
Inferential Queueing and Speculative Push for
Reducing Critical Communication Latencies

Ravi Rajwar,† Alain Kägi† and James R. Goodman‡

†Microprocessor Research Labs
Intel Corporation

Hillsboro, Oregon 97124, USA
{ravi.rajwar,alain.kägi}@intel.com

‡Department of Computer Sciences
University of Wisconsin-Madison
Madison, Wisconsin 53706, USA

{goodman@cs.wisc.edu}
ABSTRACT
Communication latencies within critical sections constitute a
major bottleneck in some classes of emerging parallel workloads.
In this paper, we argue for the use of Inferentially Queued Locks
(IQLs) [31], not just for efficient synchronization but also for
reducing communication latencies, and we propose a novel mecha-
nism, Speculative Push (SP), aimed at reducing these communica-
tion latencies. With IQLs, the processor infers the existence, and
limits, of a critical section from the use of synchronization instruc-
tions and joins a queue of lock requestors. The SP mechanism
extracts information about program structure by observing IQLs.
SP allows the cache controller, responding to a request for a cache
line that likely includes a lock variable, to predict the data sets the
requestor will modify within the associated critical section. The
controller then pushes these lines from its own cache to the target
cache, as well as writing them to memory. Overlapping the pro-
tected data transfer with that of the lock can substantially reduce
the communication latencies within critical sections. By pushing
data in exclusive state, the mechanism can collapse a read-modify-
write sequences within a critical section into a single local cache
access. The write-back to memory allows the receiving cache to
ignore the push. Neither mechanism requires any programmer or
compiler support nor any instruction set changes. Our experiments
demonstrate that IQLs and SP can improve performance of appli-
cations employing frequent synchronization.

Categories and Subject Descriptors
C.1.2 [Processor Architectures]: Multiple Data Stream
Architectures (Multiprocessors) — Multiple-instruction-
stream, multiple-data-stream processors (MIMD)

General Terms
Performance, Design

Keywords
Synchronization, data forwarding, inferential queueing
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ICS’03, June 23-26, 2003, San Francisco, California, USA.
Copyright 2003 ACM 1-58113-733-8/03/0006…$5.00.
1 INTRODUCTION
The shared-memory programming model is now widely estab-
lished as a leading paradigm for parallel computing. The shared
memory abstraction is particularly attractive for irregular applica-
tions, where reasoning about program behavior and predicting per-
formance may be difficult. Under the shared-memory model, in
addition to holding values, memory also provides the means for
synchronization and coordination of activities among processors.
When multiple processors attempt to access a set of variables
simultaneously and at least one processor updates at least one of
the variables, a data race may occur wherein the execution out-
come depends on the relative speed of the operations and the result
of memory accesses becomes unpredictable. The most common
method used to resolve data races and to enforce mutually exclu-
sive accesses to regions of code, known as critical sections, is
through the use of a lock.

Optimizing lock accesses associated with an actively shared
critical section is both crucial and subtle: crucial because naïve
locking algorithms can lead to disastrous performance [2, 3, 18,
17], and subtle because multiple processors may access the lock
even while that lock guarantees exclusive access to the data it pro-
tects. The protected data is often modified with the result that the
efficient lock handling only reveals subsequent delays in accessing
the protected data. A wide range of synchronization mechanisms
have emerged over the years [34, 12, 3, 13, 28, 26], and while no
common mechanism is available in all architectures, virtually all
architectures provide a hardware means for acquiring a lock atom-
ically. Beyond this basic capability, numerous mechanisms have
been proposed for enhancing the efficiency of locking in hardware,
but to date very few implemented multiprocessor systems have
incorporated these ideas.

It has been argued that parallel applications that spend too
much time in critical sections could be restructured to minimize
synchronization and in fact this is true of many structured scien-
tific applications. These applications are computationally inten-
sive, highly regular, and generally display easily exploitable
parallelism. However, among new classes of programs emerging
as important applications for parallel systems, online transaction
processing workloads display radically different behavior from the
traditional scientific applications: they are characterized by high
communication miss rates [4, 20, 33]. A study by Ranganathan et
al. [33] showed a large fraction of misses are generated within crit-
ical sections. For a given configuration of a 4-way system running
the Oracle database engine, 20% of the execution time was spent
servicing communication misses to dirty data in remote caches.
These workloads are characterized by fine-grain updates of control
data and frequent synchronization protecting such data. The pro-
tected data sets migrate among processors with the passing of the
lock and contribute to a large portion of the access latencies to

dirty data in remote caches. They also noted most of these cache
misses targeted only a small fraction of the total number of cache
lines experiencing misses.

Gharachorloo et al. also note a large portion of execution laten-
cies spent in critical sections [11]. With larger number of proces-
sors, faster processor speeds, and relatively increasing remote
access latencies, processor stalls induced due to communication
misses within critical sections will only increase and processors
will be unable to generate misses early enough so as to hide mem-
ory access latencies to actively shared data.

Paper contributions. This paper addresses the problems out-
lined above by targeting the lock operations in conjunction with
the data accesses protected by these locks. The paper makes two
contributions:

1. A case for Inferentially Queued Locks. This paper advocates
the use of Inferentially Queued Locks (IQLs) [31], that is,
devoting hardware to build an orderly queue of lock contend-
ers. The queue is speculative because the processor infers the
existence, and limits, of a critical section from the use of syn-
chronization instructions. We show for the first time how to
implement IQLs for a general directory-based system and with-
out making assumptions about the coherence interconnect.

2. Speculative Push. This paper proposes a new technique, Spec-
ulative Push (SP), for reducing the miss latency associated with
data accesses within critical sections. SP allows the cache con-
troller of a processor currently holding a lock not only to defer
momentarily its response to a request for the cache line holding
the lock, but to provide additional modified cache lines at the
same time, anticipating misses likely to occur immediately
after the requestor has acquired the lock. By overlapping the
transfer of the data with the lock, the communication latency
experienced within a critical section can be reduced. To our
knowledge, this is the first hardware technique to convert data
misses in a critical section from a multi-hop transaction to a
local access.

Intuition for IQLs. IQLs are motivated by two observations
about performance loss due to lock interference. First, when a pro-
cessor requests a lock for purposes of acquiring the lock, it will
likely spin-wait upon discovering the lock is already held. If the
response to this request is delayed briefly, any increase in the prob-
ability of the lock having been released will increase the success
rate for the initial attempt, and thereby reduce total communica-
tion. The latency to acquire a held lock is optimal if such a request
is serviced immediately after the lock is released. Second, if such a
request is serviced immediately, that is, while the lock is still held,
the release of the lock will probably be delayed, because releasing
it will require the lock to be re-obtained in a writable state. Again,
any delay resulting in an increase in the probability of the lock
having been released is likely to improve performance, not only by
reducing total communication, but also by avoiding a delay in
releasing the lock. IQLs extend the notion of buffering external
requests by applying it to cache lines inferred to contain a synchro-
nization variable. By delaying the service for a small and bounded
period, and servicing the deferred request as soon as the lock is
inferred to be released, many critical sections can be fully executed
and the lock released without interference from other processors.
In addition, the transfer of locks occurs directly between the two
nodes involved without the coherence network being in the critical
path. In the presence of frequent synchronization to migratory
locks there is great benefit in optimizing the lock access: network

contention is reduced, thus having a positive effect on memory
system performance.

Intuition for SP. The performance of any scheme optimizing
data transfer within critical sections depends on the accuracy of
correctly predicting which processor will acquire the lock and use
the data. An advantage of IQLs is the early, accurate knowledge of
the next owner of a lock. IQLs allow inference of the presence and
extent of critical sections in programs. Assuming such knowledge
of locations and sizes of these critical sections in a program, infor-
mation associated with these locks can easily be tracked. Once the
pairing between critical sections and the data they protect has been
established, SP forwards the actively shared data to the requesting
processor, along with the lock. On acquiring the lock, the requestor
finds in its cache the data it was unable to prefetch. SP forwards
the data in an exclusive state thus allowing the processor to modify
the cache line without experiencing a further delay it would other-
wise suffer if it had initially retrieved the line for reading.

