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1. INTRODUCTION

The simulation of human motion is of interest in computer graph-
ics, robotics, biomechanics, control theory, and other disciplines.
Among the many approaches proposed to synthesize human move-
ment, efforts that involve modeling the detailed anatomical struc-
ture and biomechanical characteristics of the human body, in con-
junction with the design of motion controllers ideally capable of
adapting to the body’s environment, have progressed steadily. De-
spite the progress, it remains a grand challenge to achieve anatom-
ically detailed ssimulation of human motion with impeccable real-
ism.

To synthesize redlistic, anatomically detailed human animations
in a physics-based manner, we must inevitably construct a compre-
hensive human model with synthetic hard (bone) and soft (flesh)
tissues properly coupled and simulated, and we must also design
sophisticated motor controllers in order for such a biomechanical
model to produce natural, lifelike human motions in its environ-
ment. In the work reported herein, we are especially interested in
aquatic environments for several reasons. On the one hand, the dy-
namically rich physical interaction of the human body with water
provides a fertile proving ground that confronts a biomechanical
human simulation/control system with interesting and difficult mo-
tor control problems. On the other hand, the aquatic environment is
somewhat forgiving in that it has a stabilizing effect, which leadsto
nonetheless interesting control scenarios that serve as good starting
points for designing more sophisticated human motor controllers
suitable for terrestrial environments. There are many elegant hu-
man motions possiblein the aquatic environment that deserve study
from the perspective of simulation and control, such as swimming
for locomotion, artistic synchronized swimming, water polo, div-
ing, etc.

1.1 Multiphysics Simulation Framework

We introduce a multiphysics simulation framework for reais
tic swimming within which we develop a detailed biomechani-
ca model of the human body and a biomimetically motivated
controller for synthesizing various swimming motions (Figure 1).
From the biomechanics perspective, our human model includes all
of the relevant articular bones and muscles, including 103 rigid
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Fig. 1: A biomechanically simulated/controlled human swimmer. (a) Closeup view of the biomechanical model rendered with transparent
skin to reveal the muscle geometries. (b) Biomechanical model immersed in simulated water. The autonomously controlled biomechanical

model simulates swimming in craw! (c) and butterfly (d) strokes.

bones plus a total of 823 muscle actuators, modeled as Hill-type,
uniaxial contractile musculotendinous actuators (MAs). We em-
ploy multi-rigid-body dynamics to simulate the articulated muscu-
loskeletal motions. To simulate the dynamic deformation of flesh
and muscles, we employ a lattice-based discretization of quasi-
incompressible elasticity augmented with active contractile muscle
terms. To simulate the physics of the water environment in which
the biomechanically simulated body floats, we employ an Eulerian
(Navier-Stokes) fluid simulation on a MAC grid and use a particle
level set method to track the surface of the water. Thus, our mul-
tiphysics simulator encompases rigid-body, deformable, and fluid
regimes.

We deal with the coupling between bone and flesh as well asthe
coupling between flesh and water in an interleaved manner, which
has several advantages over tight two-way couplings, as tightly
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coupling the articulated rigid bodies and deformable solid and sur-
rounding fluid would be challenging and costly. Interleaved cou-
pling makes our simulation framework much more flexible and it
alows for the reuse and improvement of the individual simulation
components.

1.2 Controlling the Biomechanical Human Model

A primary focus of this paper isthe challenging problem of control-
ling the biomechancial human model. In particular, we develop a
locomotion controller that produces realistic swimming; that is, we
present a successful approach to controlling the numerous muscle
actuators in order to synthesize naturally repetitive body motions
that enable our human model to produce self-propelled movement
in the simulated fluid environment.
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Fig. 2: Overview of our biomimetic human swimming simulation and control framework

We develop a biomimetic motor control system based on Cen-
tral Pattern Generators (CPGs), which produces activation signals
that drive the many Hill-type MAs. CPGs are biological neural net-
works capable of producing rhythmic outputseveninisolation from
motor and sensory feedback. They offer important advantages, such
as producing stable rhythmic motor patterns that are easily modu-
lated, which are very desirable in biomechanical control.

To control the virtual swimmer’s body, we design CPG networks
that produce muscle activation signals to induce muscle contrac-
tion forces that enable the human model to swim in various ways.
Each CPG unit associated with a muscle actuator is modeled as a
nonlinear dynamical oscillator with good stability and convergence
properties. The easy modulation property implies that only a few
parameters (such as amplitude, frequency, and phase) need be ad-
justed in order to achieve different swimming tasks.

