcast-based systems
We use a snoop design similar to the Sun Gigaplane [36, 7]. The 
protocol uses a split-transaction, pipelined address bus with sup-
port for a large number of outstanding transactions and out-of-
order responses. The bus implements an invalidation-based three-
state (Owned, Shared, Invalid) snooping cache coherence protocol 
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Figure 1. IQL organization
The Lock Predictor Table (LPT) and Lock State Table (LST) are the 
two new structures.
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and the cache implements a MOESI protocol. The cache with the 
requested block in Owned state (as seen by the bus) will respond to 
the next request for that block. IQLs can be supported naturally 
with the above protocol as the protocol already has a notion of 
queues. Any processor placing a rd_X_lp on the bus will respond 
to the next processor which places a rd_X_lp for the same block on 
the bus. With IQLs, the request is not serviced until a lock release. 
By placing a rd_X_lp on the bus, the processor joins the queue of 
lock requestors at the tail and is serviced when the earlier requestor 
releases the lock. IQLs for broadcast systems were discussed ear-
lier elsewhere [31]. 

2.3  IQLs and directory-based systems
We now discuss directory protocol support. Directory protocols 
allow cache coherence to scale to many processors. Directory pro-
tocols store a directory state for each memory block currently 
cached in any node. Commonly, directory protocols implement an 
invalidation-based scheme. With directory protocols, state infor-
mation for a block is obtained from a directory through network 
transactions, and communication with various cached copies is 
performed by explicit messages using an arbitrary network. Typi-
cally, information for a block can be found in a fixed directory 
known at the time of the request. 

Two popular approaches distribute directories either with mem-
ory or with caches. Memory-based schemes store directory infor-
mation for a cache block at the home node of the block [23, 25, 
11]. In cache-based schemes, the sharing information is distributed 
among the various copies (rather than at the home node). Each 
cache block contains a pointer to the node with the next cached 
copy of the block in a distributed linked-list organization [15, 27, 
6]. For cache-based directories, IQLs can be supported relatively 
easily since there already exists a notion of queues for cache 
blocks. We focus our discussion on memory-based directories. 

We use the SGI Origin-2000 coherence protocol [23] to discuss 
IQL implementation. Other protocols can be adapted likewise. The 
protocol supports the MESI (Modified, Exclusive, Shared, Invalid) 
states and is non-blocking: memory does not buffer requests while 
waiting for other messages to arrive. The protocol also supports 
request forwarding for three party transactions and silent evictions 
of clean-exclusive lines. The protocol does not rely on an ordered 
network. Two virtual channels are provided and deadlock in the 
request network (due to request forwarding) is broken by the use of 
back-off messages.

Memory is the owner for all clean lines in the system, thus 
memory services any request for clean data immediately. In addi-
tion, rd_X requests cause transfer of exclusive ownership to the 
requestor and sending of invalidates to other holders of cached 
copies. The holders of cached copies subsequently send invalidate 
acknowledgments to the requestor. Requests to blocks not owned 
by memory are forwarded (as an intervention) to the owner (and in 
the case of a rd_X request, the requestor becomes the owner). The 
directory enters a transitional Busy state for the particular memory 
block until it receives a revision message from the previous owner. 
All requests received by the directory for a memory block in Busy 
state are NACKed. A sharing bit-vector associated with each cache 
block identifies the processors holding shared copies of the block.

Under the base protocol, the directory enters a transitional busy 
state while tracking down an exclusive copy in the system. For 
IQLs, the directory, instead of NACKing another request while in 
busy state, forwards the request to the previous requestor. If the 
previous requestor’s request is still pending, the intervention is 
buffered. Forwarding a request to the last requestor guarantees a 
processor receives at most one intervention for a given memory 
block. An additional bit, the synch_bit, is used per directory entry 

to determine whether the IQL protocol should be invoked. The 
owner pointer is overloaded to store the last requestor when the 
synch_bit is set. The sharing bit-vector is also used to track mem-
bers of the inferential queue. Alternate ways to capture such infor-
mation include using unused state bits in the encoding.

To understand how queues are created we step through a simple 
example in Section 2.3.1 and then discuss how the directory 
detects and handles queue breakdowns (in the case of write-backs) 
in Section 2.3.2. 

