CTrigger: Exposing Atomicity Violation Bugs
from Their Hiding Places

Soyeon Park Shan Lu

Yuanyuan Zhou

Department of Computer Science,
University of Illinois at Urbana Champaign, Urbana, IL 61801

{soyeon,shanlu,yyzhou}@illinois.edu

Abstract

Multicore hardware is making concurrent programs perva-
sive. Unfortunately, concurrent programs are prone to bugs.
Among different types of concurrency bugs, atomicity vio-
lation bugs are common and important. Existing techniques
to detect atomicity violation bugs suffer from one limitation:
requiring bugs to manifest during monitored runs, which is
an open problem in concurrent program testing.

This paper makes two contributions. First, it studies the
interleaving characteristics of the common practice in con-
current program testing (i.e., running a program over and
over) to understand why atomicity violation bugs are hard to
expose. Second, it proposes CTrigger to effectively and ef-
ficiently expose atomicity violation bugs in large programs.
CTrigger focuses on a special type of interleavings (i.e., un-
serializable interleavings) that are inherently correlated to
atomicity violation bugs, and uses trace analysis to system-
atically identify (likely) feasible unserializable interleavings
with low occurrence-probability. CTrigger then uses mini-
mum execution perturbation to exercise low-probability in-
terleavings and expose difficult-to-catch atomicity violation.

We evaluate CTrigger with real-world atomicity viola-
tion bugs from four sever/desktop applications (Apache,
MySQL, Mozilla, and PBZIP2) and three SPLASH2 ap-
plications on 8-core machines. CTrigger efficiently exposes
the tested bugs within 1-235 seconds, two to four orders
of magnitude faster than stress testing. Without CTrigger,
some of these bugs do not manifest even after 7 full days of
stress testing. In addition, without deterministic replay sup-
port, once a bug is exposed, CTrigger can help programmers
reliably reproduce it for diagnosis. Our tested bugs are re-
produced by CTrigger mostly within 5 seconds, 300 to over
60000 times faster than stress testing.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ASPLOS’09 March 7-11, 2009, Washington, DC, USA.
Copyright © 2009 ACM 978-1-60558-215-3/09/03. . . $5.00

Categories and Subject Descriptors D.2.5 [Testing and
Debugging]: Testing Tools

General Terms Languages, Reliability

Keywords Software testing, concurrency bug

1. Introduction
1.1 Motivations

The reality of multicore hardware is making concurrent pro-
grams pervasive. Unfortunately, concurrent programs are
prone to bugs due to the inherent complexity of concur-
rency. These bugs are hard to detect and diagnose because of
their notorious non-deterministic characteristic. Many con-
currency bugs skip the in-house checking, escape into pro-
duction runs and cause catastrophic disasters in real world
(e.g., the Northeastern Electricity Blackout Incident [21]).

Among different types of concurrency bugs, atomicity
violation bugs are one of the most common and impor-
tant [13, 12, 14, 25, 5]. Atomicity violation bugs (a real-
world example is shown in Figure 1) widely exist because
many programmers are used to sequential thinking and fre-
quently assume code regions to be atomic without appropri-
ate enforcement. Our recent concurrency bug characteristic
study [12] shows that about 70% of non-deadlock concur-
rency bugs in the studied large server and desktop applica-
tions are caused by atomicity violations. In addition, atomic-
ity violation bugs will remain even with advanced synchro-
nization primitives such as transactional memory, because
programmers might mistakenly separate a group of indivis-
ible operations into different transactions [13, 14]. There-
fore, techniques to help eliminate atomicity violation bugs
are highly desired.

Recently, much effort has been made to help detect atom-
icity violation bugs [27, 13, 5, 7, 25]. Almost all of these
work would significantly benefit from an effective way to
expose atomicity violations during monitored runs (testing
runs). For example, dynamic atomicity violation checkers
like AVIO [13], SVD [27], and other approaches [7] require
atomicity violations to manifest during monitored runs in
order to catch them. Although static approaches [6] do not

have such requirements, their power is limited due to the
complexity of analyzing concurrency and pointer aliasing,
especially for C/C++ programs. As a result, static tools can
introduce many false positives. An effective way to exam-
ine bug suspects via testing runs can also help static tools to
separate false positives from true bugs [22].

Bug-exposing techniques have been studied for a long
time and many good techniques have been widely adopted
to test sequential programs [2]. In general, a good bug-
exposing technique needs to have three properties:

o Effectiveness: how many hidden bugs can be exposed.

e Efficiency: how fast hidden bugs can be exposed. Al-
though the performance issue of testing is not as criti-
cal as that of production runs, the bug exposing process
cannot take months or years because programmers have
constant pressure to release software.

® Reproducibility: if a hidden bug is exposed, how likely
this bug can be reproduced for diagnosis. If the bug takes
another 20 hours to reproduce, it might be very pain-
taking for programmers to examine the problem.

Unlike sequential bugs, a concurrency bug usually re-
quires at least two conditions to manifest. The first condition,
similar to that of sequential bugs, is a bug-triggering input.
An appropriate input is needed to execute a faulty code seg-
ment with a bug-triggering state. Much work has conducted
in the past to generate comprehensive sets of inputs to cover
code segments and specification space [2]. The majority of
these work are still applicable to concurrent programs, al-
though some extensions specific to concurrent programs are
needed to further increase the code coverage [23].

The second condition, unique to concurrency bugs, is a
bug-triggering interleaving. Without this condition, a bug-
triggering input alone may not expose the hidden concur-
rency bug. Figure 1 shows a real world bug example from
the Apache HTTPd Server, a widely-used open-source web
server. In this example, programmers forget to protect the
pair of accesses to buf _index, namely {S1, 52}, into the
same atomic region using locks or transactions and introduce
an atomicity violation bug. Unfortunately, this bug is hard to
expose during testing because it manifests only when S3 is
executed between S1 and S2. The probability for this par-
ticular interleaving to happen is very small. Actually, when
we ran Apache with a bug-triggering input (an input that can
potentially trigger the bug) on an 8-core machine, it took 22
hours for this bug to manifest.

In comparison to the first condition, the second condition
is significantly understudied. Therefore, similar to recent
concurrency testing efforts [4, 16, 17, 22], this paper focuses
on the bug-triggering interleaving issue and relies on prior
work to cover the first condition.

1.2 State of the Art

The common practice to expose concurrency bugs is to run
a program with each input test case for a long time (for

servers) or for many times (for other types of applications).
We refer to this as stress testing. Intuitively it makes some
sense, since the non-deterministic nature of concurrent pro-
grams will help exercise different interleavings in different
runs. Unfortunately, practice has shown that stress testing is
neither efficient nor reproducible [16]. The first part of this
paper will dig deeper into the reason for the deficiency of
stress testing.

Recently, several inspiring works [3, 4, 16, 17, 22] were
proposed to improve stress testing. All of these works target
at selecting certain interleavings from the exponential size
interleaving space for practical testing to focus on.

ConTest [3] injects artificial delays at synchronization
points (e.g., lock acquisition & release) in order to intensify
the contention for synchronization resources. This would
help expose deadlocks, but not data races or atomicity viola-
tion bugs that are usually caused by programmers forgetting
to use synchronizations.