1.3 Overview

Figure 2 illustrates the overall biomimetic structure of our human
swimming simulation and control framework. Our autonomous vir-
tual human comprises the biomechanical body model withitsskele-
tal, active muscular, and passive soft-tissue components, and a
brain model with a perception center that encompasses propriocep-
tion as well as the sensing of visual targets in the environment.
The motor center of the brain has a low-level CPG locomotion
controller (emulating biological CPG networks in the spinal cord)
and onethat produces higher-level motor signals such as swimming
style, speed, turn direction/sharpness, etc., taking the perceptual in-
formation into account. Given these motor signals as inputs, the
CPG networks automatically synthesize the desired muscle length
signals online, from which a proportional/derivative (PD) control

mechanism produces the associated activation levels that innervate
the muscles whose contractions actuate the biomechanical body.
Our multiphysics simulation framework simulates the biomechani-
cal human model along with the aquatic environment in which it is
Situated, as well as their physical interaction.

The remainder of this paper is organized asfollows: Section 2 re-
views relevant research in the graphics, robotics, and biomechanics
literature. Section 3 presents our multiphysics simulation frame-
work and, along with Appendix A, details all the simulation com-
ponents and the dynamic couplings among them. Section 4 de-
velops our CPG-based locomotion controller which works within
our simulation framework to produce natural swimming motions.
Section 5 reports our experiment results. Within our simulation
framework, our complex yet appropriately controlled human model
demonstrates coordinated swimming tasks. Section 6 discusses the
limitations of our work and, along with Appendix B, compares al-
ternative approaches for the key components of our simulation and
control framework. Section 7 presents conclusions and proposes
avenues for future work.

2. RELATED WORK

Our work builds upon relevant technical advances in computer
graphics, robotics, and biomechanics to model the biomechanical
characteristics of human body and emulate its motor control mech-
anisms, as well as to simulate the continuum mechanics of the rel-
evant solids and fluids.
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2.1 Biomechanical Human Modeling

In graphics, researchers have traditionally used joint torques to
drive articulated skeletal animation [Hodgins et al. 1995; Faloutsos
et a. 2001], in contrast to facial animation where muscle actua-
tors have been used for over two decades to synthesize expressions
[Leeet a. 1995]. As a means of improving realism, skeletal mus-
cle driven motion generation is receiving growing attention and re-
searchers have been developing increasingly sophisticated biome-
chanical models of individual body parts actuated by muscles; e.g.,
thearm [Albrecht et al. 2003; Tsang et a. 2005; Sueda et al. 2008],
leg [Komura et al. 2000; Dong et al. 2002; Wang et al. 2012], neck
[Lee and Terzopoulos 2006], trunk [Zordan et al. 2006] and of the
entire body [Nakamura et al. 2005]. The closest precedent to the
biomechanical human model that we have developed for the work
reported herein is the upper-body musculoskeletal model reported
in[Lee et a. 2009], which employed a one-way coupling between
flesh and bones. Our new model is a full-body comprehensive hu-
man model with two-way flesh-bone coupling.

2.2 Underwater Motion Simulation

Early work on simulating the underwater movements of aquatic
creatures adopted rather simple solid and fluid models[Tu and Ter-
zopoulos 1994; Yang et a. 2004]. As the simulation techniques
for solids and fluids advance, researchers have used increasingly
sophisticated fluid models and solid-fluid coupling techniques for
simulating underwater creatures. Kwatra et al. [2010] and Tan et
al. [2011] used a simplified articulated body representation and
two-way coupling between the body and afluid simulation to model
creatures locomoting in fluids. Lentine et al. [2011] employed ar-
ticulated skeletons with a deformable skin layer and two-way cou-
pling to afluid simulator to model figures moving in fluids. We too
employ an articulated (human) skeleton, but also include non-rigid
simulated flesh, and use two-way coupling between the deformable
skin and water to synthesize natural human aquatic motion.

2.3 Underwater Motion Control

Motion control in underwater creatures was pioneered by Tu and
Terzopoulos [1994]. Grzeszczuk and Terzopoulos [1995] achieved
optimal parameters for underwater gait behavior in rather simple
creatures through spatial-temporal optimization methods. Tan et
al. [2011] proposed a Covariance Matrix Adaptation based op-
timization to create reaistic swimming behavior for a given ar-
ticulated creature body. However, achieving sophisticated human
swimming styles through spatial-temporal optimization is a huge
challenge as one must define a tailored objective function for
each style. Other methods have therefore been devel oped to create
gait motions for more complex systems such as humans. Yang et
al. [2004] developed a layered strategy for human swimming con-
trol in which each control layer is procedurally modeled and empir-
ically tuned to create physics-based swimming motion in real time.
Kwatra et al. [2010] developed a swimming controller that com-
putes the necessary joint torques to follow captured human motions
that mimic swimming.