2.3.1  Constructing queues
Consider three processors, P1, P2, and P3 attempting to enter a 
critical section. P1 issues a rd_X_lp to the directory. Since the 
directory exclusively owns the block, it responds to the request 
with data and enters an Exclusive state. P1 is now the owner of the 
block. Subsequently, P2 issues a rd_X_lp request to the directory. 
The directory forwards P2’s request to P1, marks P2 as the last 
requestor, and enters the Busy state. The bit vector now has 2 bits 
set: P1 and P2. In addition, the synch_bit is also set. Now, P3 sends 
a rd_X_lp request to the directory. The directory state is Busy. 
However, the synch_bit is set. Instead of NACKing the request, the 
directory forwards it to the last requestor, P2. In addition, P3’s bit 
is set in the bit vector. Thus, we have P3 waiting for P2’s response, 
which is waiting for P1’s response. A processor buffers an inter-
vention until the lock is released. At the time when the intervention 
is serviced, a revision message (part of the base protocol) is sent to 
the directory. On receiving the revision message, the directory 
unsets the processor’s bit in the bit vector. If only one bit is set in 
the vector, the last requestor automatically becomes the owner. 
Under this situation, the directory unsets the synch_bit and leaves 
the Busy state, entering the Exclusive state. A revision message 
exists for every rd_X_lp request serviced, thus ensuring the direc-
tory will eventually transition into an Exclusive or any other stable 
state. A simplified state transition diagram for the IQL protocol is 
shown in Figure 3.

2.3.2   Handling queue breakdown
The distributed nature of the IQL queue (the directory does not 
track the order in which requests are received: it only marks who 
has requested the block), may cause the queue to break-down due 
to write-backs. For the example in the previous section, suppose 
P1 is writing back the block to memory. Under the base protocol, 
P1 can ignore P2’s intervention since the directory can recognize 
this race condition and detect P2 will not be serviced by P1. The 
directory does this as it keeps track of the owner P2. However, 
under IQL, if there are multiple bits set in the bit-vector (the 
synch_bit is set and a queue exists), the directory cannot determine 
the identity of the processor which will not receive a response from 
P1; the directory does not remember it forwarded P2’s request to 
P1. While this race condition is indeed rare, it must be handled cor-
rectly, if not efficiently.

We adopt a simple approach to handle queue breakdowns. On 
receiving a write-back to a block with a synch_bit set and more 
than two bits set in the bit-vector (if only two bits are set, the direc-
tory can uniquely determine the processor that will not receive a 
response), the directory unsets the synch_bit — the directory is 
breaking down the queue. Doing so, the protocol behaves like the 
base protocol with an additional side effect: NACKs are sent to all 
processors in the bit-vector. When the processor’s retry on receiv-
ing the NACK, the directory can detect this by a bit in the retried 
message. At that point, the directory unsets the bit in the bit-vector 
corresponding to the requestor. When the bit-vector has no more 
bits set, the directory entry enters an Unowned state. Such a mech-



anism guarantees a directory will eventually transition into an 
Unowned state.

With conceptually simple changes to the way the directory pro-
tocol works for certain types of requests, and some additional bits 
in the directory entry, IQLs can be efficiently supported.

3  SPECULATIVE PUSH
Speculative Push (SP) aims at constructing a link between critical 
sections and the data they protect. Once the link is established, 
whenever a request for a lock-line is received, SP also forwards 
any predicted data to the requesting processor along with the lock-
line. This allows the lock requestor to find both the lock and any 
protected data (which it was unable to prefetch) readily available 
in writable state in its local cache upon entering the critical section. 
The requestor now experiences minimal delay in executing its crit-
ical section, virtually eliminating latency associated with access to 
data protected by migratory locks. 

SP may initiate data transfer of predicted critical section data 
even before the requestor has acquired the lock, and the data is for-
warded in Exclusive (as opposed to Modified) state. The pushed 
data is also written back to memory, providing two key benefits: 
(1) if the target node does not reference the pushed data, the data 
can be silently evicted thus doing no harm, and (2) the target of the 
push now has the important option of ignoring the push if no local 
buffer space is available. 

In our simulations, we were very conservative in accepting the 
push — a pushed cache line never evicted a valid cache line, that is, 
a push was accepted only if an invalid line was available. This 
approach is surprisingly effective, in part because migratory lines 
that are frequently written are frequently invalidated, leaving avail-
able invalid lines in the corresponding cache sets. Even if the push 
is rejected, benefits may accrue. Specifically, when the rejected 
cache line is subsequently accessed, it can be supplied from the 
directory, avoiding the three-hop latency that would have occurred 
without the attempted push.

SP thus provides a double performance gain for data that is read 
before being written to: its initial access is overlapped with the 
lock transfer, and it does not have to be upgraded for writing.

As shown earlier in Figure 1, IQL has two structures: the LPT 
to infer critical sections, and the LST to invoke the IQL protocol 
partly based on information received from the LPT. Figure 4 shows 
the SP hardware. SP extends the LST by recording data accesses 

while the inferred critical section is executed and by deciding if 
predicted data is to be forwarded along with a released lock.