For critical section accesses, SP has inherent advantages over
more traditional approaches for latency reduction such as prefetch-
ing and compiler-assisted data forwarding. In situations of con-
tended locks, prefetching is not sufficient as the processor would
spin waiting for the lock and would generate data requests only
once the lock has been acquired. SP transfers data as soon as the
data is ready to be forwarded and does not interfere with the execu-
tion of the processor performing the push. The speculative mecha-
nism can also adapt to run-time behavior. Speculative Push
provides a double performance gain for data that is read before
being written to: its initial access is overlapped with the lock trans-
fer, and it does not have to be upgraded for writing.

We restrict SP to modified lines because, while some shared
lines may also result in misses, such shared lines would already be
present in the requestor's cache — data in cache lines previously
read but not modified by the requestor in a previous execution of
the same critical section would probably still be in the cache.
Indeed, our experiments suggest that much of the benefit is derived
simply from pushing cache lines into caches where they were
present in an earlier execution.

Paper outline. In Section 2 we discuss IQLs and show how
IQLs can be efficiently supported naturally in modern systems by
using existing cache coherence protocols. We use a snoop and a
directory-based protocol. Then we extend the base protocols to
incorporate mechanisms for SP in Section 3. In Section 4 and
Section 5 we present results. We discuss related work in Section 6
and conclude in Section 7.

2 INFERENTIALLY QUEUED LOCKS
Processors with non-blocking caches allow multiple outstanding
requests to the memory system. Such processors use special buff-
ers such as miss status holding registers (MSHRs) [21] to track the
pending memory requests. Multiprocessor systems use such struc-
tures to buffer requests from other processors to caches lines that
are in a pending state.

Inferentially Queued Locks (IQLs) extend the notion of buffer-
ing external requests by applying it to cache lines inferred to con-
tain a synchronization variable. By delaying the service at most for
a small and bounded period, and servicing the deferred request as
soon as the lock is inferred to be released, many critical sections
can be fully executed and the lock released without interference
from other processors.

In particular, the lock transfer occurs directly between the two
nodes involved eliminating the coherence network from the critical
path. Contrast IQLs with a conventional system that may require

many additional network transactions to transfer a lock: a direc-
tory-based system may not be able to transfer the lock directly
from producer to consumer passing instead the lock through an
intermediate node (home), a lock release may require upgrade per-
missions from the directory, or a broadcast-based system may see
repeated lock requests. This additional traffic may artificially aug-
ment the time that a lock is held, thus increasing the critical path of
the overall computation.

The IQL method is speculative because the hardware does not
have sufficient information, nor does it require such information,
to prove even that a lock is being employed, but infers this infor-
mation from program behavior, and specifically infers acquire and
release points delimiting a critical section.

In the next subsection, we discuss the basic mechanisms
involved in IQLs. In Section 2.2 and Section 2.3, we discuss
details of implementing IQLs on broadcast and directory systems.

2.1 Basic mechanisms
A processor can have a lock in two different ways: (1) a process
running on the processor has acquired a logical entity, a lock, and
(2) the cache has a shared or exclusive copy of a cache line con-
taining the lock. In the first case we refer to a lock as being
acquired, held, or released. In the second case we refer to a lock-
line or lock variable as being present, requested, sent, or received.
A requestor is a processor that has requested a lock-line and for
which it may be inferred that this processor is attempting to
acquire a lock. A responder is a processor holding a writable copy
of a lock-line sought by a requestor. Predicting synchronization
events, and distinguishing between simple atomic read-modify-
write operations, and the acquisition of a lock have been studied
elsewhere [31]. We assume the processor has predicted, using a
Lock Predictor Table (LPT) and based on previous executions of
the code sequence, the event to be an acquiring of a lock. On a
mispredict, performance may be degraded but the program will be
correctly executed.

We now outline the basic IQL mechanism as shown in
Figure 1. The IQL protocol is invoked on actions, both local and
external requests, involving cache lines predicted to contain lock
variables. The local processor must track when it acquires a pre-
sumed lock and when it has the lock-line in its cache. The proces-
sor must also track the release of such a lock and initiate actions
triggered by the release. A Lock State Table (LST) is used for this
purpose. The LST is indexed by the PC address of the synchroniz-
ing instruction identifying the critical section. All predicted locks
known to the cache controller through the LST are in one of four
states: (1) INVALID: the lock-line is not present in the cache and
the local processor (probably) does not hold the lock, (2)
PRESENT: the lock-line is present in the local cache but the lock is
not held by the local processor, (3) HELD: the local processor

holds the lock, and (4) REQUESTED: the local processor has
requested the lock but does not have the lock.

To assure that the IQL protocol is only invoked for predicted
lock operations, a read-for-exclusive request (rd_X) is specially
annotated as lower priority, rd_X_lp. This request can be deferred
for a brief but bounded time. Otherwise it is identical to rd_X.

Figure 2 outlines a simplified state transition diagram for the
LST. When a processor predicts a lock-acquire, a lock-line already
present in the local cache is marked HELD in the LST otherwise
space is allocated in the cache, and a rd_X_lp is issued and the cor-
responding LST entry is marked REQUESTED. When the request
is eventually serviced, the LST entry transitions to HELD. A sub-
sequent write to the byte address predicted to be a lock (and thus
predicted to correspond to a lock release) results in the LST entry
being set to PRESENT. When a lock-line is evicted from the cache
for whatever reason, including invalidation, the LST entry is
marked INVALID. The LST is consulted on any incoming rd_X_lp
request. If the LST entry for the requested cache line is in state
PRESENT, the request is handled as any other read-for-exclusive
(rd_X) request. If the cache line is in state HELD or
REQUESTED, the line is marked for special action upon the
release of the inferred lock, and the request is buffered in an
MSHR. A subsequent inferred release of the lock triggers the ser-
vicing of the buffered rd_X_lp.

Since cache coherence protocols already serialize rd_X
requests, a queue of requesting processors is easily constructed
with minor support from the coherence protocol. The first rd_X_lp
request transfers the apparent owner of the lock line to the
requestor thus making it the recipient of any subsequent request.
By this means, a queue of requesting processor is formed, with
each processor receiving the lock-line sequentially in the order of
the original request. Regular priority reads, whether for-exclusive
or shared, are handled separately. Interactions between regular-
and low-priority requests only occur in rare cases where the lock
protocol is being violated, in the presence of false sharing, or the
hardware has otherwise misspeculated.

We next discuss how IQLs can be supported on two popular
design approaches: broadcast- and directory-based systems. We
take two protocols from commercial systems and supplement them
to support IQLs.

2.2 IQLs and broadcast-based systems
We use a snoop design similar to the Sun Gigaplane [36, 7]. The
protocol uses a split-transaction, pipelined address bus with sup-
port for a large number of outstanding transactions and out-of-
order responses. The bus implements an invalidation-based three-
state (Owned, Shared, Invalid) snooping cache coherence protocol

st
ag

e

Figure 1. IQL organization
The Lock Predictor Table (LPT) and Lock State Table (LST) are the
two new structures.

Lock Predictor Table (LPT) Lock State Table (LST)

CPU

D
is

pa
tc

h

E
xe

cu
te

Cache controllerst
ag

e

MSHR

PC lock address

lock address
IQL

Figure 2. LST state transition diagram
Only a subset of the transitions is shown. Arcs between states rep-
resent transitions labeled with event/action pairs. A horizontal line
separates event (above) and action (below). If there is no action, the
line is omitted.