We develop a CPG-based locomation controller that, after learn-
ing a few parameters, automatically generates muscle contraction
signals that enable the human model to perform swimming mo-
tions. Our controller is able to achieve more complex tasks, such
as changing speed, turning, style transition, etc. CPGs are neu-
ral circuits found in both invertebrate and vertebrate animals that
can produce rhythmic patterns of neural activity without receiving
rhythmic inputs. Research in biology and robotics has shown that
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Fig. 5: Rendering of the muscul oskeletal model.

animal locomation isin large part based on CPGs [MacK ay-Lyons
2002; ljspeert 2008]. CPG models have aready been successfully
applied to robotic control. |jspeert et al. [2007] built an amphibi-
ous salamander robot controlled by CPG models and developed in
[Righetti and ljspeert 2006] a programmable CPG for the online
generation of periodic signals to control bipedal locomotion in a
simulated robot. Taga[1995] constructed a human locomotion con-
troller based on CPGs and Hase et al. [2003] optimized this con-
troller for 3D muscul oskeletal model s without activation dynamics.
The aforementioned efforts employ CPGs to generate desired joint
angle signals, whereas we use CPGs to generate the desired mus-
cle contractions. In our case, muscle contraction control has several
advantages over joint angle control, among them easy computation
of the activation levels needed to drive the contractile muscle actu-
ators using asimple feedback scheme, which makesit very suitable
for controlling our biomechanical human model.

3. SIMULATION AND COUPLING

Our multiphysics simulation framework for realistic human swim-
ming comprises three mutually coupled specialized component
simulators—an articulated multibody simulator for the skeleton, a
(Lagrangian) deformable solid simulator for the flesh and muscles,
and a (Eulerian) fluid simulator for the water. In this section, we
will detail how we employ these smulators in an interleaved man-
ner to animate swimming and related underwater motions using a
biomechanical human model.

3.1 Overview

For our purposes in this paper, we have developed a comprehen-
sive biomechanica human model with 103 rigid bones (comprising
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Fig. 4: Muscle geometries; superficial muscles on the |eft side of the body are not shown so asto reveal the deeper muscles beneath them.

163 articular degrees of freedom), including the vertebrae and ribs, based discretization of quasi-incompressible elastic material aug-
which is actuated by 823 muscles modeled as piecewise uniaxial, mented with active muscle terms. The inertial properties of the
Hill-type muscul otendinous actuators. The skeleton is simulated as skeleton are approximated from the dense volumetric physical pa-
an articulated, multibody dynamical system. The deformable 3D rameters of the soft-tissue elements—each bone’s inertial tensor is
muscle and passive flesh simulation is accomplished by a lattice- augmented by the inertial parameters of its associated soft tissues.
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The natural dynamics of the simulated human are induced by mus-
cle forces generated by the contractile actuators. The surrounding
water in which the biomechanical human model floats is simulated
according to the Navier-Stokes equations using an Eulerian fluid
solver. Our simulation framework implements the natural dynamic
couplings between the flesh and skeleton, as well as between the
deformable skin surface of the virtual human and the surrounding
water, in an interleaved manner.

3.2 Simulation Components

The Navier-Stokes equations for the water are simulated using an
Eulerian method on a MAC grid and the water surface is tracked
using the particle level-set method, which is in accordance with
[Enright et al. 2002] and [Foster and Fedkiw 2001].

The force generating characteristic of the MA is governed by a
linearized Hill-type muscle model. Assuming that the length of the
tendon is constant, we model a muscle force as the sum of forces
fromacontractile element (CE) and aparallel element (PE). The PE
force accounts for the passive elasticity of a muscle while the CE
represents the active muscle force that is controlled by the motor
neurons. Additional details can befound in [Lee et a. 2009].

The low-level control inputs of our biomechanical human model
comprise the activation levels of each muscle (Section 4 describes
how these muscle activation levels are determined). The activated
muscles generate forcesthat drive the skeletal simulation. Giventhe
contractile muscle forces, plus the externa forces from the flesh
simulation, we simulate the skeleton using the Articulated Body
Method [Featherstone 1987] to compute the forward dynamics in
conjunction with a backward Euler time-integration scheme as in
[Lee et a. 2009]. For the purpose of simulating the dynamic de-
formation of the flesh and muscles, we employ a lattice-based dis-
cretization of quasi-incompressible elasticity [Patterson et al. 2012]
augmented with active muscle terms. This approach avoids the need
for multiple meshes conforming to individual muscles and its reg-
ular structure offers significant opportunities for performance opti-
mizations. Appendix A provides additional implementation details.