The basic steps of SP are: 

1. Establish and record the association between critical section 
data and a lock.

2. Enable (or disable) the optimization by assigning a confidence 
level to pairings determined in Step 1. 

3. Perform the speculative push.

3.1  Predicting lock and data pairings
When IQL infers a critical section, the SP hardware starts record-
ing addresses of accesses performed while the processor holds the 
lock. These addresses become candidates for forwarding and are 
stored in an extended LST entry shown in Figure 5. Besides the 
lock address, each extended LST entry stores a valid bit, a saturat-
ing counter to establish a confidence level, and data addresses with 
associated access bits (A).

The LST stores cache-aligned addresses for two reasons: (1) we 
want to match SP with existing controllers and existing hardware 
manipulates data at the granularity of a cache line; (2) false sharing 
with critical data is considered poor programming practice; there-
fore all data in a cache line are assumed to be either related or 
unused. SP may record either individual addresses or address 
ranges. In our experiments at most two cache lines generally 
caused a write-miss during the execution of a critical section. 
Therefore, our LST stores individual addresses. Figure 5 shows the 
LST entry for supporting SP.

When an access results in a write fault, the SP hardware allo-
cates a new entry for the address. If no free entry is available, the 

Figure 3. Protocol transitions for inferentially queued locks in a directory-based system
Only a subset of the transitions is shown, this subset focuses on the process of forming a queue. Arcs between states represent transitions 
labeled with event/action pairs. A horizontal line separates event (above) and action (below). The queue-breakdown sequence is shown when a 
write-back occurs.
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entry with the lowest confidence is evicted (see next sub-section). 
Ties are broken randomly. For the purpose of SP, distinguishing 
between finding a lock held or simply finding the lock present but 
not held is not necessary. In both cases, the triggering event causes 
the candidate cache lines to be pushed.

Two actions identify candidates for future pushes: lines that 
caused write misses during a critical section and lines that have 
been pushed into the cache (and therefore do not cause write 
misses). While not all data written in a critical section is migratory, 
write-misses capture data written within the critical section and 
obtained from the memory system. If such misses occur repeat-
edly, one can speculate the data is migratory. Local private data 
may also cause a write miss but is more likely to remain in the 
cache, since it will not be invalidated by another processor. Of 
course, various critical sections may touch many or few cache 
lines, but the first lines touched after acquisition of the lock seem 
especially important.

3.2  Prediction confidence
A saturating counter is added to each LST entry data address to 
assign confidence in the data for forwarding. Also associated with 
each candidate address is an access bit (A) that is set each time the 
critical section accesses this address and cleared each time after the 
execution of a presumed critical section ends. Before the access 
bits are cleared, SP inspects them and increases the counter for 
each set bit or decreases it for each cleared bit. A counter reaching 
the maximum value enables SP for the data address. This avoids a 
cache line being repeatedly pushed but never written to.

Repeated evictions of a candidate address also causes the 
counter to decrement. Repeated evictions is a sign that the 
addresses accessed inside a critical section vary from one execu-
tion to the next preventing effective data forwarding. A counter 
reaching the minimum value disables the optimization.

More sophisticated predictors, for example using information 
about remote requests for modified data in the local cache, or com-
bining collective information from multiple nodes about migratory 
patterns, may improve the effectiveness of SP.

3.3  Speculative Push protocol
Once the data association has been identified, the SP protocol is 
initiated. The SP sequence involves two separate actions to main-
tain memory ordering requirements and achieve high performance: 

1. Determine the forwarding data path for the push.
2. Order the speculative push in the memory order thereby grant-

ing coherence permissions to the target.

We discuss these two actions in Section 3.3.1 and Section 3.3.2. 
In Section 3.3.3 we discuss an interesting approach to match up 
speculatively pushed data messages with their appropriate coher-
ence permission messages correctly. The issue arises because no 
ordering guarantees are assumed from the network or coherence 
protocol and we demonstrate a simple solution to handle the 
absence of any ordering guarantees.

3.3.1  Determining the forwarding data path
The predicted data (present in the local cache in modified state) 
can be pushed by the initiating processor either directly to the tar-
get processor (with a write back also sent to memory) or is pushed 
via memory (i.e., the data is written back to the directory which 
will forward the data to the target node). If the data is pushed via 
memory, the initiating processor sends address hints to the target 
node informing the target to expect unrequested data. The target 
processor in this case pre-allocates data buffers in anticipation for 
the pushed data. Doing so prevents the target processor from gen-
erating unnecessary requests for data addresses which are going to 
be pushed along with the lock. If data is pushed directly to the tar-
get processor, the target processor receives the actual data rather 
than hints and allocates cache blocks to sink the data if possible. 