REQUESTED
rd_X_lp

buffer request

lock transfer

lock release

INVALID

PRESENTHELD
rd_X_lp

buffer request

rd_X_lp
send lock-line

without buffered requests

lock release
with buffered requests

send lock-line

and the cache implements a MOESI protocol. The cache with the
requested block in Owned state (as seen by the bus) will respond to
the next request for that block. IQLs can be supported naturally
with the above protocol as the protocol already has a notion of
queues. Any processor placing a rd_X_lp on the bus will respond
to the next processor which places a rd_X_lp for the same block on
the bus. With IQLs, the request is not serviced until a lock release.
By placing a rd_X_lp on the bus, the processor joins the queue of
lock requestors at the tail and is serviced when the earlier requestor
releases the lock. IQLs for broadcast systems were discussed ear-
lier elsewhere [31].

2.3 IQLs and directory-based systems
We now discuss directory protocol support. Directory protocols
allow cache coherence to scale to many processors. Directory pro-
tocols store a directory state for each memory block currently
cached in any node. Commonly, directory protocols implement an
invalidation-based scheme. With directory protocols, state infor-
mation for a block is obtained from a directory through network
transactions, and communication with various cached copies is
performed by explicit messages using an arbitrary network. Typi-
cally, information for a block can be found in a fixed directory
known at the time of the request.

Two popular approaches distribute directories either with mem-
ory or with caches. Memory-based schemes store directory infor-
mation for a cache block at the home node of the block [23, 25,
11]. In cache-based schemes, the sharing information is distributed
among the various copies (rather than at the home node). Each
cache block contains a pointer to the node with the next cached
copy of the block in a distributed linked-list organization [15, 27,
6]. For cache-based directories, IQLs can be supported relatively
easily since there already exists a notion of queues for cache
blocks. We focus our discussion on memory-based directories.

We use the SGI Origin-2000 coherence protocol [23] to discuss
IQL implementation. Other protocols can be adapted likewise. The
protocol supports the MESI (Modified, Exclusive, Shared, Invalid)
states and is non-blocking: memory does not buffer requests while
waiting for other messages to arrive. The protocol also supports
request forwarding for three party transactions and silent evictions
of clean-exclusive lines. The protocol does not rely on an ordered
network. Two virtual channels are provided and deadlock in the
request network (due to request forwarding) is broken by the use of
back-off messages.

Memory is the owner for all clean lines in the system, thus
memory services any request for clean data immediately. In addi-
tion, rd_X requests cause transfer of exclusive ownership to the
requestor and sending of invalidates to other holders of cached
copies. The holders of cached copies subsequently send invalidate
acknowledgments to the requestor. Requests to blocks not owned
by memory are forwarded (as an intervention) to the owner (and in
the case of a rd_X request, the requestor becomes the owner). The
directory enters a transitional Busy state for the particular memory
block until it receives a revision message from the previous owner.
All requests received by the directory for a memory block in Busy
state are NACKed. A sharing bit-vector associated with each cache
block identifies the processors holding shared copies of the block.

Under the base protocol, the directory enters a transitional busy
state while tracking down an exclusive copy in the system. For
IQLs, the directory, instead of NACKing another request while in
busy state, forwards the request to the previous requestor. If the
previous requestor’s request is still pending, the intervention is
buffered. Forwarding a request to the last requestor guarantees a
processor receives at most one intervention for a given memory
block. An additional bit, the synch_bit, is used per directory entry

to determine whether the IQL protocol should be invoked. The
owner pointer is overloaded to store the last requestor when the
synch_bit is set. The sharing bit-vector is also used to track mem-
bers of the inferential queue. Alternate ways to capture such infor-
mation include using unused state bits in the encoding.

To understand how queues are created we step through a simple
example in Section 2.3.1 and then discuss how the directory
detects and handles queue breakdowns (in the case of write-backs)
in Section 2.3.2.

2.3.1 Constructing queues
Consider three processors, P1, P2, and P3 attempting to enter a
critical section. P1 issues a rd_X_lp to the directory. Since the
directory exclusively owns the block, it responds to the request
with data and enters an Exclusive state. P1 is now the owner of the
block. Subsequently, P2 issues a rd_X_lp request to the directory.
The directory forwards P2’s request to P1, marks P2 as the last
requestor, and enters the Busy state. The bit vector now has 2 bits
set: P1 and P2. In addition, the synch_bit is also set. Now, P3 sends
a rd_X_lp request to the directory. The directory state is Busy.
However, the synch_bit is set. Instead of NACKing the request, the
directory forwards it to the last requestor, P2. In addition, P3’s bit
is set in the bit vector. Thus, we have P3 waiting for P2’s response,
which is waiting for P1’s response. A processor buffers an inter-
vention until the lock is released. At the time when the intervention
is serviced, a revision message (part of the base protocol) is sent to
the directory. On receiving the revision message, the directory
unsets the processor’s bit in the bit vector. If only one bit is set in
the vector, the last requestor automatically becomes the owner.
Under this situation, the directory unsets the synch_bit and leaves
the Busy state, entering the Exclusive state. A revision message
exists for every rd_X_lp request serviced, thus ensuring the direc-
tory will eventually transition into an Exclusive or any other stable
state. A simplified state transition diagram for the IQL protocol is
shown in Figure 3.

2.3.2 Handling queue breakdown
The distributed nature of the IQL queue (the directory does not
track the order in which requests are received: it only marks who
has requested the block), may cause the queue to break-down due
to write-backs. For the example in the previous section, suppose
P1 is writing back the block to memory. Under the base protocol,
P1 can ignore P2’s intervention since the directory can recognize
this race condition and detect P2 will not be serviced by P1. The
directory does this as it keeps track of the owner P2. However,
under IQL, if there are multiple bits set in the bit-vector (the
synch_bit is set and a queue exists), the directory cannot determine
the identity of the processor which will not receive a response from
P1; the directory does not remember it forwarded P2’s request to
P1. While this race condition is indeed rare, it must be handled cor-
rectly, if not efficiently.

We adopt a simple approach to handle queue breakdowns. On
receiving a write-back to a block with a synch_bit set and more
than two bits set in the bit-vector (if only two bits are set, the direc-
tory can uniquely determine the processor that will not receive a
response), the directory unsets the synch_bit — the directory is
breaking down the queue. Doing so, the protocol behaves like the
base protocol with an additional side effect: NACKs are sent to all
processors in the bit-vector. When the processor’s retry on receiv-
ing the NACK, the directory can detect this by a bit in the retried
message. At that point, the directory unsets the bit in the bit-vector
corresponding to the requestor. When the bit-vector has no more
bits set, the directory entry enters an Unowned state. Such a mech-

anism guarantees a directory will eventually transition into an
Unowned state.

With conceptually simple changes to the way the directory pro-
tocol works for certain types of requests, and some additional bits
in the directory entry, IQLs can be efficiently supported.

3 SPECULATIVE PUSH
Speculative Push (SP) aims at constructing a link between critical
sections and the data they protect. Once the link is established,
whenever a request for a lock-line is received, SP also forwards
any predicted data to the requesting processor along with the lock-
line. This allows the lock requestor to find both the lock and any
protected data (which it was unable to prefetch) readily available
in writable state in its local cache upon entering the critical section.
The requestor now experiences minimal delay in executing its crit-
ical section, virtually eliminating latency associated with access to
data protected by migratory locks.

SP may initiate data transfer of predicted critical section data
even before the requestor has acquired the lock, and the data is for-
warded in Exclusive (as opposed to Modified) state. The pushed
data is also written back to memory, providing two key benefits:
(1) if the target node does not reference the pushed data, the data
can be silently evicted thus doing no harm, and (2) the target of the
push now has the important option of ignoring the push if no local
buffer space is available.

In our simulations, we were very conservative in accepting the
push — a pushed cache line never evicted a valid cache line, that is,
a push was accepted only if an invalid line was available. This
approach is surprisingly effective, in part because migratory lines
that are frequently written are frequently invalidated, leaving avail-
able invalid lines in the corresponding cache sets. Even if the push
is rejected, benefits may accrue. Specifically, when the rejected
cache line is subsequently accessed, it can be supplied from the
directory, avoiding the three-hop latency that would have occurred
without the attempted push.