CHESS [16, 17] cleverly reduces the interleaving test-
ing space by bounding the number of preempting context
switches to small numbers (e.g., 1 — 4). However, even with
a small number of context switches allowed, CHESS’ test-
ing space still increases polynomially with the program exe-
cution length. As a result, CHESS has to make a hard trade-
off between coverage and testing time. For example, CHESS
often limits context switches only at synchronization points
in order to test big concurrent programs in practice. Such a
constraint will make the method less effective for exposing
atomicity violation and data race bugs, just like that in Con-
Test as discussed above. Our ideas presented in this paper
well complement CHESS by systematically picking out in-
terleavings that have low occurrence probabilities and high
association with atomicity violation bugs.

Based on the same motivation, RaceFuzzer [22] focuses
on potential data races reported by race detectors. It attempts
to force all the reported race interleavings during testing in
order to separate false positives from true race bugs. While it
is definitely useful to help users automatically filter out false
positives in race bug detection, its bug exposing capability
significantly relies on the underlying data race detectors:
if the detector does not have a good coverage, RaceFuzzer
would miss many bugs. Unfortunately, due to the inherent
complexity of concurrent programs, there are still few race
bug detectors that can achieve high coverage, especially for
C/C++ programs and for atomicity violation bugs.

In addition, both CHESS and RaceFuzzer select only one
thread to execute at a time, which can significantly slow
down each test run and cannot take advantage of multicore
machines in testing. While it is possible to conduct multiple
test runs on the same machine, the contention for disk and
network makes it impractical for I/O-intensive applications,
such as server programs. In this paper, we propose an ap-
proach to address this limitation and allow each test run to
use multiple processors, just like that in stress testing.

Thread 1
S1: if (buf_index + len < BUFFSIZE)

Thread 2

S2: memcpy(buf[buf_index], log, len);

N

S3: buf_index+=len;

S1:
S2:

Thread 1
if (buf_index + len < BUFFSIZE)

Thread 2

—_—
S3: buf_index+=len;
memcpy(buf[buf_index], log, len); &«

Wrong buffer content or
buffer overflow & server crash

(a) A non-bug triggering interleaving, which almost always occurs

(b)) A bug triggering interleaving, which rarely occurs

Figure 1. An example simplified from an Apache atomicity violation bug (It manifests only when S3 is executed between S1 and S2.)

1.3 Contributions of this paper

This paper studies the interleaving characteristics of stress
testing and proposes a method called CTrigger to efficiently
expose atomicity violation bugs in large programs.

First, to reduce the interleaving space in exploration, we
propose to focus on a special type of interleavings called
unserializable interleavings that are inherently correlated to
atomicity violation bugs [27, 13]. An unserializable inter-
leaving is an interleaving that is not equivalent to any se-
quential execution of the involved operations. As atomicity
is equivalent to serializability in the context of concurrency
bugs, focusing on unserializable interleavings can provide a
good coverage of exposing atomicity violation bugs and al-
low us to substantially reduce the interleaving testing space.

Second, using three large server programs, three SPLASH2
programs, and one utility program, we examine why stress
testing is insufficient in exposing atomicity violation bugs.
Our evaluation shows that different unserializable interleav-
ings have different probabilities to occur; different runs in
stress testing usually cover similar interleavings (i.e., high-
probability ones); low-probability ones, which usually hide
atomicity violation bugs, are hard to be covered without ex-
ternal control and are also hard to reproduce for bug diagno-
sis. The primary factors that affect interleaving probabilities
are synchronizations, memory access distances, etc.

Third, based on our above observations, we design a test-
ing framework called CTrigger to effectively, efficiently and
reproducibly expose atomicity violation bugs in concurrent
programs. CTrigger achieves these goals by incorporating
the following new ideas step by step as shown in Figure 2.

¢ Focusing on unserializable interleavings. From a few pro-
filing runs, CTrigger identifies a large set of potential un-
serializable interleavings.

¢ Pruning infeasible interleavings. Some potential unseri-
alizable interleavings can never happen during execu-
tion due to synchronizations. For example, two accesses
protected by a lock cannot be unserializably interleaved
by another access protected by the same lock. We have
designed an algorithm to prune these infeasible inter-
leavings by considering both order synchronizations and
mutual exclusion synchronizations. Our pruning signif-
icantly reduces the number of vain attempts to force in-
feasible interleavings. Our experimental results show that

37%-96% of potential unserializable interleavings in the
seven tested applications are pruned.

Ranking and identifying low-probability interleavings.
As different interleavings have different probabilities to
be exposed, we propose a simple metric to estimate in-
terleaving probability and rank all unpruned unserializ-
able interleavings. This ranking mechanism allows us to
focus on low-probability interleavings during controlled
testing, and leaves high-probability ones to be covered
by the simple stress testing mechanism. Our experimen-
tal results show that our ranking mechanism is effective.
It ranks bug-triggering interleavings high, mostly within
top 10%, and achieves speedup of bug exposing time by
up to 457 times. Besides our work, the ranking metric
may also be useful to other concurrency testing frame-
works such as CHESS to improve testing efficiency.

e Minimum external control to force low-probability in-
terleavings during testing on multicores. Unlike CHESS
and RaceFuzzer that control execution by scheduling one
thread at a time, CTrigger inserts artificial synchroniza-
tions (with an expiration time) in only a small set of exe-
cution points corresponding to the target interleavings of
interests. This allows the tested program to leverage mul-
ticores, and avoids slowing down execution periods that
are unrelated to the target interleavings.

We evaluate CTrigger with real world bugs from four
server/desktop open-source programs, MySQL, Apache,
Mozilla, and PBZIP2, and three SPLASH2 benchmarks
on 8-core machines. Among these applications, MySQL,
Apache and Mozilla are widely-used large open-source pro-
grams with up to 3.4 million lines of code. CTrigger exposes
the tested atomicity violation bugs 10—1000 times faster than
stress testing and previous methods (both synchronization-
based or race-based techniques described in Section 1.2).
For example, CTrigger takes 63 seconds and 235 seconds,
respectively, to expose the two real world Apache server
bugs, whereas the stress testing requires more than 20 hours
to expose them, and one of the bugs never manifests after
one week of stress testing!

As explained before, testing efficiency is very important
due to the time pressure in software release. A speedup of
10-1000 would be very beneficial. For example, 100 differ-
ent 1-hour-long (under CTrigger) input test cases and 10 dif-
ferent configurations would take CTrigger 2 days to finish on

Phase One

Identify target unserializable interleavings to focus on

Phase Two
Explore unserializable interleaving space

|
Step 3 i
1

\

i Step 1 Step 2

i Short profiling Identlfy Prune
runs potential infeasible

| (collect trace) unserializable interleavings

| interleavings

I

Exercise high-probability interleavings;
Expose easy-occuring bugs.

Rank 1
Il
low-probability C?gst;% ged
interleavings i
|
1

more bugs (if exists) exposed;
developers get more confidence.

Figure 2. CTrigger testing framework (The phases one and two are conducted for each test input.)

20 machines, whereas they will take stress testing 20-2000
days to achieve similar exposing capability for atomicity vi-
olation bugs, which is definitely too long to be acceptable.

In addition, since CTrigger records the execution control
that exposes a bug, it can perform the same control to reli-
ably re-expose the same bug for diagnosis without any de-
terministic replay support. For the tested bugs, CTrigger re-
exposes them mostly within 5 seconds, 300 to more than
60000 times faster than stress testing.

2. Background: Atomicity Violation Bugs
and Unserializable Interleavings

Atomicity, also called as serializability, is a property for the
concurrent execution of several operations when their data
manipulation effect is equivalent to that of a serial execution
of them [13]. Programmers often assume some code regions
to be atomic. Unfortunately, their implementation may not
guarantee the atomicity. Consequently, the assumed atom-
icity can be broken when the code region is unserializably
interleaved by accesses from another thread, which leads to
an atomicity violation bug.