When data is directly pushed to the target node, the recipient 
cannot commit the use of the data until the push has been ordered 
because the SP is initiated on a network separate from the one used 
for enforcing serialization (at the snoop bus or directory). Early 
access may still be beneficial, for example, if data value specula-
tion is being performed in the critical section — data is present in 
the cache and most probably will be a valid copy.

The choice of the forwarding data path implementation will 
depend, among others, on the coherence protocol. For example, for 
snooping systems, pushing data directly to the requestor (instead of 
via memory) may be beneficial. Modern systems are designed to 
make snoop bandwidth the performance limiter rather than the data 
network. Thus, the data network can be utilized to overlap the data 
transfer with the latency of ordering the SP. On the other hand, for 
directory systems, address hints may be sufficient since the data 
has to first go to the directory for ordering. 

For the two systems we have simulated, the data is sent directly 
to the target node for the snoop-based protocol, while it arrives 
along with the coherence permission in the directory-based scheme 
(with hints being sent when the lock request is received).

3.3.2  Ordering the speculative push
The precise implementation for correctly ordering (i.e., inserting in 
the global memory order for correct memory consistency and 
coherence), the speculative push depend upon the base coherence 
protocol. We discuss two commercial coherence protocols here 
and show how a speculative push is ordered. 

Broadcast-based system.  For a typical bus-based protocol, the 
pushed data could be broadcast once on the bus, with a special 
annotation allowing the target node to capture the data as it was 
being written back to memory. In our example bus system, since 
data is transmitted point-to-point, a write-back operation requires 
some care to ensure that the data is received, and ordered correctly, 
at the target node. The data would normally be pushed immedi-
ately after the response providing the lock.

To serialize the push, an annotated write-back (the annotation 
identifies the target of the speculative push) is sent to memory and 
is serialized in the global memory order. When the annotated 
write-back appears on the bus the target receives coherence per-
missions implicitly. The data may or may not have reached the tar-
get node at this point. Since the bus provides an implicit ordering, 
in many cases, the latency can be overlapped to a larger extent than 
in a directory system.

Directory-based system. Since the data is also being written to 
memory to allow the receiving node to ignore it if necessary, this 
three-way communication presents ordering challenges in a direc-
tory-based system. In a directory-based protocol, the directory 
node must be involved as it is the point of serialization for opera-
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tions. Responding to the annotated write-back, the directory node 
communicates with the target node, granting coherence permission 
(exclusive) or sending a NACK to the target node if necessary.

As noted in the previous paragraph, the directory node must be 
involved in all data forwarding to guarantee proper memory 
semantic. However, this perceived disadvantage has the benefit of 
solving all the race conditions that might occur. In effect, having to 
include the directory node in all transactions has the property of 
not adding any new race condition that the directory-based proto-
col must not already handle. Thus, receiving an annotated write-
back is really no different than receiving data evicted from a 
node’s cache. The only difference is that SP requests the directory 
to forward a copy of the data to the target, an action that the direc-
tory can decline to do if necessary.

For directory systems, latency is not completely overlapped 
since the coherence permissions need to come via the directory. 
However, the write-back to the directory is overlapped with the 
lock transfer to the target node. In addition, we are sending address 
hints to the target node. Doing so allows the target node to pre-
allocate local buffer space for sinking the push. The only exposed 
latency left is the directory lookup and transfer of coherence per-
missions to the requestor. In our experiments, while a three-hop 
read took about 360 ns, with the speculative push, the latency 
observed by the target node substantially reduces to about 60 ns. In 
addition, the upgrade traffic that follows after the read of the data 
is also eliminated since the data is being sent to the target in exclu-
sive state.

3.3.3  Automatically matching multiply pushed data 
with coherence permissions
The two actions of speculatively pushing data, and ordering the 
speculative push in the global memory order can occur in any 
order and different networks may be used for them. In addition, 
multiple pushes of a cache line to a given processor may happen 
since no ordering guarantees are assumed from the network. To 
easily handle such situations, we treat the two actions symmetri-
cally. If a push is rejected, the corresponding coherence permission 
must also be rejected and vice-versa. Bookkeeping is necessary to 
track multiple cache lines to ensure consistent responses to both 
actions. For generality and without assumptions about the network, 
we require a requestor to include in a rd_X_lp an indication of the 
number of lines it can track (but not necessarily sink) at any given 
time. This number could be quite small.

The push/coherence permission information is stored in a small 
table at the cache controller. Both messages in the pair will occur 
exactly once, so every push (irrespective of address) received is 
tracked until its corresponding coherence permission is received, 
and vice versa. An entry is removed when the pair is matched up. 
Any push reject can be matched with any coherence reject and so 
on. As the mechanism is speculative, the push and coherence per-
missions may arrive as a result of two different attempted pushes. 
Nevertheless, it is not difficult to guarantee that the processor will 
have the latest data if the two actions are matched correctly. 