SP thus provides a double performance gain for data that is read
before being written to: its initial access is overlapped with the
lock transfer, and it does not have to be upgraded for writing.

As shown earlier in Figure 1, IQL has two structures: the LPT
to infer critical sections, and the LST to invoke the IQL protocol
partly based on information received from the LPT. Figure 4 shows
the SP hardware. SP extends the LST by recording data accesses

while the inferred critical section is executed and by deciding if
predicted data is to be forwarded along with a released lock.

The basic steps of SP are:

1. Establish and record the association between critical section
data and a lock.

2. Enable (or disable) the optimization by assigning a confidence
level to pairings determined in Step 1.

3. Perform the speculative push.

3.1 Predicting lock and data pairings
When IQL infers a critical section, the SP hardware starts record-
ing addresses of accesses performed while the processor holds the
lock. These addresses become candidates for forwarding and are
stored in an extended LST entry shown in Figure 5. Besides the
lock address, each extended LST entry stores a valid bit, a saturat-
ing counter to establish a confidence level, and data addresses with
associated access bits (A).

The LST stores cache-aligned addresses for two reasons: (1) we
want to match SP with existing controllers and existing hardware
manipulates data at the granularity of a cache line; (2) false sharing
with critical data is considered poor programming practice; there-
fore all data in a cache line are assumed to be either related or
unused. SP may record either individual addresses or address
ranges. In our experiments at most two cache lines generally
caused a write-miss during the execution of a critical section.
Therefore, our LST stores individual addresses. Figure 5 shows the
LST entry for supporting SP.

When an access results in a write fault, the SP hardware allo-
cates a new entry for the address. If no free entry is available, the

Figure 3. Protocol transitions for inferentially queued locks in a directory-based system
Only a subset of the transitions is shown, this subset focuses on the process of forming a queue. Arcs between states represent transitions
labeled with event/action pairs. A horizontal line separates event (above) and action (below). The queue-breakdown sequence is shown when a
write-back occurs.

rd_X_lp

ownership transfer

write-back & > 2 bits set in vector

piggybacked ack-for-nack
along with retried rd_X_lp

& no bit set in vector

send NACKs to nodes in vector

piggybacked ack-for-nack

BusyExcl
synch_bit = 1

BusyExcl
synch_bit = 0

Exclusive
synch_bit = 0

Unowned
synch_bit = 0

rd_X_lp
forward request to owner

forward request to last requestor

& > 1 bit set left in vector after unsetting bit
unset corresponding bit

ownership transfer
& only 1 bit set left in vector after unsetting bit

unset corresponding bit

along with retried rd_X_lp
& some bits set in vector
unset corresponding bit

& set bit in vector

& set bit in vector
rd_X

set requestor as owner

Figure 4. Speculative Push hardware organization

st
ag

e

Lock Predictor Table (LPT)

CPU

D
is

pa
tc

h

Ex
ec

ut
e

Cache controllerst
ag

e

MSHR

PC lock address, data addresses

lock address
IQL + SP

Extended
Lock State Table (LST)

entry with the lowest confidence is evicted (see next sub-section).
Ties are broken randomly. For the purpose of SP, distinguishing
between finding a lock held or simply finding the lock present but
not held is not necessary. In both cases, the triggering event causes
the candidate cache lines to be pushed.

Two actions identify candidates for future pushes: lines that
caused write misses during a critical section and lines that have
been pushed into the cache (and therefore do not cause write
misses). While not all data written in a critical section is migratory,
write-misses capture data written within the critical section and
obtained from the memory system. If such misses occur repeat-
edly, one can speculate the data is migratory. Local private data
may also cause a write miss but is more likely to remain in the
cache, since it will not be invalidated by another processor. Of
course, various critical sections may touch many or few cache
lines, but the first lines touched after acquisition of the lock seem
especially important.

3.2 Prediction confidence
A saturating counter is added to each LST entry data address to
assign confidence in the data for forwarding. Also associated with
each candidate address is an access bit (A) that is set each time the
critical section accesses this address and cleared each time after the
execution of a presumed critical section ends. Before the access
bits are cleared, SP inspects them and increases the counter for
each set bit or decreases it for each cleared bit. A counter reaching
the maximum value enables SP for the data address. This avoids a
cache line being repeatedly pushed but never written to.

Repeated evictions of a candidate address also causes the
counter to decrement. Repeated evictions is a sign that the
addresses accessed inside a critical section vary from one execu-
tion to the next preventing effective data forwarding. A counter
reaching the minimum value disables the optimization.

More sophisticated predictors, for example using information
about remote requests for modified data in the local cache, or com-
bining collective information from multiple nodes about migratory
patterns, may improve the effectiveness of SP.

3.3 Speculative Push protocol
Once the data association has been identified, the SP protocol is
initiated. The SP sequence involves two separate actions to main-
tain memory ordering requirements and achieve high performance:

1. Determine the forwarding data path for the push.
2. Order the speculative push in the memory order thereby grant-

ing coherence permissions to the target.

We discuss these two actions in Section 3.3.1 and Section 3.3.2.
In Section 3.3.3 we discuss an interesting approach to match up
speculatively pushed data messages with their appropriate coher-
ence permission messages correctly. The issue arises because no
ordering guarantees are assumed from the network or coherence
protocol and we demonstrate a simple solution to handle the
absence of any ordering guarantees.

3.3.1 Determining the forwarding data path
The predicted data (present in the local cache in modified state)
can be pushed by the initiating processor either directly to the tar-
get processor (with a write back also sent to memory) or is pushed
via memory (i.e., the data is written back to the directory which
will forward the data to the target node). If the data is pushed via
memory, the initiating processor sends address hints to the target
node informing the target to expect unrequested data. The target
processor in this case pre-allocates data buffers in anticipation for
the pushed data. Doing so prevents the target processor from gen-
erating unnecessary requests for data addresses which are going to
be pushed along with the lock. If data is pushed directly to the tar-
get processor, the target processor receives the actual data rather
than hints and allocates cache blocks to sink the data if possible.

When data is directly pushed to the target node, the recipient
cannot commit the use of the data until the push has been ordered
because the SP is initiated on a network separate from the one used
for enforcing serialization (at the snoop bus or directory). Early
access may still be beneficial, for example, if data value specula-
tion is being performed in the critical section — data is present in
the cache and most probably will be a valid copy.

The choice of the forwarding data path implementation will
depend, among others, on the coherence protocol. For example, for
snooping systems, pushing data directly to the requestor (instead of
via memory) may be beneficial. Modern systems are designed to
make snoop bandwidth the performance limiter rather than the data
network. Thus, the data network can be utilized to overlap the data
transfer with the latency of ordering the SP. On the other hand, for
directory systems, address hints may be sufficient since the data
has to first go to the directory for ordering.

For the two systems we have simulated, the data is sent directly
to the target node for the snoop-based protocol, while it arrives
along with the coherence permission in the directory-based scheme
(with hints being sent when the lock request is received).

3.3.2 Ordering the speculative push
The precise implementation for correctly ordering (i.e., inserting in
the global memory order for correct memory consistency and
coherence), the speculative push depend upon the base coherence
protocol. We discuss two commercial coherence protocols here
and show how a speculative push is ordered.

Broadcast-based system. For a typical bus-based protocol, the
pushed data could be broadcast once on the bus, with a special
annotation allowing the target node to capture the data as it was
being written back to memory. In our example bus system, since
data is transmitted point-to-point, a write-back operation requires
some care to ensure that the data is received, and ordered correctly,
at the target node. The data would normally be pushed immedi-
ately after the response providing the lock.

To serialize the push, an annotated write-back (the annotation
identifies the target of the speculative push) is sent to memory and
is serialized in the global memory order. When the annotated
write-back appears on the bus the target receives coherence per-
missions implicitly. The data may or may not have reached the tar-
get node at this point. Since the bus provides an implicit ordering,
in many cases, the latency can be overlapped to a larger extent than
in a directory system.