As discussed in details in some recent work [13, 25],
the basic type of unserializable interleavings is composed of
three memory accesses (shown in Figure 3). Two of them, re-
ferred to as p(receding)-access and c(urrent)-access, consec-
utively access a shared location from the same thread. The
third one, referred to as r(emote)-access, accesses the same
memory location in the middle of the previous two from a
different thread. For example, the key part of the bug shown
in Figure 1 is such a basic type of unserializable interleav-
ing. The bug manifests when r-access S3 unserializably in-
terleaves the p-access S1 and c-access S2.

Due to the inherent connection between atomicity vi-
olation bugs and unserializable interleavings, it is natural
to focus on unserializable interleavings in order to expose
atomicity violation bugs. Furthermore, for simplicity and
efficiency, we can start with the basic type of unserializ-
able interleavings described above. Specifically, for every
shared memory access instruction C, we can try to exercise
at least one unserializable interleaving associated with C,
i.e., interleaving-C, short for an unserializable interleaving
with instruction C' as the current access. We accordingly de-
fine the exploration space as {interleaving-C|C is a shared-
memory access instruction}. Within this space, some unse-

rializable interleavings may never happen due to synchro-
nization. We will discuss how to prune out these infeasible
interleavings in later sections.

The unserializable interleaving space defined above is lin-
ear to the static size of the program. It is much smaller than
the entire interleaving space and is therefore practical to
thoroughly explore. In the mean time, unserializable inter-
leaving space gives a good coverage for all potential atomic-
ity violation bugs. Covering this space during testing would
give developers at least some level of confidence on their
software quality against atomicity violations.

3. Why Stress Testing is Not Good:
An Interleaving Characteristic Study

Stress testing (defined in Section 1.2) is the current domi-
nant practice. To understand why it is ineffective at exposing
atomicity violation bugs, we quantitatively study its charac-
teristics from the perspective of unserializable interleaving
space. The understanding will guide our design of CTrigger.

3.1 Methodology

We use four widely-used open-source server/desktop appli-
cations, Apache HTTPd, MySQL, Mozilla and PBZIP2, and
three applications from the SPLASH? [26] benchmark-suite.
These applications cover different types of functionalities
and synchronization models, as shown in table 1. The exper-
iments use a dual quad-core (totally eight processors) Intel
Xeon machine, and each application is configured to have
eight worker threads.

To collect the interleaving information, we use Pin binary
instrumentation tool [15] to monitor the execution. To make
sure that our study can reflect the real non-perturbed execu-
tion environment, we carefully design our instrumentation to
give minimum perturbation in a thread-balanced way.

[App.][LOC] Description [Synch. [Workload
Apache || 302K| Web server lock SURGE [1]
MySQL|| 1.9M| Database server lock MySQL-test*
Mozilla || 3.4M| Web browser suite lock JavaScript test suite*®
PBZIP2|| 2.0K| File compressor lock & queue | arandom file
FFT 1.0K | FFT transformation barrier default setting
LU 1.0K'| Matrix factorization barrier with 8 processors
Barnes 3.0K| N-body problem lock & queue

Table 1. Applications and workloads (*:MySQL-test and
JavaScript test suite are designed by the application developers.)

\ «—— Execution Order X : a shared memory location]
Thread 1 Thread 2 Thread 1 Thread 2 Thread 1 Thread 2 Thread 1 Thread 2
p: read x p: write X p: read x p: write X
r: write X r: write X r: write x r: read x
c:read x c:read x 4) c: write x4> C: write X 4)

Figure 3. Unserializable interleavings (A static instruction C’s unserializable interleaving is exercised iff at least one of its dynamic

instances follows above pattern during execution.)

3.2 Observations

Our experimental results reveal the following observations:

(1) Is stress testing non-deterministic in a random way?
From the perspective of covering unserializable interleav-
ings, the answer is no. As shown in Figure 4, the majority
of unserializable interleavings exercised by different runs (or
different iterations for server programs) are the same.

(2) Can we rely on stress testing to cover the whole unse-
rializable interleaving space? The answer is no. As shown
in Figure 5, stress testing hardly exercises any new unseri-
alizable interleaving after the first few runs and leaves some
feasible unserializable interleavings uncovered in every ap-
plication. Actually, some feasible interleavings are never ex-
ercised in days of stress testing. These interleavings are ex-
actly the most obnoxious ones that usually hide difficult-to-
detect and tough-to-diagnose atomicity violation bugs.

(3) Why do some unserializable interleavings have low
probability to be exercised? Different interleavings have
completely different occurrence probabilities. For example,
Figure 4 shows that some interleavings are exercised in all
stress testing runs, i.e., about 100% occurrence probability.
On the contrary, some interleavings are never exercised dur-
ing days of experiment, i.e., almost 0% probability. Further
examination reveals the following major factors determin-
ing the probability: (i) program synchronizations, such as
lock and barrier, make some interleavings always happen
and some never happen; (ii) distances between related in-
structions: when two memory accesses from a thread are
close to each other, the chance is small for them to be un-
serializably interleaved by a remote conflicting access; (iii)
the number of dynamic instances of a static instruction: the
more dynamic instances a static instruction has, the more
likely that one of them will be unserializably interleaved.

3.3 Implications to exposing atomicity violation bugs

In summary, we can see that stress testing is not good at
exposing atomicity violation bugs because it cannot effec-
tively exercise the unserializable interleaving space. Without
perturbation to the execution, stress testing repeatedly tests
those high-probability unserializable interleavings. Atomic-
ity violation bugs can easily hide in those low-probability
unserializable interleavings and escape into production
runs. Such bugs are usually the most obnoxious, difficult-to-
catch and tough-to-diagnose concurrency bugs due to their
rare occurrences (without external control) [11, 12, 13, 27].

20 FFT . Barnes
£ 0eelloool0ual. el 2%
z n nnll inn nn 294 n A AalnnnAnn
o8 il il 580 aanllen
5 270

g6 S 60
=N % 50

5 =

[%] @ 30
52 gzo
So ‘ RARRREE 50

1.3 5 7 9 11131517 19 = 13 65 7 9 1113 15 17 19
Run Number Run Number
(a) SPLASH?2 applications
MySQL : 60 Apache

>140 =

E120 nn . M <%0

21004 |nmall ol cnon Hnnnll 8%

S 80 M M N30

3 S 20

T 60 =

= Q

2 40 210

5 20 20 Y 9

3 “5\,@@,39; aa«e@e@@
Y 13 5 7 9 11131517 19 s ‘9Q ‘?’@QV

Run Number Range fRequestNumber

(b) Server applications

Figure 4. Similarity between runs: each bar shows the number
of unserializable interleavings covered in each run. The dark part
shows the number of interleavings that are exercised by all runs,
i.e., having 100% occurrence frequency. The remaining (those with
less than 100% frequency) are shown on the white part.

2 FFT: Full Space Size=205 2 BARNES: Full Space Size=470
E20 E 200
515 S 150
S S
= 10 T 100 .o ooooooooooooooooy
2 5 g 50
c c
20 2 0
S 5 10 15 20 © 5 10 15 20
* Run Number * Run Number
(a) SPLASH?2 applications
;? MySQL: Full Space Size=2052 _: Apache: Full Space Size=297
E 400 E 100
3 300 3 75
S S
:‘—5 200 M E 50 b—o—o o o o o o o 4
¢ 100 o 25
= c
) 0 =)
S 0 5 10 15 20 © 250 500 750 1000
FH* **

Run Number SURGE Request Number

(b) Server applications

Figure 5. The accumulative set of exercised unserializable in-
terleavings grows slowly after the first few runs (Other applica-
tions that are not shown here also have similar behaviors. The full
space includes all potential unserializable interleavings. We will
discuss how to calculate that in Section 4.1).