A third processor may attempt to read data in a cache line while 
the line is being pushed, either due to data races or due to misspec-
ulated pushes. The situation is handled efficiently by providing the 
third processor with the data and conservatively cancelling the 
push to the target node (which, for directory systems, may require 
an additional message to be sent to the target node).

4  EXPERIMENTAL METHODOLOGY
We use an execution-driven simulator to perform cycle-by-cycle 
simulation of an out-of-order processor and a detailed event driven 

simulation of the memory hierarchy. The simulator models all data 
movements accurately (in the pipeline as well as in the memory 
hierarchy) and models port contention at all levels. The processor 
implements a release consistency memory model [10] similar to 
the Compaq Alpha 21264 [8]. The processor retires stores to a coa-
lescing write buffer.

Not all benchmarks display the behavior of high communica-
tion miss rates we are targeting. We specifically select four bench-
marks (Table 1) that frequently experience communication misses 
within critical sections. A locking version of mp3d is used to dem-
onstrate the effectiveness for applications with frequent synchroni-
zation. The test&test&set synchronization primitive is used and is 
implemented with the load-locked and store-conditional instruc-
tions [16]. We selected system sizes such that contention at the 
locks is at most medium.

4.1  Target systems
We simulate two systems: symmetric multiprocessor (SMP) and 
distributed shared-memory (DSM) systems. The SMP system is 
modeled after the Sun Gigaplane [36]: coherence and data traffic is 
split onto two separate networks. Address requests and associated 
coherence operations take place on a high bandwidth snoop bus; 
while a high-speed point-to-point crossbar transfers data among 
the nodes. The SMP employs a coherence protocol similar to the 
one used in the Sun Enterprise 10000 system [7]. The DSM imple-
ments a MESI cache coherence protocol similar to the SGI Origin 
2000 system [23]. We assume a fully connected, point-to-point 
network in which the messages take a constant latency to traverse 
one hop. However, port contention is accurately modeled. Table 2

Table 1: Benchmarks

Applications Application type Input Procs

Cholesky [35] Sparse matrix 
factorization tk14.O 16

MP3D [35] Rarefied fluid flow 
simulation

24,000 mols, 
25 iter. 4

Raytrace [40] 3-D rendering teapot 8

Water-Nsq [40] N-body molecular 
dynamics

512 mols, 
3 iter. 16

Table 2: Integrated processor and cache subsystem

Processor
  Processor speed
  Reorder buffer
  Issue mechanism

  Branch predictor

1 GHz (1 ns clock)
64 entry with a 32 entry load/store queue
out-of-order issue/commit of 4 ops/cycle, 
64 entry return address stack, 
aggressively issue loads (~ MIPS R10000)
8-K entry combining predictor, 8K entry, 
4-way BTB 

Cache
  L1 instruction cache

  L1 data cache 

  L2 unified cache

  L1/L2 bus
  Line size

64-KByte, 2-way associative, 
1-cycle access, 8 outstanding misses
128-KByte, 2-way associative, write-back, 
2 ports, 1-cycle access, 8 outstanding misses
1-MByte, 4-way associative, write-back, 
10-cycle access, 16 outstanding misses
Runs at processor clock
64 bytes



list the parameters of the integrated processor and cache subsystem 
used in both SMP and DSM systems and Table 3 lists the parame-
ters for the SMP and DSM memory systems. 

4.2  Explanation of metrics
Speedup is measured as the ratio of the parallel execution time of 
the base case to the execution time of the optimized case. There-
fore, a speedup greater than one implies a performance gain. 
Attributing stall cycles to specific components is a complex task 
for multiprocessor systems with out-of-order processors where 
many events occur concurrently. We use an approximate approach. 
For every cycle, we compute the ratio of instructions committed 
that cycle to the maximum commit rate. This fraction of cycle time 
is attributed to the busy time for the processor. The remaining frac-
tion is attributed as stall time to the first instruction that could not 
be committed that cycle. The fractions of stall cycles are normal-
ized to the running time of IQL-only case. The stall categories are:

• WMB: stall at write-memory barrier
• MB: stall at memory barrier
• C SECTION: stall associated with data accesses within a criti-

cal section
• MEM ACC: stall associated with shared-memory accesses out-

side critical sections
• CPU: the remainder of useful cycles while the processor is 

busy computing

The shared memory accesses do not include lock variable 
accesses. This is done specifically to avoid any bias in latency 
accounting due to differences in synchronization primitives.