Directory-based system. Since the data is also being written to
memory to allow the receiving node to ignore it if necessary, this
three-way communication presents ordering challenges in a direc-
tory-based system. In a directory-based protocol, the directory
node must be involved as it is the point of serialization for opera-

... ...

Figure 5. LST entry extended for Speculative Push

CounterValidLock addr. Cache addr.

A

A

Cache addr.

...

...... ...

tions. Responding to the annotated write-back, the directory node
communicates with the target node, granting coherence permission
(exclusive) or sending a NACK to the target node if necessary.

As noted in the previous paragraph, the directory node must be
involved in all data forwarding to guarantee proper memory
semantic. However, this perceived disadvantage has the benefit of
solving all the race conditions that might occur. In effect, having to
include the directory node in all transactions has the property of
not adding any new race condition that the directory-based proto-
col must not already handle. Thus, receiving an annotated write-
back is really no different than receiving data evicted from a
node’s cache. The only difference is that SP requests the directory
to forward a copy of the data to the target, an action that the direc-
tory can decline to do if necessary.

For directory systems, latency is not completely overlapped
since the coherence permissions need to come via the directory.
However, the write-back to the directory is overlapped with the
lock transfer to the target node. In addition, we are sending address
hints to the target node. Doing so allows the target node to pre-
allocate local buffer space for sinking the push. The only exposed
latency left is the directory lookup and transfer of coherence per-
missions to the requestor. In our experiments, while a three-hop
read took about 360 ns, with the speculative push, the latency
observed by the target node substantially reduces to about 60 ns. In
addition, the upgrade traffic that follows after the read of the data
is also eliminated since the data is being sent to the target in exclu-
sive state.

3.3.3 Automatically matching multiply pushed data
with coherence permissions
The two actions of speculatively pushing data, and ordering the
speculative push in the global memory order can occur in any
order and different networks may be used for them. In addition,
multiple pushes of a cache line to a given processor may happen
since no ordering guarantees are assumed from the network. To
easily handle such situations, we treat the two actions symmetri-
cally. If a push is rejected, the corresponding coherence permission
must also be rejected and vice-versa. Bookkeeping is necessary to
track multiple cache lines to ensure consistent responses to both
actions. For generality and without assumptions about the network,
we require a requestor to include in a rd_X_lp an indication of the
number of lines it can track (but not necessarily sink) at any given
time. This number could be quite small.

The push/coherence permission information is stored in a small
table at the cache controller. Both messages in the pair will occur
exactly once, so every push (irrespective of address) received is
tracked until its corresponding coherence permission is received,
and vice versa. An entry is removed when the pair is matched up.
Any push reject can be matched with any coherence reject and so
on. As the mechanism is speculative, the push and coherence per-
missions may arrive as a result of two different attempted pushes.
Nevertheless, it is not difficult to guarantee that the processor will
have the latest data if the two actions are matched correctly.

A third processor may attempt to read data in a cache line while
the line is being pushed, either due to data races or due to misspec-
ulated pushes. The situation is handled efficiently by providing the
third processor with the data and conservatively cancelling the
push to the target node (which, for directory systems, may require
an additional message to be sent to the target node).

4 EXPERIMENTAL METHODOLOGY
We use an execution-driven simulator to perform cycle-by-cycle
simulation of an out-of-order processor and a detailed event driven

simulation of the memory hierarchy. The simulator models all data
movements accurately (in the pipeline as well as in the memory
hierarchy) and models port contention at all levels. The processor
implements a release consistency memory model [10] similar to
the Compaq Alpha 21264 [8]. The processor retires stores to a coa-
lescing write buffer.

Not all benchmarks display the behavior of high communica-
tion miss rates we are targeting. We specifically select four bench-
marks (Table 1) that frequently experience communication misses
within critical sections. A locking version of mp3d is used to dem-
onstrate the effectiveness for applications with frequent synchroni-
zation. The test&test&set synchronization primitive is used and is
implemented with the load-locked and store-conditional instruc-
tions [16]. We selected system sizes such that contention at the
locks is at most medium.

4.1 Target systems
We simulate two systems: symmetric multiprocessor (SMP) and
distributed shared-memory (DSM) systems. The SMP system is
modeled after the Sun Gigaplane [36]: coherence and data traffic is
split onto two separate networks. Address requests and associated
coherence operations take place on a high bandwidth snoop bus;
while a high-speed point-to-point crossbar transfers data among
the nodes. The SMP employs a coherence protocol similar to the
one used in the Sun Enterprise 10000 system [7]. The DSM imple-
ments a MESI cache coherence protocol similar to the SGI Origin
2000 system [23]. We assume a fully connected, point-to-point
network in which the messages take a constant latency to traverse
one hop. However, port contention is accurately modeled. Table 2

Table 1: Benchmarks

Applications Application type Input Procs

Cholesky [35] Sparse matrix
factorization tk14.O 16

MP3D [35] Rarefied fluid flow
simulation

24,000 mols,
25 iter. 4

Raytrace [40] 3-D rendering teapot 8

Water-Nsq [40] N-body molecular
dynamics

512 mols,
3 iter. 16

Table 2: Integrated processor and cache subsystem

Processor
 Processor speed
 Reorder buffer
 Issue mechanism

 Branch predictor

1 GHz (1 ns clock)
64 entry with a 32 entry load/store queue
out-of-order issue/commit of 4 ops/cycle,
64 entry return address stack,
aggressively issue loads (~ MIPS R10000)
8-K entry combining predictor, 8K entry,
4-way BTB

Cache
 L1 instruction cache

 L1 data cache

 L2 unified cache

 L1/L2 bus
 Line size

64-KByte, 2-way associative,
1-cycle access, 8 outstanding misses
128-KByte, 2-way associative, write-back,
2 ports, 1-cycle access, 8 outstanding misses
1-MByte, 4-way associative, write-back,
10-cycle access, 16 outstanding misses
Runs at processor clock
64 bytes

list the parameters of the integrated processor and cache subsystem
used in both SMP and DSM systems and Table 3 lists the parame-
ters for the SMP and DSM memory systems.

4.2 Explanation of metrics
Speedup is measured as the ratio of the parallel execution time of
the base case to the execution time of the optimized case. There-
fore, a speedup greater than one implies a performance gain.
Attributing stall cycles to specific components is a complex task
for multiprocessor systems with out-of-order processors where
many events occur concurrently. We use an approximate approach.
For every cycle, we compute the ratio of instructions committed
that cycle to the maximum commit rate. This fraction of cycle time
is attributed to the busy time for the processor. The remaining frac-
tion is attributed as stall time to the first instruction that could not
be committed that cycle. The fractions of stall cycles are normal-
ized to the running time of IQL-only case. The stall categories are:

• WMB: stall at write-memory barrier
• MB: stall at memory barrier
• C SECTION: stall associated with data accesses within a criti-

cal section
• MEM ACC: stall associated with shared-memory accesses out-

side critical sections
• CPU: the remainder of useful cycles while the processor is

busy computing

The shared memory accesses do not include lock variable
accesses. This is done specifically to avoid any bias in latency
accounting due to differences in synchronization primitives.

5 RESULTS

5.1 Performance
Table 4 presents the main results. The numbers in parentheses
show the running time in millions of processor cycles. All the
other numbers in the table represent speedups. SP does not hurt
performance for most of our benchmarks. The exception is for
cholesky running on an DSM system where its performance
drop by only 1%. SP helps mp3d and raytrace substantially

compared to the IQL-only case, speeding up their performance by
a factor of up to 1.51. We also have the results for the SMP system
(not shown). For the most part, the trends are identical but the
magnitudes are different. In particular, SP speeds up mp3d by
21%, but slows down cholesky by 2%. The exception is ray-
trace, which displays an improvement of only 3%. The latencies
in the SMP system are such that the locking behavior of ray-
trace does not affect its performance much. Water-nsq com-
municates comparatively far more infrequently than the other
benchmarks do (see Figure 6 and Figure 7), but nevertheless still
suffers some migratory data-related stalls and benefits, if little,
from SP.