4. CTrigger Phase One: Identify Target
Unserializable Interleavings to Focus on

Based on the observations described in previous sections,
we design a framework called CTrigger to expose hidden
atomicity violation bugs in concurrent programs. CTrigger
testing includes two phases for each concurrent program
and each test input (shown in Figure 2): at the first phase,
it conducts trace analysis to obtain a list of unserializable
interleavings for exploration; at the second phase, it explores
these unserializable interleavings through controlled testing
and exposes hidden atomicity violation bugs.

In this section, we discuss how CTrigger obtains the
target unserializable interleaving list through three steps
(marked as Step 1, 2 and 3 in Figure 2). We will discuss
the second phase in the next section.

Please note that we take similar assumptions with recent
work on concurrency testing [16, 22, 4]. We assume that
programmers have a test case suite and they go through
CTrigger’s phase one and two for each test input. We also
assume that, for one input, the code statements executed at
different runs are mostly, maybe not completely, the same.

4.1 Step 1: profiling and identifying potential
unserializable interleavings

In CTrigger, we use a few profiling runs with a given test in-
put to collect memory access information and conduct trace
analysis to build the initial list of unserializable interleav-
ings, which consists of potential (may not be all feasible)
unserializable interleavings.

In a program, not every memory access instruction has
its corresponding unserializable interleaving. Since an un-
serializable interleaving is composed of three accesses,
a p(receding)-access, a c(urrent)-access and an r(emote)-
access (refer to Section 2), as a first step, CTrigger goes
through every memory access instruction C' and checks
whether C has a p-access and an r-access. If so, we identify
interleaving-C' as a potential unserializable interleaving. In
our study, this step is based on profiling. Potentially, it can
also be done via static analysis.

4.2 Step 2: pruning infeasible interleavings

Among the potential unserializable interleavings, some can
never happen (i.e., r-access cannot execute between p and
c¢) due to synchronizations. It is important to prune them to
avoid the vain attempt to force them. In this section, we cat-
egorize all synchronization operations into two types, order
synchronization and mutual exclusion, and design pruning
algorithms accordingly (shown in Figure 6). Additionally,
CTrigger also prunes other types of infeasible interleavings
such as those caused by memory recycling.

4.2.1 Algorithms and implementations

Infeasible interleavings caused by order synchronization
An order synchronization operation, e.g., a barrier and a
thread create/join, forces certain order between events from

different threads. Therefore, if an r-access is separated from
p- and c- accesses by order synchronizations, it can never be
executed between them. By checking this condition, CTrig-
ger can prune out such infeasible interleavings. The process
is shown on Figure 6(b).

In our implementation, CTrigger records all barrier and

thread-create/join operations into the trace. In trace analysis,
CTrigger uses vector timestamps to maintain and compare
the order relationship between accesses. Note that vector
timestamps used in CTrigger are similar but different from
those used in conventional happens-before race detection al-
gorithms [19]: CTrigger does not push ahead vector times-
tamps at lock/unlock operations, because lock/unlock does
not force absolute orders.
Infeasible interleavings caused by mutual exclusion Syn-
chronization primitives like locks and transactions provide
mutual exclusion in concurrent programs. Considering this
type of synchronization, an r-access cannot interleave a p-
and a c-access iff there exist two mutual exclusive critical
regions that one holds the 7 and the other holds both the p
and c. Following this, we can prune infeasible interleavings
caused by mutual exclusions (Figure 6(c)).

Specifically, CTrigger records all lock/unlock operations

into the trace. During trace analysis, CTrigger maintains a
lock set for each shared memory access and uses that to
determine which critical section(s) the access belongs to.
Different from the lock-set race detection algorithm [20],
the lock-sets maintained by CTrigger record dynamic, rather
than static, lock instances that protect each access. In this
way, CTrigger can tell whether two accesses are inside the
same critical section.
Memory recycling issue CTrigger also considers infeasible
interleavings caused by memory address recycling. Specifi-
cally, two different program variables may be assigned to
one memory address during the course of execution due to
memory recycling. The instructions using such variables ac-
tually can never conflict with each other. CTrigger prunes
this type of infeasible interleavings by intercepting mem-
ory allocation and deallocation operations and differentiat-
ing memory locations allocated at different time.

4.2.2 Discussions

CTrigger works well for real-world server programs written
in C, as we will see in the experiments (Section 6). Most
infeasible interleavings can be correctly identified. However,
a small number of infeasible interleavings may be missed
due to un-identified customized synchronization operations.
This is handled at CTrigger’s second phase: when trying
to force an interleaving, CTrigger sets an expiration time
for each artificial delay. Once the time expires, CTrigger
gives up and continues exploring other interleavings. Since
most infeasible interleavings are pruned, the wasted effort is
tiny. Note that our current prototype can also be extended to
consider other synchronization operations, e.g. transactions.

Algorithm: FEASIBLE (C)
Input : A memory access instruction C

Algorithm: FEASIBLE_ORDER (p, c, r)
Input : Three memory accesses

Thread 1 Thread 2 and their vector-timestamps (VTM)

Algorithm: FEASIBLE_ME (p, c,r)
Input : Three memory accesses;

Thread 1 Thread 2 their critical section ID (CID);

Output: TRUE, if interleaving-C is feasible Output: TRUE if r can be executed between the guards to critical sections (LOCK)
FALSE, otherwise. R p and c; FALSE, otherwise. Output: TRUE if r can be executed between
P ’ ’ p and c; FALSE, otherwise.
for ¢ = dynamic instance of C C it (VIM (1) <VTM (p)))
p=PRED (c); return FALSE: co if (LOCK (p) N LOCK (c) == ®)
forr= REMOTE (c) P return TRUE;
if (FEASIBLE_ORDER (p, c,r) C H elsif (VTM (r) > VTM (c)) (' elsif (CID (p) = CID (c))
&& FEASIBLE_ME (p,c,r)) return FALSE; Mutual exclusive) return TRUE; -
return TRUE; e critical sections elsif (LOC}:e(tz)rr?TLROL% (€) NLOCK () 1= @)
return FALSE; isynchmnizauon ; else return TRUE; olse return FAfSE;

(a) algorithm to distinguish feasible
unserializable interleaving

(b) infeasible interleavings caused by
order synchronization and algorithm to prune them

(c) infeasible interleavings caused by
mutual exclusion and algorithm to prune them

Figure 6. CTrigger feasible interleaving analysis algorithm (PRED and REMOTE denote preceding access(es) and remote accesses(es),

respectively. They are collected in step 1.)

4.3 Step 3: ranking low-probability interleavings

As discussed in Section 3.2, different interleavings have dif-
ferent occurrence probabilities during stress testing. Some
interleavings rarely occur but have high likelihood to hide
atomicity violation bugs, especially those bugs that are hard
to reproduce for diagnosis. Therefore, it is desirable to iden-
tify and prioritize low-probability interleavings during test-
ing in order to effectively expose bugs.