5  RESULTS

5.1  Performance
Table 4 presents the main results. The numbers in parentheses 
show the running time in millions of processor cycles. All the 
other numbers in the table represent speedups. SP does not hurt 
performance for most of our benchmarks. The exception is for 
cholesky running on an DSM system where its performance 
drop by only 1%. SP helps mp3d and raytrace substantially 

compared to the IQL-only case, speeding up their performance by 
a factor of up to 1.51. We also have the results for the SMP system 
(not shown). For the most part, the trends are identical but the 
magnitudes are different. In particular, SP speeds up mp3d by 
21%, but slows down cholesky by 2%. The exception is ray-
trace, which displays an improvement of only 3%. The latencies 
in the SMP system are such that the locking behavior of ray-
trace does not affect its performance much. Water-nsq com-
municates comparatively far more infrequently than the other 
benchmarks do (see Figure 6 and Figure 7), but nevertheless still 
suffers some migratory data-related stalls and benefits, if little, 
from SP.

Table 4 also compares the performance of one system imple-
menting IQL only and the other one without it (i.e., programs use 
test&test&set built with load-linked and store-conditional instruc-
tions but otherwise run without hardware support). To our knowl-
edge this paper is the first one to describe and to simulate a DSM 
system with IQL. The results are impressive; IQL improves the 
performance of all our benchmarks and, in particular, reduces the 
running time of raytrace by more than half. These results fol-
low a trend similar to numbers published elsewhere [18, 17]. 
Besides differences in the systems being simulated, our methodol-
ogies differ also in that they used QOLB as their mechanism, 
which requires special instructions and the recompilation of the 
programs.

5.2  Speculative Push stall cycles breakdown
Figure 6 and Figure 7 shows how the stall cycles are attributed to 
the different components of the system. These figures show that 
most of the performance gains stem from the reduction of the fol-
lowing two components: C SECTION and WMB. SP is able to 

Table 3: External network and memory configuration

DRAM memory module 8-byte wide, ~70 ns access time for 64-byte line

Snoop-based configuration

Address bus

Data network
Some uncontended latencies

OSI protocol on address bus modeled after the Sun Enterprise 10000, 
MOESI at snoop cache
split-transaction, out-of-order responses, 120 outstanding requests, 
22 ns snoop cycle (including 2 ns arbitration)
pipelined, point-to-point crossbar, 64-bit wide, 80 ns transfer latency
(pin to pin) read miss to memory: ~172 ns, read miss to another cache: ~125 ns

Directory-based configuration
Directory access
Processor and local directory
Directory and remote router
Some uncontended latencies

SGI Origin-2000 based MESI protocol
70 ns (overlapped with memory access)
30 ns (directory is integrated with memory and network controllers, point to point)
50 ns (point to point)
(pin to pin) read miss to local memory: ~130 ns, 
read miss to remote memory: ~230 ns, read miss to remote dirty cache: ~360 ns

Network configuration (DSM only)
Network width
Read latency from network to cache
Setup latency for header packet
Setup latency for data packet

pipelined point-to-point network
64 bits
1 ns per word
5 ns
5 ns + 1 ns per word

Table 4: IQL and SP performance for a DSM system

Cholesky MP3D Raytrace Water-Nsq

Without IQL 
(base) (11) (373) (121) (18)

IQL 1.13 1.21 2.75 1.04

IQL+SP 1.12 1.60 4.15 1.11



eliminate nearly all latencies associated with loading shared-mem-
ory locations. This observed behavior reduces the stall cycles asso-
ciated with critical section execution (C SECTION). SP is also 
able to reduce considerably the wait time at write memory barriers 
(WMB) located at the end of each critical section. In our experi-
ments, write memory barriers are almost always strictly confined 
to the end of each critical section and are there to ensure all the 
memory operations effected inside the critical section have per-
formed globally before releasing the lock.

5.3  Speculative Push characteristics
Table 5 breaks down speculative pushes into four categories: (1) 
Used: the pushed data was accessed, (2) Evicted: the pushed data 
was evicted before being used, (3) Rejected: the pushed data was 
rejected, and (4) Invalidated: the pushed data was invalidated by 
another processor before being used. For the most part SP per-
forms relatively well: more than 70% of all pushes are useful for 
the execution of mp3d, raytrace, and water-nsq. The 
exception to this trend being cholesky. Cholesky is the con-
trol benchmark and its critical section behavior does not lend itself 
to the type of optimization we are studying in this paper. Indeed, 
cholesky rarely suffers write-faults on the same address on suc-
cessive executions of the same critical section. For this benchmark, 
little correlation exists between a lock address and data addresses 
accessed while the lock is held. Our predictor detects this patterns 
and turns off the SP optimization. This behavior leads to little per-
formance improvement for this benchmark (Table 4) and many 
evicted pushes (Table 5).