Table 4 also compares the performance of one system imple-
menting IQL only and the other one without it (i.e., programs use
test&test&set built with load-linked and store-conditional instruc-
tions but otherwise run without hardware support). To our knowl-
edge this paper is the first one to describe and to simulate a DSM
system with IQL. The results are impressive; IQL improves the
performance of all our benchmarks and, in particular, reduces the
running time of raytrace by more than half. These results fol-
low a trend similar to numbers published elsewhere [18, 17].
Besides differences in the systems being simulated, our methodol-
ogies differ also in that they used QOLB as their mechanism,
which requires special instructions and the recompilation of the
programs.

5.2 Speculative Push stall cycles breakdown
Figure 6 and Figure 7 shows how the stall cycles are attributed to
the different components of the system. These figures show that
most of the performance gains stem from the reduction of the fol-
lowing two components: C SECTION and WMB. SP is able to

Table 3: External network and memory configuration

DRAM memory module 8-byte wide, ~70 ns access time for 64-byte line

Snoop-based configuration

Address bus

Data network
Some uncontended latencies

OSI protocol on address bus modeled after the Sun Enterprise 10000,
MOESI at snoop cache
split-transaction, out-of-order responses, 120 outstanding requests,
22 ns snoop cycle (including 2 ns arbitration)
pipelined, point-to-point crossbar, 64-bit wide, 80 ns transfer latency
(pin to pin) read miss to memory: ~172 ns, read miss to another cache: ~125 ns

Directory-based configuration
Directory access
Processor and local directory
Directory and remote router
Some uncontended latencies

SGI Origin-2000 based MESI protocol
70 ns (overlapped with memory access)
30 ns (directory is integrated with memory and network controllers, point to point)
50 ns (point to point)
(pin to pin) read miss to local memory: ~130 ns,
read miss to remote memory: ~230 ns, read miss to remote dirty cache: ~360 ns

Network configuration (DSM only)
Network width
Read latency from network to cache
Setup latency for header packet
Setup latency for data packet

pipelined point-to-point network
64 bits
1 ns per word
5 ns
5 ns + 1 ns per word

Table 4: IQL and SP performance for a DSM system

Cholesky MP3D Raytrace Water-Nsq

Without IQL
(base) (11) (373) (121) (18)

IQL 1.13 1.21 2.75 1.04

IQL+SP 1.12 1.60 4.15 1.11

eliminate nearly all latencies associated with loading shared-mem-
ory locations. This observed behavior reduces the stall cycles asso-
ciated with critical section execution (C SECTION). SP is also
able to reduce considerably the wait time at write memory barriers
(WMB) located at the end of each critical section. In our experi-
ments, write memory barriers are almost always strictly confined
to the end of each critical section and are there to ensure all the
memory operations effected inside the critical section have per-
formed globally before releasing the lock.

5.3 Speculative Push characteristics
Table 5 breaks down speculative pushes into four categories: (1)
Used: the pushed data was accessed, (2) Evicted: the pushed data
was evicted before being used, (3) Rejected: the pushed data was
rejected, and (4) Invalidated: the pushed data was invalidated by
another processor before being used. For the most part SP per-
forms relatively well: more than 70% of all pushes are useful for
the execution of mp3d, raytrace, and water-nsq. The
exception to this trend being cholesky. Cholesky is the con-
trol benchmark and its critical section behavior does not lend itself
to the type of optimization we are studying in this paper. Indeed,
cholesky rarely suffers write-faults on the same address on suc-
cessive executions of the same critical section. For this benchmark,
little correlation exists between a lock address and data addresses
accessed while the lock is held. Our predictor detects this patterns
and turns off the SP optimization. This behavior leads to little per-
formance improvement for this benchmark (Table 4) and many
evicted pushes (Table 5).

We also varied the number of cache lines the SP mechanism
could forward with a lock. For our benchmarks, we found most of
the benefits could be had with a single cache line. Adding a second

cache line improved the performance of SP by no more than 2%
and more than two cache lines lead to insignificant improvements.

5.4 Speculative Push versus flush
We compare the performance of SP against a technique that con-
sists of flushing data back to memory at the end of a critical sec-
tion. The basic idea is to avoid the penalty of accessing remote
dirty data and instead to attempt finding the desired data at mem-
ory directly. To implement the flushing mechanism, we rely again
on our predictors to identify critical section boundaries and data set
associated with a lock. Upon receiving a lock request, we write the
data back to memory only unless the lock is still held. If the lock is
still held, we wait until the lock is released to write the data back to
memory.

We ran experiments both with the SMP and DSM configura-
tions. We found (numbers are not shown here) the flush technique
to be ineffective in our simulated SMP system because our
assumptions are such that the transfer latency to and from memory
is much larger than the transfer latency between two caches. Thus
flush techniques and self-invalidation techniques will degrade per-
formance of SMP systems.

Table 6 contrasts the performance of our two DSM variants:
flush to memory and SP. We observe that, for our set of bench-
marks, flush achieves a smaller speedup compared to SP. These
results also show that flush is able to achieve performance gains
over the IQL-only case. However, flush either requires special
instructions and recompilation or requires a predictor, a unit that it
shares with the SP mechanism.

Figure 6. SMP stall contributions
Normalized stall contributions are expressed as percentage of the
IQL running time for the specific contribution.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

IQL IQL+SP IQL IQL+SP IQL IQL+SP IQL IQL+SP

Cholesky MP3D Raytrace Water-Nsq

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

WMB

MB

C SECTION

MEM ACC

CPU

Table 5: Breakdown of push characteristics (shown as percentage of pushes)

used evicted rejected invalidated

SMP DSM SMP DSM SMP DSM SMP DSM

Cholesky 8.00% 12.02% 92.00% 88.98% 0.00% 0.00% 0.00% 0.00%

MP3D 99.46% 99.56% 0.43% 0.40% 0.09% 0.04% 0.02% 0.00%

Raytrace 80.80% 71.64% 16.55% 28.33% 2.64% 0.00% 0.01% 0.03%

Water 93.80% 99.61% 6.20% 0.08% 0.00% 0.31% 0.00% 0.00%

Figure 7. DSM stall contributions
Normalized stall contributions are expressed as percentage of the
IQL running time for the specific contribution.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

IQL IQL+SP IQL IQL+SP IQL IQL+SP IQL IQL+SP

Cholesky MP3D Raytrace Water-Nsq

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

WMB

MB

C SECTION

MEM ACC

CPU

6 RELATED WORK
A software technique for eliminating latencies associated with crit-
ical data accesses involves collocating lock and data in the same
cache line. However, since locks may be read even within critical
sections, it is not generally recommended that locks be allocated in
the same line as data they are protecting. If a mechanism is pro-
vided to eliminate or defer accesses to the lock until the end of a
critical section, then data can be collocated with a lock profitably,
allowing the data to be implicitly transferred along with the lock
when it is acquired. Bitar and Despain first proposed collocation
[5]. Goodman, Vernon, and Woest [12] made collocation more
attractive by establishing the ability to defer access to the lock by
an acquiring processor until the lock had been released. This
method, Queue-On-Lock-Bit (QOLB) was a synchronizing
prefetch operation in the sense that it provided for lock and data to
be forwarded “as soon as possible, but no sooner.” Using instruc-
tion set and programmer support, QOLB maintained a queue of
lock requestors in hardware. Kägi, Burger, and Goodman [18]
demonstrated that collocation captured consistent and substantial
gains in performance for a set of benchmarks on a distributed
shared memory system. Collocation however requires substantial
programmer involvement and at times, major restructuring of the
application data structures. In addition, coupling the lock and data
in the same cache line limits the size of the collocated data. QOLB
led to other proposals for queued locks, notably MCS [28] and for
the DASH multiprocessor [25].

DASH provided a concept of queued locks in hardware for
memory based directories. However, the directory was always in
the critical path — on a lock release, the lock was sent to the direc-
tory which in turn picked a random waiter and serviced it. With
IQLs, once a request has been forwarded, the directory is no longer
in the critical path.