In this section, we first discuss the major factors that
affect the probability of interleavings. We will then intro-
duce our probability ranking metrics and explain the de-
tailed ranking algorithms. Note that accurately calculating
the interleaving probability is difficult and also unnecessary.
CTrigger aims at using simple and yet effective metrics to
select low-probability interleavings.

4.3.1 Two major factors for occurrence probability

The occurrence probability of an unserializable interleaving
is affected by many factors. Among them, two factors are
most important: how close the two local accesses (p- and c-
access) are, and how far away a remote access (r-access) is
from the local accesses. Intuitively, when a p- and a c-access
are close to each other, the time window can be too small for
a remote access (to the same memory location) to interleave
in between. Similarly, when a remote access is far away from
the local accesses, the chance of an interleaving is small.
Based on the intuition above, we define the following two
simple metrics to estimate the probabilities and to rank the
unserializable interleavings (Figure 7).
¢ Local gap is the execution time distance between a p-
access and a c-access for an unserializable interleaving
(p,c,7) as defined in Section 2. This metric represents

Thread 1 Thread 2 Thread 1 Thread 2

critical
P P section
local gaplr local gap §
crTT I remote O 1 dr.eTOte
) istance
R v distance R
(a) (b)

Figure 7. Local gap and remote distance

the size of an interleavable window, i.e., the period where
an r-access can interleave between the p- and c-accesses.
¢ Remote distance is the time difference between an in-
terleavable window and an r-access. As remote distance
increases, the r-access gets farther from the interleavable
window and is less likely to interleave the p and c.

There is a big difference between the two metrics: local
gap is stable across runs as it only involves one thread; the
stability of remote distance highly depends on the nature of
applications. Currently, CTrigger uses the local gap as the
primary ranking metric, and refers to the remote distance
only when multiple interleavings have similar local gaps.

4.3.2 How to compute the metrics?

The main idea of CTrigger ranking mechanism is straight-
forward. CTrigger first analyzes the profiling-run traces and
gets the local gap for every unserializable interleaving. It
then generates a ranking based on the local gaps: the smaller
a local gap is, the higher an interleaving is ranked. Although
the basic idea is simple, there are several issues we need to
address:

(1) How to measure the distance? We use CPU perfor-
mance counter (accessible through RDTSC x86 assembly in-
struction) to measure local gaps. This scheme can include
the different latencies of different operations, such as disk
I/O, into gap information. Currently we do not consider the
effect of context switches in local gap measurement. Fortu-
nately, the time slice for preemptive context switches is very
large, so only few instructions will be affected.

(2) How to deal with synchronizations between local ac-
cesses? Synchronization operations would affect the effec-
tive interleavable windows and thereby should be consid-
ered when calculating local gaps. For example, when each
of p, ¢, and r accesses is protected by a same lock separately
(Figure 7(b)), the local gap should be the execution period
starting from the end of p’s critical section to the beginning
of ¢’s critical section, because r cannot be concurrently exe-
cuted with critical sections that contains p or c.

(3) How to deal with multiple instances of the same static
instruction? The more dynamic instances a static instruction
has, the more likely an interleaving would occur. Therefore,

CTrigger takes the summation of all local gaps from all the
dynamic instances of an unserializable interleaving.

At the end, CTrigger gets a list of likely feasible unseri-
alizable interleavings ranked based on estimated occurrence
probability. CTrigger further excludes the interleavings that
are already exercised during the profiling runs, and delivers
the remaining list to its next phase.

5. CTrigger Phase Two: Explore
Unserializable Interleaving Space

In this phase, CTrigger systematically controls the concur-
rent execution, in order to exercise the unserializable in-
terleavings identified and ranked in the phase one, start-
ing from the ones with the lowest (estimated) occurrence-
probabilities. As CTrigger records the execution control that
it makes during testing, once CTrigger succeeds to expose
an atomicity violation bug, it can reliably reproduce the bug
by retrying the same control, which helps diagnosis.
Execution control for one interleaving Unlike previous
work such as CHESS [16] and RaceFuzzer [22] that con-
trol thread schedule and execute only one thread at a time,
CTrigger controls execution by suspending a thread’s execu-
tion at appropriate places to increase the occurrence proba-
bility of the targeting unserializable interleaving. The period
of suspension is carefully controlled to avoid significant per-
formance degradation.

Specifically, for an unserializable interleaving, CTrigger
suspends corresponding threads before its c-access C' or r-
access R whenever necessary during the execution (Figure 8
(a)). This can help increase the local gap and decrease the
remote distance of the target unserializable interleaving, and
therefore increase its occurrence probability.

Although above ideas are intuitive, there are several effi-
ciency and effectiveness issues that we need to address:

(1) How long should the suspension be? An intuitive
answer is to suspend the execution until the interleaving
occurs, i.e., suspend c’s thread until r executes or suspend
r’s thread until ¢ is ready to execute. Unfortunately, the
unserializable interleaving may never occur, as shown in
Figure 8 (b). To avoid such endless suspension (deadlock),
CTrigger sets a time-out threshold for each suspension point.

(2) When should a thread be suspended? An intuitive
answer is to suspend a thread when it is about to perform the
c- or r- access. This intuitive solution has problems. First,
when more than one thread, e.g., two, execute the c instruc-
tion (Figure 8 (¢)), suspending both threads may decrease the
interleaving probability. Therefore, CTrigger only suspends
one thread at a time. Secondly, a static instruction might have
many dynamic instances. Suspending before every instances
can result in huge slow-downs. For efficiency, CTrigger sets
a threshold for the number of times that threads are sus-
pended for each unserializable interleaving.

(3) The danger of waiting inside a critical region Sus-
pending a thread inside critical sections might also block

[= injected artificial delay
Thread 1Thread 2 Thread 1 Thread 2

@ original execution spot, were there no noise \

Thread 1 Thread 2 Thread 1 Thread 2
P [

—
user-defined
C p

LR P }L
' order
R (o] synchro-
c R \ nization ¢ c
R

[+

R

(b) potential issue : (c) potential issue:
do not delay forever; do not look at multiple
R may never occur before C instances at one time

(a) CTrigger execution control

Figure 8. CTrigger’s execution control and design issues

other threads that are waiting to enter critical sections. Al-
though it will not lead to a deadlock, as CTrigger has an
expiration time for each suspension, it may prevent the tar-
geting interleavings from happening. CTrigger can address
this issue by suspending the execution right before the out-
ermost critical section that holds the targeting instruction.
(4) Context sensitivity The occurrence of some unse-
rializable interleavings depends on the program context or
thread context. That is, they only happen when the involved
instructions are executed upon certain stack frame or by cer-
tain threads. CTrigger provides the option to collect call-
stack and thread information from trace analysis, and use
such information in execution control.
Execution control for a list of interleavings Controlled
testing for a ranked list of unserializable interleavings is a
complex planning problem, because exploring one interleav-
ing might interfere with the exploration of another interleav-
ing. Facing this problem, CTrigger follows a simple princi-
ple — one interleaving at a time. After the targeting inter-
leaving occurs or the time expires, it moves on to the next
interleaving. Note that it does not mean one interleaving per
run. Each run can still explore multiple target interleavings.
As regards to which one to explore first, CTrigger pro-
vides two options. The first option is to simply go down the
ranked list and explore unserializable interleavings one by
one. While simple, it may be inefficient if a high-ranking
interleaving appears late during the execution. The second
option is to consider a set of interleavings with similar ranks
at a time. CTrigger suspends execution for whichever inter-
leavings whose involving instructions appear first. In our ex-
periments, we use the first option for a short list of unseri-
alizable interleavings (such as those in SPLASH?2 applica-
tions) and the second option for a long list of unserializable
interleavings (such as those in sever applications).
Implementation CTrigger controls execution via binary in-
strumentation using Pin [15]. CTrigger takes the list of un-
serializable interleavings provided by the CTrigger analysis,
and instruments every instruction that involves in at least one
unserializable interleaving. At run time, CTrigger intercepts
every dynamic instances of these instructions and injects de-
lay according to the above strategies.
Outcome Interpretation If a target unserializable inter-
leaving is successfully forced by CTrigger and the software
misbehaves (e.g., crashes, different results from testing ora-
cles, errors detected by bug detectors), a bug is then exposed.