We also varied the number of cache lines the SP mechanism 
could forward with a lock. For our benchmarks, we found most of 
the benefits could be had with a single cache line. Adding a second 

cache line improved the performance of SP by no more than 2% 
and more than two cache lines lead to insignificant improvements.

5.4  Speculative Push versus flush
We compare the performance of SP against a technique that con-
sists of flushing data back to memory at the end of a critical sec-
tion. The basic idea is to avoid the penalty of accessing remote 
dirty data and instead to attempt finding the desired data at mem-
ory directly. To implement the flushing mechanism, we rely again 
on our predictors to identify critical section boundaries and data set 
associated with a lock. Upon receiving a lock request, we write the 
data back to memory only unless the lock is still held. If the lock is 
still held, we wait until the lock is released to write the data back to 
memory.

We ran experiments both with the SMP and DSM configura-
tions. We found (numbers are not shown here) the flush technique 
to be ineffective in our simulated SMP system because our 
assumptions are such that the transfer latency to and from memory 
is much larger than the transfer latency between two caches. Thus 
flush techniques and self-invalidation techniques will degrade per-
formance of SMP systems.

Table 6 contrasts the performance of our two DSM variants: 
flush to memory and SP. We observe that, for our set of bench-
marks, flush achieves a smaller speedup compared to SP. These 
results also show that flush is able to achieve performance gains 
over the IQL-only case. However, flush either requires special 
instructions and recompilation or requires a predictor, a unit that it 
shares with the SP mechanism.

Figure 6. SMP stall contributions
Normalized stall contributions are expressed as percentage of the 
IQL running time for the specific contribution.
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Table 5: Breakdown of push characteristics (shown as percentage of pushes)

used evicted rejected invalidated

SMP DSM SMP DSM SMP DSM SMP DSM

Cholesky  8.00% 12.02% 92.00% 88.98%  0.00%  0.00%  0.00%  0.00%

MP3D 99.46% 99.56%  0.43%  0.40%  0.09%  0.04%  0.02%  0.00%

Raytrace 80.80% 71.64% 16.55% 28.33%  2.64%  0.00%  0.01%  0.03%

Water 93.80% 99.61%  6.20%  0.08%  0.00%  0.31%  0.00%  0.00%

Figure 7. DSM stall contributions
Normalized stall contributions are expressed as percentage of the 
IQL running time for the specific contribution.
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6  RELATED WORK
A software technique for eliminating latencies associated with crit-
ical data accesses involves collocating lock and data in the same 
cache line. However, since locks may be read even within critical 
sections, it is not generally recommended that locks be allocated in 
the same line as data they are protecting. If a mechanism is pro-
vided to eliminate or defer accesses to the lock until the end of a 
critical section, then data can be collocated with a lock profitably, 
allowing the data to be implicitly transferred along with the lock 
when it is acquired. Bitar and Despain first proposed collocation 
[5]. Goodman, Vernon, and Woest [12] made collocation more 
attractive by establishing the ability to defer access to the lock by 
an acquiring processor until the lock had been released. This 
method, Queue-On-Lock-Bit (QOLB) was a synchronizing 
prefetch operation in the sense that it provided for lock and data to 
be forwarded “as soon as possible, but no sooner.” Using instruc-
tion set and programmer support, QOLB maintained a queue of 
lock requestors in hardware. Kägi, Burger, and Goodman [18] 
demonstrated that collocation captured consistent and substantial 
gains in performance for a set of benchmarks on a distributed 
shared memory system. Collocation however requires substantial 
programmer involvement and at times, major restructuring of the 
application data structures. In addition, coupling the lock and data 
in the same cache line limits the size of the collocated data. QOLB 
led to other proposals for queued locks, notably MCS [28] and for 
the DASH multiprocessor [25]. 

DASH provided a concept of queued locks in hardware for 
memory based directories. However, the directory was always in 
the critical path — on a lock release, the lock was sent to the direc-
tory which in turn picked a random waiter and serviced it. With 
IQLs, once a request has been forwarded, the directory is no longer 
in the critical path.

We have previously proposed Implicit-QOLB [31], an early 
version of the IQL mechanism, which works by speculating about 
a program’s access patterns — specifically of synchronization 
operations — and uses the notion of delayed responses to improve 
the throughput of synchronization. This work focused only on bus-
based systems and did not address communication latencies within 
critical sections. In the present work, which first appeared as an 
unpublished manuscript in April 2000 [32] we demonstrate that the 
method is even more effective on a directory-based protocol, and 
that the SP mechanism can leverage the notion of IQL to achieve 
still larger performance gains.