We have previously proposed Implicit-QOLB [31], an early
version of the IQL mechanism, which works by speculating about
a program’s access patterns — specifically of synchronization
operations — and uses the notion of delayed responses to improve
the throughput of synchronization. This work focused only on bus-
based systems and did not address communication latencies within
critical sections. In the present work, which first appeared as an
unpublished manuscript in April 2000 [32] we demonstrate that the
method is even more effective on a directory-based protocol, and
that the SP mechanism can leverage the notion of IQL to achieve
still larger performance gains.

Stenström, Brorsson, and Sandberg [38] and Cox and Fowler
[9] independently proposed cache coherence protocol optimiza-
tions for migratory sharing patterns. Such behavior is exhibited
primarily by data protected by locks or monitors. Both approaches
succeed by merging an invalidation request for the migratory
cache block with the preceding read-miss request. These mecha-
nisms do not reduce the critical miss latency experienced on the
first read miss, though reduced contention may have the indirect
effect of reducing read miss latencies.

Mowry and Gupta [29] proposed a compiler prefetch heuristic
for tolerating latency in shared-memory multiprocessors. The com-

piler interpreted explicit synchronization operations as a hint that
data communication may be taking place. The approach was quite
successful for programs with regular access patterns and struc-
tures. They mention that it is potentially easy for a programmer to
use semantic information about an application and identify critical
data structures in small applications but state, “[s]uch focusing in
on critical data structures will be much harder for compilers.” An
additional issue with software prefetching for critical section data
is the lack of knowledge regarding the migratory patterns of data:
determining which processor should be prefetching data is nearly
impossible statically because it depends on the (dynamic) selection
of a winner among competitors to acquire the lock. By the time
this decision has been made, it is already too late to avoid delay by
prefetching needed data. Trancoso and Torrellas [39] attempted to
reduce latencies within critical sections through the use of
prefetching and data forwarding. They inserted prefetch and for-
warding instructions by hand. Their techniques suffer from many
of the same limitations of software approaches, specifically, the
need for hardware and compiler support for new instructions and
the inability to evaluate and exploit run-time behavior. Their
results were pessimistic, concluding that complex, forwarding-
based optimizations could not be justified.

Abdel-Shafi et al. [1] evaluated producer-initiated communica-
tion and proposed remote writes for data accesses associated with
synchronization operations. The combination of software prefetch-
ing and remote writes provided good performance gains for a set of
benchmarks. The mechanisms however, required software and pro-
grammer support to identify candidates for remote writes.

Similar data forwarding mechanisms have been proposed in the
literature: the forwarding write [30], and the DASH deliver [25].
DASH also had a producer-prefetch mechanism for pushing data
to a set of consumers in shared state. Kaxiras and Goodman [19]
proposed speculative pre-send as an approach for data forwarding.

Ranganathan et al. [33] proposed the use of flush primitives to
write back dirty data modified in critical sections to memory. They
also added prefetches at the beginning of critical sections. Their
mechanisms relied on compiler and programmer support to iden-
tify critical data to be flushed. However they state that late
prefetches and contention effects limited additional performance
benefits. Similar flush primitives have also been proposed by Hill
et al. [14] and Skeppstedt and Stenström [37]. Mechanisms to
reduce invalidation latencies by employing prediction to flush
cache lines have also been proposed [24, 22]. These techniques
reduce a three-hop transaction to a two-hop transaction while
Speculative Push converts a three-hop transaction into a local
cache access.

7 CONCLUDING REMARKS
In this paper, we have studied two mechanisms for reducing com-
munication latencies inside critical sections. First, we proposed the
first IQL implementation for a directory-based system that makes
no assumptions about message ordering. Our results corroborate
earlier published results for snoop-based systems running on a sys-
tem with high network utilization and showing large gains for
benchmarks that have either high lock contention or frequent, fine-
grained locking. Second, we described SP, a mechanism to overlap
lock transfer with data believed to be associated with that lock,
thus attempting to convert all global data accesses performed in a
critical section into local cache accesses. We showed that SP offers
additional benefits on top of those provided by IQLs.

Mp3d was chosen as a benchmark specifically because it exhib-
its the kind of behavior we were targeting, and both mechanisms
succeeded in reducing communication delays. The net result was

Table 6: SP and flush performance for DSM

Cholesky MP3D Raytrace Water-Nsq

IQL+Flush 1.00 1.13 1.28 1.04

IQL+SP 0.99 1.32 1.51 1.07

that the application saw a speedup of 21% for the bus and 32% for
the directory system over an aggressive base case of IQLs. Indeed,
all the benchmarks saw reductions in shared memory stalls within
critical sections, though for some this delay was so small that the
reduction did little to improve overall performance. Benchmarks
with highly contended locks (such as raytrace), show large
speedups in some cases. The SP mechanism can provide further
speedups in overall performance by substantially reducing the net-
work traffic and three-hop transactions.

We conclude that the two mechanisms can combine to reduce
the communication delays within critical sections by more than
50%. In addition, speculative push can quite often collapse the
read-modify-write sequences within a critical section into a local
cache access. While the total reduction in stalls varies depending
on the percentage of time the processor is stalled for communica-
tion latencies, the reduction was consistent across all benchmarks.

ACKNOWLEDGEMENTS
This work was supported by NSF Grant CCR-9810114.

REFERENCES
[1] H. Abdel-Shafi, J. Hall, S. V. Adve, and V. S. Adve. An

evaluation of fine-grain producer-initiated communication in
cache-coherent multiprocessors. In Proceedings of the Third
International Symposium on High-Performance Computer
Architecture, pages 204–215, Feb. 1997.

[2] T. E. Anderson. The performance implications of spin-wait-
ing alternatives for shared-memory multiprocessors. In Pro-
ceedings of the 1989 International Conference on Parallel
Processing, volume II (software), pages 170–174, Aug.
1989.

[3] T. E. Anderson. The performance of spin lock alternatives
for shared-memory multiprocessors. IEEE Transactions on
Parallel and Distributed Systems, 1(1):6–16, Jan. 1990.

[4] L. A. Barroso, K. Gharachorloo, and E. Bugnion. Memory
system characterization of commercial workloads. In Pro-
ceedings of the 25th Annual International Symposium on
Computer Architecture, pages 3–14, June 1998.

[5] P. Bitar and A. M. Despain. Multiprocessor cache synchroni-
zation: Issues, innovations, evolution. In Proceedings of the
13th Annual International Symposium on Computer Archi-
tecture, pages 424–433, June 1986.

[6] T. Brewer and G. Astfalk. The evolution of the HP/Convex
Exemplar. In Proceedings of the 42nd IEEE Computer Soci-
ety International Conference (COMPCON), pages 81–86,
Feb. 1997.

[7] A. Charlesworth, A. Phelps, R. Williams, and G. Gilbert.
Gigaplane-XB: Extending the Ultra Enterprise family. In
Proceedings of the Symposium on High Performance Inter-
connects V, pages 97–112, Aug. 1997.

[8] Compaq Computer Corporation. Alpha 21264 Hardware
Reference Manual, July 1999.

[9] A. L. Cox and R. J. Fowler. Adaptive cache coherency for
detecting migratory shared data. In Proceedings of the 20th
Annual International Symposium on Computer Architecture,
pages 98–108, May 1993.

[10] K. Gharachorloo, D. Lenoski, J. Laudon, P. B. Gibbons,
A. Gupta, and J. L. Hennessy. Memory consistency and
event ordering in scalable shared-memory multiprocessors.

In Proceedings of the 17th Annual International Symposium
on Computer Architecture, pages 15–26, May 1990.

[11] K. Gharachorloo, M. Sharma, S. Steely, and S. V. Doren.
Architecture and design of AlphaServer GS320. In Proceed-
ings of the Ninth Symposium on Architectural Support for
Programming Languages and Operating Systems, pages 13–
24, Nov. 2000.