[App. [Bugld.]| Bugdescription
Apache#1
Apache Apache#2
MySQL MySQL
Mozilla Mozilla*
PBZIP2 PBZIP2

Server crash during cache management
Log-file corruption

DB log missing database actions
Wrong results of JavaScript execution
Crash during file decompression

FFT FFT A problem in platform-dependent macro (introduced
LU LU by external macro providers) leading to atomicity
Barnes Barnes violation bugs that generate wrong outputs

Table 2. Evaluated applications and atomicity violation bugs
(*: Mozilla code is slightly modified to help compare the execution
result with the oracle.)

Once a bug is exposed, CTrigger can reliably reproduce it by
retrying the execution control that it added during the previ-
ous bug-triggering run. If a target unserializable interleav-
ing is successfully forced but the software does not misbe-
have, benign atomicity violations are identified. In this case,
programmers also gain more confidence about the software
quality. If the targeting interleaving does not happen after the
controlled execution, most likely, the interleaving is actually
infeasible due to customized synchronization operations that
are not identified in our trace analysis. Such information is
still useful, as it can help identify customized synchroniza-
tion operations which will help concurrent program analysis.

6. Evaluation
6.1 Methodology

To evaluate our ideas and CTrigger framework, we ap-
ply CTrigger on seven applications and evaluate how well
it can expose the tested atomicity violation bugs inside
these applications. These applications include three large
open-source server/client applications, i.e., Apache, MySQL
and Mozilla, one utility application, PBZIP2, and three
SPLLASH2 [26] benchmarks. We evaluate one or two real
world atomicity violation bugs in each application !. The
details are described in Table 1 (in Section 3.1) and Table 2.

The platform setting is the same as that in Section 3.1.
The selection of testing inputs for the server/client applica-
tions are based on the original bug reports on corresponding
forums (since CTrigger focuses on testing the interleaving
space, not the inputs, figuring out the bug-triggering inputs
is out of our scope).

Note that, for all bugs, CTrigger does not assume any
prior-knowledge about the bug-triggering interleavings. It
strictly follows the process described in previous sections
to systematically identify and exercise low-probability unse-
rializable interleavings. For instance, we did not know the
existence of the SPLASH?2 macro bugs in advance. They are
exposed by CTrigger under testing with the default inputs.

We evaluate the effectiveness, efficiency and reproducibil-
ity of CTrigger: whether the bugs can be exposed, how

! CTrigger exposed one previously unknown bug in the macro library of
SPLASH?2 introduced by external macro providers. CTrigger also found
four new buggy code regions in Apache (Figure 9), which have never been
reported.

Stress Stress testing

Pure- Stress testing running upon the Pin binary instrumentation

Pin framework. This is the baseline for the next three schemes, which are
all implemented by us upon Pin.

Sync- A bug exposing mechanism that injects delay at synchronization

based operations just like ConTest [3]. The released version of CHESS [16]
is similar, i.e. also sync-based.

Race- A bug exposing mechanism that forces suspect data races reported
based by a race detector. This is similar to RaceFuzzer [22].

Our implementation is based on Pin and the state-of-the-art
open-source Valgrind-lockset race detection tool [18]. It is extended
by our execution control to run multi-threads concurrently

instead of one thread at a time like in the original RaceFuzzer.
CTrigger | Our method presented in this paper

Table 3. Evaluated concurrency testing methods

quickly the bugs can be exposed, and how reliably the bugs
can be reproduced after their first manifestation. We com-
pare CTrigger with four other bug exposing mechanisms on
the same platform as shown in Table 3.

6.2 Efficiency and effectiveness

Bug exposing time Overall, as shown in Table 4, CTrigger
can expose all the tested atomicity violation bugs efficiently,
within 1-235 seconds. It is about 10 to over 1000 times
faster than all alternative testing methods for all tested bugs,
except for Apache#2, MySQL and PBZIP2 bugs where its
efficiency is comparable with Race-based testing. CTrigger
is especially effective for large server/client applications. For
example, CTrigger needs just 4 minutes to expose Apache
bug#1, which can not be exposed by any alternative testing
schemes within one full day. Actually, even after one week,
the bug was still not exposed with stress testing (Note that
this bug did appear during production runs and bothered the
Apache server users. That is why it was reported in Apache’s
bugzilla database and was later fixed by developers). All
these results indicate that CTrigger can greatly reduce the
testing time and make atomicity violation bug detection and
diagnosis more efficient.

Not surprisingly, Pure-Pin is similarly ineffective as stress
testing. Actually, since Pin framework slows down each test-
ing run, it takes longer time than stress testing to expose the
tested atomicity violation bugs.

Synch-based testing perturbs the execution at synchro-
nization points. It can help expose the PBZIP2 bug, because
this bug is caused by an unserializable access to a lock vari-
able and the program crashes at lock acquisition. However, it
cannot help expose the other seven bugs. These seven bugs,
like most real-world atomicity violation bugs, were intro-
duced when programmers forgot to do synchronization. As
a result, Synch-based testing slows down each testing run
without improving the chance of exposing these bugs.

As regards to Race-based testing, the eight tested bugs
can be divided into three categories. The first category in-
cludes Apache#2, MySQL, and PBZIP2. These bugs are
successfully caught by Valgrind as race suspects. Leverag-
ing the race detection results, Race-based testing can expose
these bugs in similar amount of time with CTrigger. It is still
slower than CTrigger for Apache#2, because the rareness-

Bugld.

Stress

[Pure-Pin | Synch-based | Race-based [[CTrigger | CTrigger Speedup* |

Apache#l > 1 week NO NO NO 235.0 > 2573.6 X
Apache#2 80604.0 NO 14976.0 126.0 63.6 1267.4 X
MySQL 287.0 5431.0 3796.0 35 2.0 143.5X
Mozilla NO NO NO 65759.6 66.2 > 1305.1 X
PBZIP2 NO NO 32.0 2.6 2.6 > 9391.3X
FFT 673.0 2284 NO NO 0.94 716.0 X
LU 188.6 3459 NO NO 4.2 449X
Barnes 248.7 NO NO NO 17.6 141X

Table 4. The time (unit: second) spent to expose the tested atomicity violation bugs (NO: the bug was not exposed in our maximum
testing time, which is one day for Apache, MySQL and Mozilla, half day for other small applications. *: compared with stress testing.)