Stenström, Brorsson, and Sandberg [38] and Cox and Fowler 
[9] independently proposed cache coherence protocol optimiza-
tions for migratory sharing patterns. Such behavior is exhibited 
primarily by data protected by locks or monitors. Both approaches 
succeed by merging an invalidation request for the migratory 
cache block with the preceding read-miss request. These mecha-
nisms do not reduce the critical miss latency experienced on the 
first read miss, though reduced contention may have the indirect 
effect of reducing read miss latencies.

Mowry and Gupta [29] proposed a compiler prefetch heuristic 
for tolerating latency in shared-memory multiprocessors. The com-

piler interpreted explicit synchronization operations as a hint that 
data communication may be taking place. The approach was quite 
successful for programs with regular access patterns and struc-
tures. They mention that it is potentially easy for a programmer to 
use semantic information about an application and identify critical 
data structures in small applications but state, “[s]uch focusing in 
on critical data structures will be much harder for compilers.” An 
additional issue with software prefetching for critical section data 
is the lack of knowledge regarding the migratory patterns of data: 
determining which processor should be prefetching data is nearly 
impossible statically because it depends on the (dynamic) selection 
of a winner among competitors to acquire the lock. By the time 
this decision has been made, it is already too late to avoid delay by 
prefetching needed data. Trancoso and Torrellas [39] attempted to 
reduce latencies within critical sections through the use of 
prefetching and data forwarding. They inserted prefetch and for-
warding instructions by hand. Their techniques suffer from many 
of the same limitations of software approaches, specifically, the 
need for hardware and compiler support for new instructions and 
the inability to evaluate and exploit run-time behavior. Their 
results were pessimistic, concluding that complex, forwarding-
based optimizations could not be justified.

Abdel-Shafi et al. [1] evaluated producer-initiated communica-
tion and proposed remote writes for data accesses associated with 
synchronization operations. The combination of software prefetch-
ing and remote writes provided good performance gains for a set of 
benchmarks. The mechanisms however, required software and pro-
grammer support to identify candidates for remote writes.

Similar data forwarding mechanisms have been proposed in the 
literature: the forwarding write [30], and the DASH deliver [25]. 
DASH also had a producer-prefetch mechanism for pushing data 
to a set of consumers in shared state. Kaxiras and Goodman [19] 
proposed speculative pre-send as an approach for data forwarding.

Ranganathan et al. [33] proposed the use of flush primitives to 
write back dirty data modified in critical sections to memory. They 
also added prefetches at the beginning of critical sections. Their 
mechanisms relied on compiler and programmer support to iden-
tify critical data to be flushed. However they state that late 
prefetches and contention effects limited additional performance 
benefits. Similar flush primitives have also been proposed by Hill 
et al. [14] and Skeppstedt and Stenström [37]. Mechanisms to 
reduce invalidation latencies by employing prediction to flush 
cache lines have also been proposed [24, 22]. These techniques 
reduce a three-hop transaction to a two-hop transaction while 
Speculative Push converts a three-hop transaction into a local 
cache access.

7  CONCLUDING REMARKS
In this paper, we have studied two mechanisms for reducing com-
munication latencies inside critical sections. First, we proposed the 
first IQL implementation for a directory-based system that makes 
no assumptions about message ordering. Our results corroborate 
earlier published results for snoop-based systems running on a sys-
tem with high network utilization and showing large gains for 
benchmarks that have either high lock contention or frequent, fine-
grained locking. Second, we described SP, a mechanism to overlap 
lock transfer with data believed to be associated with that lock, 
thus attempting to convert all global data accesses performed in a 
critical section into local cache accesses. We showed that SP offers 
additional benefits on top of those provided by IQLs.

Mp3d was chosen as a benchmark specifically because it exhib-
its the kind of behavior we were targeting, and both mechanisms 
succeeded in reducing communication delays. The net result was 

Table 6: SP and flush performance for DSM

Cholesky MP3D Raytrace Water-Nsq

IQL+Flush 1.00 1.13 1.28 1.04

IQL+SP 0.99 1.32 1.51 1.07



that the application saw a speedup of 21% for the bus and 32% for 
the directory system over an aggressive base case of IQLs. Indeed, 
all the benchmarks saw reductions in shared memory stalls within 
critical sections, though for some this delay was so small that the 
reduction did little to improve overall performance. Benchmarks 
with highly contended locks (such as raytrace), show large 
speedups in some cases. The SP mechanism can provide further 
speedups in overall performance by substantially reducing the net-
work traffic and three-hop transactions.

We conclude that the two mechanisms can combine to reduce 
the communication delays within critical sections by more than 
50%. In addition, speculative push can quite often collapse the 
read-modify-write sequences within a critical section into a local 
cache access. While the total reduction in stalls varies depending 
on the percentage of time the processor is stalled for communica-
tion latencies, the reduction was consistent across all benchmarks.
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