[12] J. R. Goodman, M. K. Vernon, and P. J. Woest. Efficient syn-
chronization primitives for large-scale cache-coherent
shared-memory multiprocessors. In Proceedings of the Third
Symposium on Architectural Support for Programming Lan-
guages and Operating Systems, pages 64–75, Apr. 1989.

[13] G. Graunke and S. Thakkar. Synchronization algorithms for
shared-memory multiprocessors. IEEE Computer, 23(6):60–
69, June 1990.

[14] M. Hill, J. Larus, S. Reinhardt, and D. Wood. Cooperative
shared memory: Software and hardware for scalable multi-
processors. ACM Transactions on Computer Systems,
11(4):300–318, Nov. 1993.

[15] Institute of Electrical and Electronics Engineers, New York,
NY. IEEE Standard for the Scalable Coherent Interface
(SCI), Aug. 1993. ANSI/IEEE Std. 1596-1992.

[16] E. H. Jensen, G. W. Hagensen, and J. M. Broughton. A new
approach to exclusive data access in shared memory multi-
processors. Technical Report UCRL-97663, Lawrence Liv-
ermore National Laboratory, Livermore, CA, Nov. 1987.

[17] A. Kägi. Mechanisms for Efficient Shared-Memory, Lock-
Based Synchronization. PhD thesis, University of Wisconsin,
Madison, WI, May 1999.

[18] A. Kägi, D. Burger, and J. R. Goodman. Efficient synchroni-
zation: Let them eat QOLB. In Proceedings of the 24th
Annual International Symposium on Computer Architecture,
pages 170–180, June 1997.

[19] S. Kaxiras and J. R. Goodman. Improving CC-NUMA per-
formance using instruction-based prediction. In Proceedings
of the Fifth International Symposium on High-Performance
Computer Architecture, pages 161–170, Jan. 1999.

[20] K. Keeton, D. Patterson, Y. He, R. Raphael, and W. Baker.
Performance characterization of a Quad Pentium Pro SMP
using OLTP workloads. In Proceedings of the 25th Annual
International Symposium on Computer Architecture, pages
15–26, June 1998.

[21] D. Kroft. Lockup-free instruction fetch/prefetch cache orga-
nization. In Proceedings of the Eighth Annual International
Symposium on Computer Architecture, pages 81–87, May
1981.

[22] A.-C. Lai and B. Falsafi. Selective, accurate, and timely self-
invalidation using last-touch prediction. In Proceedings of
the 27th Annual International Symposium on Computer
Architecture, June 2000.

[23] J. Laudon and D. E. Lenoski. The SGI Origin: A ccNUMA
highly scalable server. In Proceedings of the 24th Annual
International Symposium on Computer Architecture, pages
241–251, June 1997.

[24] A. R. Lebeck and D. A. Wood. Dynamic self-invalidation:
Reducing coherence overhead in shared-memory multipro-
cessors. In Proceedings of the 22nd Annual International
Symposium on Computer Architecture, pages 48–59, June
1995.

[25] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber,
A. Gupta, J. L. Hennessy, M. Horowitz, and M. Lam. The
Stanford DASH multiprocessor. IEEE Computer, 25(3):63–
79, Mar. 1992.

[26] B.-H. Lim and A. Agarwal. Reactive synchronization algo-
rithms for multiprocessors. In Proceedings of the Sixth Sym-
posium on Architectural Support for Programming
Languages and Operating Systems, pages 25–35, Oct. 1994.

[27] T. Lovett and R. Clapp. STiNG: A CC-NUMA computer
system for the commercial marketplace. In Proceedings of
the 23rd Annual International Symposium on Computer
Architecture, pages 308–317, May 1996.

[28] J. M. Mellor-Crummey and M. L. Scott. Algorithms for scal-
able synchronization on shared-memory multiprocessors.
ACM Transactions on Computer Systems, 9(1):21–65, Feb.
1991.

[29] T. Mowry and A. Gupta. Tolerating latency through soft-
ware-controlled prefetching in shared-memory multiproces-
sors. Journal of Parallel and Distributed Computing,
12(2):87–106, June 1992.

[30] D. K. Poulsen and P.-C. Yew. Data prefetching and data for-
warding in shared memory multiprocessors. In Proceedings
of the 1994 International Conference on Parallel Process-
ing, volume II (software), pages 276–280, Aug. 1994.

[31] R. Rajwar, A. Kägi, and J. R. Goodman. Improving the
throughput of synchronization by insertion of delays. In Pro-
ceedings of the Sixth International Symposium on High-Per-
formance Computer Architecture, pages 168–179, Jan. 2000.

[32] R. Rajwar, A. Kägi, and J. R. Goodman. Using speculative
push to reduce communication latencies in critical sections.
Unpublished manuscript, Apr. 2000 (Now available as Tech-
nical Report CS-TR-1472, Computer Sciences Department,
University of Wisconsin, Madison, WI, Mar. 2003).

[33] P. Ranganathan, K. Gharachorloo, S. Adve, and L. A. Bar-
roso. Performance of database workloads on shared-memory

systems with out-of-order processors. In Proceedings of the
Eighth Symposium on Architectural Support for Program-
ming Languages and Operating Systems, pages 307–318,
Oct. 1998.

[34] L. Rudolph and Z. Segall. Dynamic decentralized cache
schemes for MIMD parallel processors. In Proceedings of
the 11th Annual International Symposium on Computer
Architecture, pages 340–347, June 1984.

[35] J. P. Singh, W.-D. Weber, and A. Gupta. SPLASH: Stanford
parallel applications for shared memory. Computer Architec-
ture News, 20(1):5–44, Mar. 1992.

[36] A. Singhal, D. Broniarczyk, F. M. Cerauskis, J. Price,
L. Yuan, G. Cheng, D. Doblar, S. Fosth, N. Agarwal,
K. Harvey, E. Hagersten, and B. Liencres. Gigaplane: A high
performance bus for large SMPs. In Proceedings of the Sym-
posium on High Performance Interconnects IV, pages 41–52,
Aug. 1996.

[37] J. Skeppstedt and P. Stenström. A compiler algorithm that
reduces read latency in ownership-based cache coherence
protocols. In Proceedings of the 1995 International Confer-
ence on Parallel Architectures and Compilation Techniques,
1995.

[38] P. Stenström, M. Brorsson, and L. Sandberg. An adaptive
cache coherence protocol optimized for migratory sharing.
In Proceedings of the 20th Annual International Symposium
on Computer Architecture, pages 109–118, May 1993.

[39] P. Trancoso and J. Torrellas. The impact of speeding up criti-
cal sections with data prefetching and forwarding. In Pro-
ceedings of the 1996 International Conference on Parallel
Processing, volume III (software), pages 79–86, Aug. 1996.

[40] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 programs: Characterization and method-
ological considerations. In Proceedings of the 22nd Annual
International Symposium on Computer Architecture, pages
24–36, June 1995.

	1 INTRODUCTION
	Paper contributions.
	Intuition for IQLs.
	Intuition for SP.
	Paper outline

	2 INFERENTIALLY QUEUED LOCKS
	2.1 Basic mechanisms
	2.2 IQLs and broadcast-based systems
	2.3 IQLs and directory-based systems
	2.3.1 Constructing queues
	2.3.2 Handling queue breakdown

	3 SPECULATIVE PUSH
	3.1 Predicting lock and data pairings
	3.2 Prediction confidence
	3.3 Speculative Push protocol
	3.3.1 Determining the forwarding data path
	3.3.2 Ordering the speculative push
	Broadcast-based system.
	Directory-based system

	3.3.3 Automatically matching multiply pushed data with coherence permissions

	4 EXPERIMENTAL METHODOLOGY
	4.1 Target systems
	4.2 Explanation of metrics

	5 RESULTS
	5.1 Performance
	5.2 Speculative Push stall cycles breakdown
	5.3 Speculative Push characteristics
	5.4 Speculative Push versus flush

	6 RELATED WORK
	7 CONCLUDING REMARKS