N

- - - - 5
[Bugld. [Profiling Runs | CTrigger Analysis | Controlled Testing | 08 12 Apache #1
Apache#1 61.4 1.1 172.5 g = 10 Apache #2
Apache#2 61.4 1.1 1.1 © O ﬂ
MySQL 0.90 0.10 0.90 £z 8
Mozilla 8.0 1.0 572 €3 ©
PBZIP2 0.56 0.0006 2.01 55 4 . .
FET 052 03 019 = EL 5 non-buggy interleaving
LU 1.40 2.58 0.18 ® ‘ ‘ ‘ ‘ ‘
Barnes 4.88 7.81 4.94 100 200 300 400 500 600

Table 5. Breakdown of CTrigger bug exposing time (unit: sec)
(CTrigger analysis includes the three steps of setting up unserial-
izable interleaving space. The profiling and controlled testing are
conducted for every testing input in a systematic way with no man-
ual effort and no knowledge of the contained bug or used inputs.)

based ranking mechanism enables CTrigger to focus on
buggy-interleavings earlier than Race-based testing. The
second category includes Apache#1 and the three SPLASH2
bugs. Since Valgrind fails to detect these bugs, Race-based
testing cannot help expose them. This indicates that the bug
exposing capability of Race-based testing greatly relies on
the underlying race detector’s coverage. The last category is
the Mozilla bug. Interestingly, it is reported by Valgrind as
race suspects. However, the race between the reported rac-
ing instructions does not always lead to atomicity violation.
Enforcing the race is insufficient to expose the bug.
CTrigger bug exposing time breakdown Table 5 shows
the time spent in every step of CTrigger for exposing above
bugs. CTrigger trace collection and analysis take about 1 to
60 seconds. The tracing time mainly depends on how fast
the set of unserializable interleavings exercised by stress
testing becomes stable, and the analysis time is affected by
the execution’s memory footprint size.

CTrigger needs less than 5 seconds of controlled testing
to expose most of the tested atomicity violation bugs. Such
efficiency is the combined effects of CTrigger infeasible
interleaving pruning, ranking and execution control strate-
gies. In almost all cases, the bug-triggering interleavings are
ranked very high in the low-probability interleaving list (re-
fer to Section 6.6 for detailed ranking results). As a result,
the bugs are exposed very quickly in few seconds of con-
trolled testing. However, in Apache#1 and Mozilla, the bug-
triggering interleavings are ranked relatively low and thus
take longer testing time. In both cases, multiple benign atom-
icity violations are exercised and validated to be benign be-
fore the bugs get exposed.

testing time (sec)

Figure 9. Unserializable interleavings additionally explored
by CTrigger (The base line is the unserializable interleavings cov-
ered in profiling runs. The first 60 seconds are devoted to profiling
runs and have no additional coverage).

6.3 Unserializable interleaving coverage

CTrigger can effectively explore low-probability unserializ-
able interleavings, and improve the coverage within the un-
serializable interleaving space. Figure 9 shows the unserial-
izable interleavings additionally explored by CTrigger for
Apache compared with the stress testing (profiling runs).
These additionally covered interleavings include both bug-
triggering ones and non-bug-related ones, as denoted by Fig-
ure 9. Covering bug-triggering ones helps CTrigger to ex-
pose the two Apache bugs; covering non-bug-related ones
validates the correctness of these low-probability interleav-
ings. In contrast, the number of interleavings explored in
stress testing is saturated after around 60-70 seconds.

6.4 Reproducing a previously-exposed bug

As shown in Table 6, CTrigger can efficiently reproduce all
tested atomicity violation bugs, mostly within 5 seconds.
This high bug reproducibility provided by CTrigger can
greatly help programmers’ bug diagnosis. CTrigger achieves
the high reproducibility by recording and replaying its exe-
cution control. After an atomicity violation bug is exposed,
CTrigger immediately knows which unserializable interleav-
ing causes the manifestation of this bug. By repeating the
same execution control and enforcing the same unserializ-
able interleaving, CTrigger can easily repeat the bug.

Race- and Synch-based testing also record and repeat
the perturbation they inject during the bug exposing runs.
However, the perturbation record-and-replay scheme helps
the bug reproducing only when the original bug exposing is
directly caused by the perturbation (e.g., Race-based testing
for the Apache#2, MySQL, and PBZIP2 race bugs), instead

Bugld. Stress Pure- Sync- Race- CTrigger Speedup*

‘ . ‘ ‘ ‘ Pin ‘ based ‘ based ‘ ‘ X) ‘
Apache#1 - - - - 76.2 ok
Apache#2 NO - 11664 0.70 1.3 > 66461.5
MySQL 348.0 | 5239.7 10054 0.90 0.90 386.7
Mozilla - - - 5.44 4.39 wE
PBZIP2 — — 0.43 0.52 0.44 ok
FFT 1658 5633 — — 0.18 9211
LU 562.3 NO - - 0.18 3124
Barnes 165.4 - - - 0.45 367.6

Table 6. The time (unit: second) spent to reproduce an ex-
posed bug (NO: the bug was not reproduced within one day. *:
speedup is calculated based on stress testing. —: we do not mea-
sure reproducing time when the bug cannot be exposed even once
as shown in Table 4. ** we cannot compute speedup as the stress
testing never expose the corresponding bug even once.)

of by random effects. If the perturbation is not the root cause
of the bug exposing, repeating the perturbation cannot help
bug reproducing. For example, it still takes hours for Sync-
based testing to reproduce Apache#2 and MySQL bugs.
Finally, as we can see in the table, for stress testing
and Pure-Pin, reproducing a bug is always as difficult as
exposing it at the first time, because neither mechanism
records any interleaving information when a bug is exposed.

6.5 CTrigger infeasible interleaving pruning
Identifying infeasible interleavings is critical for CTrigger
to set a reachable testing goal. Table 7 shows that CTrigger
feasibility analysis is very effective: 37-96% of the potential
unserializable interleavings are successfully identified as in-
feasible. In order to examine the stability of the feasibility
analysis results, we execute each SPLASH?2 application for
20 times. The sets of feasible interleavings generated from
each of these 20 runs are exactly the same.

6.6 CTrigger low-probability interleaving ranking

We evaluate how CTrigger ranking mechanism helps im-
prove the efficiency of exposing hidden atomicity violation
bugs. For comparison, we applied an alternative scheme to
decide the order of controlled testing: first come first serve.
Specifically, we rank the unserializable interleavings based
on their occurrence order, rather than estimated occurrence
probability, during the execution. Using this ranking, we

Bugld. #of Mem-Acc | # of Potential # of Feasible Pruning
‘ ‘ ‘ Instructions Ur* ‘ Ul (%) ‘
Apache#1 #2 2551 297 157 47.1
MySQL 2257 113 25 77.9
Mozilla 2376 76 48 36.8
PBZIP2 149 93 25 73.1
FFT 311 205 21 89.8
LU 377 177 7 96.0
Barnes 716 470 143 69.6

Table 7. Effectiveness of infeasible interleaving pruning (* :
The two Apache bugs can be triggered using the same input, so we
just put one result here. MySQL is using a different input with that
in Section 3. The pruning percentage is based on the number of
potential unserializable interleavings.)

457.2 34.9

%10 Apache#l 7th out of 157
3 8 Apache#2 Ist out of 157
& 6 MySQL 1st out of 25
S 4 Mozilla 14th out of 48
E 5 PBZIP2 3rd out of 25

FFT 2nd out of 21

O‘\eﬁ\ SO N 1@ We®® LU Ist out of 7

Waowao‘\ W < ¥ Barnes 4th out of 143

(a) Speedups of CTrigger
over the alternative ranking
mechanism

(b) CTrigger rank of a
bug-triggering interleaving
in all feasible interleavings

Figure 10. Efficient CTrigger ranking

similarly apply the controlled testing and measure how long
it takes to expose the tested atomicity violation bugs.

As shown in Figure 10(a), CTrigger speeds up the alter-
native ranking method by up to 457.2 times in terms of the
interleaving exploration time to expose the tested bugs. This
shows that CTrigger’s ranking method is effective: the bug-
triggering interleavings are ranked high, as shown in Fig-
ure 10(b), using its local-gap based probability estimation.

7. Related Work

Concurrent program testing Several recent works [3, 4,
16, 22] on exposing concurrency bugs are closely related to
CTrigger. We have already discussed them in detail in Sec-
tion 1.2. There have also been many inspiring works [9, 24,
8, 28, 11] on designing interleaving coverage criteria to eval-
uate/measure the coverage of concurrency testing. Due to
complexity concerns, these work have not guided practical
testing to expose concurrency bugs in large programs. CTrig-
ger closely follows the guidance of the most recent work [11]
in this direction and has reasonably high coverage in the un-
serializable interleaving space that is inherently connected
with atomicity violation bugs.

How to generate input test cases for concurrent programs
has also been studied [23]. CTrigger can work together with
testing input generation techniques to improve the effective-
ness of concurrent program testing.

Concurrency bug detection Much research has been con-
ducted on detecting different types of concurrency bugs [19,
20, 29, 5, 13, 27, 7]. In general, exposing software bugs is
complementary to bug detection, as most dynamic bug de-
tectors require bugs to manifest during the bug detection
runs. Concurrency testing tools like CHESS, RaceFuzzer
and also our CTrigger can make hidden bugs manifest for
bug detectors to catch.

Concurrency bug avoidance and surviving Our work is
also related to concurrent programming model design like
transactional memory [10]. Even with transactional mem-
ory, atomicity violations can still happen. Therefore, the ef-
fectiveness and benefits of CTrigger still apply.

In recent Atom-Aid work [14], transactional memory is
cleverly leveraged to help survive atomicity violation bugs
that have escaped the in-house testing. Such production-run

surviving techniques and development-site exposing tech-
niques like CTrigger can well complement each other.

8. Conclusions and Future Work

This paper has presented a study of the interleaving char-
acteristics in stress testing and proposed a new method,
called CTrigger, to expose difficult-to-detect and tough-
to-diagnose atomicity violation bugs that are often hidden
in low-probability unserializable interleavings. CTrigger
achieves this by selecting representative interleavings, prun-
ing infeasible ones, identifying low-probability ones, and
controlling program execution to force them to occur.

Our experiments with seven real-world server/desktop
and scientific applications show that CTrigger is effective
at exposing atomicity violation bugs: it achieves 2 — 4 or-
ders of magnitude speedup in bug exposing and 2 — 5 or-
ders of magnitude speedup in bug reproducing (for diag-
nosis purpose) over stress testing. For some server applica-
tion bugs that need several days of stress testing to manifest,
CTrigger can expose them within 4 minutes. With the signifi-
cantly improved efficiency and reproducibility of bug expos-
ing, CTrigger well complements the existing techniques on
improving the quality of concurrent programs: bug detectors
can detect bugs more quickly and accurately; and developers
can save a lot of efforts in bug diagnosis.

Our work is only the beginning on addressing the impor-
tant problem of exposing atomicity violation bugs. It can be
improved by more accurate infeasible interleaving pruning,
better selection of rare interleavings, better planning in exer-
cising a group of interleavings, and extension to expose more
complicated atomicity violation bugs (e.g., multi-variable
involved bugs). Future work can also combine it with test
input generation and other interleaving testing mechanisms.

Acknowledgments

We thank the anonymous reviewers for useful feedback,
the Opera groups for useful discussions and paper proof-
reading. This research is supported by NSF CCF-0325603
grant, NSF CNS-0615372 grant, NSF CNS-0347854 (career
award), DOE Early Career Award DE-FG02-0SER25688,
and Intel gift grants.

References

[1] P. Barford, and M. Crovella. Generating representative Web
Workloads for network and server performance evaluation. In
ACM SIGMETRICS, June 1998

[2] B. Beizer. Software testing techniques, 2nd edition. New York:
Van Nostrand Reinhold, 1990

[3] A. Bron, E. Farchi, Y. Magid, Y. Nir and S. Ur. Applications of
synchronization coverage. In PPoPP, 2005

[4] O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, and S. Ur.
Multi-threaded Java program test generation. In /BM Systems
Journal, 2002

[5] C. Flanagan, and S. N. Freund. Atomizer: a dynamic atomicity
checker for multithreaded programs. In POPL, 2004

[6] C. Flanagan, and S. Qadeer. A type and effect system for
atomicity. In PLDI, 2003

[7] C. Hammer, J. Dolby, M. Vaziri, and F. Tip. Dynamic detection
of atomic-set-serializability violations. In /CSE, 2008

[8] M. J. Harrold, and B. A. Malloy. Data flow testing of
parallelized code. In ICSM, 1992

[9] P. V. Koppol, and K.-C. Tai. An incremental approach to
structural testing of concurrent software. In ISSTA, 1996

[10] J. R. Larus, and R. Rajwar. Transactional memory. Morgan &
Claypool, 2006

[11] S.Lu, W. Jiang, and Y. Zhou. A study of interleaving coverage
criteria. In FSE, 2007

[12] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes
— A comprehensive study of real world concurrency bug
characteristics. In ASPLOS, 2008

[13] S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: Detecting
atomicity violations via access interleaving invariants. In
ASPLOS, 2006

[14] B. Lucia, J. Devietti, K. Strauss, and L. Ceze. Atom-Aid:
Detecting and surviving atomicity violations. In ISCA, 2008

[15] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G.
Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood. Pin:
Building customized program analysis tools with dynamic
instrumentation. In PLDI, 2005

[16] M. Musuvathi, and S. Qadeer. Iterative context bounding for
systematic testing of multithreaded programs. In PLDI, 2007

[17] M. Musuvathi, S. Qadeer, T. Ball, and G. Basler. Finding
and reproducing heisenbugs in concurrent programs. In OSDI,
2008

[18] N. Nethercote, and J. Seward. Valgrind: A framework for
heavyweight dynamic binary instrumentation. In PLDI, 2007

[19] R. H. B. Netzer, and B. P. Miller. Improving the accuracy of
data race detection. In PPoPP, 1991

[20] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson Eraser: A dynamic data race detector for
multithreaded programs. In ACM TOCS, 1997

[21] Software Bug Contributed to Blackout. SecurityFocus.
http://www.securityfocus.com/news/8016

[22] K. Sen. Race directed random testing of concurrent programs.
In PLDI, 2008

[23] K. Sen, and G. Agha. Automated systematic testing of open
distributed programs. In FSE, 2006

[24] R. N. Taylor, D. L. Levine, and C. D. Kelly. Structural testing
of concurrent programs. In /IEEE Transactions on Software
Engineering, 1992

[25] M. Vaziri, F. Tip, and J. Dolby. Associating synchronization
constraints with data in an object-oriented language. In POPL,
2006

[26] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The
SPLASH-2 programs: characterization and methodological
considerations. In ISCA, 1995

[27] M. Xu, R. Bodik, and M. D. Hill. A serializability violation
detector for shared-memory server programs. In PLDI, 2005

[28] C.-S. D. Yang, A. L. Souter, and L. L. Pollock. All-du-path
coverage for parallel programs. In ISSTA, 1998

[29] Y. Yu, T. Rodeheffer, and W. Chen. RaceTrack: Efficient
detection of data race conditions via adaptive tracking. In
SOSP, 2005