3.3 Coupling Framework

We demonstrate our overall multiphysics coupling framework in
Figure 6. In Figure 6(a), circled numbers tag the simulated compo-
nents and interfaces that are involved in our couplings: [—ddnotes
the bones, [Cdanotes the flesh-bone interface, [—ddnotes the mus-
cles, [dehotesthe passiveflesh, [“dehotesthe skin-fluid interface,
and [Cdanotes the fluid. The following five steps, which are illus-
trated in Figures 6(b)—f), are repeated in every coupling cycle:

(1) The fluid forces are computed on the immersed skin surface
(Figure 6(b)).

(2) Given the fluid forces and the attachment spring forces from
the bones, the flesh simulation is advanced to equilibrium,
which also transfers the external forces acting on the skin sur-
face to the bones (Figure 6(c); the flesh-bone and skin-fluid
gaps are exaggerated for clarity and the white region inside the
flesh is hollow).

(3) Given the muscle forces and attachment spring forces from the
flesh, the skeleton simulation is then advanced to the next time
step (Figure 6(d); the dashed lines indicate the bone positions
from the previoustime step (Figure 6(c)) toillustrate the move-
ment of the bones).

(4) In the new bone configuration, the flesh simulation is again
advanced to equilibrium subject to the fluid forces and new
attachment spring forces from the bones (Figure 6(€)).
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(5) Findly, given the new skin surface, the fluid simulation is ad-
vanced to the next time step (Figure 6(f)).

The next two sections further detail the flesh-bone coupling and the
skin-fluid coupling.

3.4 Flesh-Bone Coupling

The deformable flesh tissueis coupled to therigid articul ated skele-
ton via a network of spring constraints, as has been previously
demonstratedin [Leeet a. 2009] and [McAdamset a. 2011]. From
the viewpoint of the volumetric flesh simulation such spring attach-
ments serve as soft constraints. They also serve in computing the
aggregate force and torque that the deformable flesh exerts on each
bone. In our framework, we further leverage this network of soft
congtraints to transfer to the bones the external forces applied to
the skin surface, in afashion that respects the deformable flesh that
intervenes between the bones and the points of application of the
external forces. After computing the distribution of external forces
on the skin, originating from any sources including fluid forces or
collisions, we solve for the quasi-static equilibrium shape of the de-
formable flesh. Once the steady state configuration has been com-
puted, the tension of the attachment springsis used to cal cul ate how
the skin-applied forces have been distributed to the bone-flesh inter-
face. From balance of force properties, we have strong guarantees
that the aggregate force applied by the attachment springs to the
bones (at equilibrium), independent of the material parameters of
the soft tissue or the stiffness of the attachment springs; of course,
different material parameters may have an effect on how broadly
a surface force gets spread out from the point of application. This
quasi-static process makes the force transfer from the flesh to the
bones occur instantaneously, which eliminates a potential lag while
it ensures that external forces acting on the skin will redisticaly
influence the articulated dynamics of the skeleton.

3.5 Skin-Fluid Coupling

The traditional method for coupling fluids and solids is for the
solid to prescribe velocity boundary conditions on the fluid and for
the fluid to provide force boundary conditions on the solid [Ben-
son 1992]. Accordingly, we also use the velocity of the human
body model skin surface to enforce the Neumann boundary con-
dition along the surface by making the normal component of the
fluid velocity equal to the normal component of the skin's veloc-
ity. To calculate the force of the fluid on the body, we would ide-
aly integrate over the skin surface the pressure computed by the
fluid solver. For incompressible flow, however, the pressure (which
serves as a pendty term in the Navier-Stokes computation) is both
stiff and noisy, hence more or less unreliable, as discussed in [Fed-
kiw 2002]. As a consequence, instead of demanding a higher de-
gree of accuracy in the pressure computation from our underlying
fluid simulation engine, we opt for a computation of fluid-to-solid
forces based on fluid vel ocities, which are generally more accurate
and temporally coherent. We use the relative velocity of the hu-
man skin with respect to the fluid to compute the hydrodynamic
force and we construct a new level-set representation of the water
to compute the buoyancy force. These forces due to the water act-
ing on the body are computed at each triangle of the skin surface
and applied to the skin as external forces.

LWwhile the velocity field is a primary state variable and limited in its tem-
poral variation due to momentum conservation, the pressure field is a by-
product of the projection of velocities into a divergence-free field, and may
exhibit notably higher temporal variance than the fluid velocities.
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(d)

Fig. 6: Overview of our multiphysics coupling framework

To compute the hydrodynamic force on each triangle of the skin
surface, we employ a simplified hydrodynamic force model simi-
lar to those found in [Tu and Terzopoulos 1994; Yang et al. 2004,
Lentineet a. 2011]:

f=min[0,—pA(n-v)|(n-v)n, (1)

where p is the density of the water, A is the area of the triangle,
n isits normal, and v is its velocity relative to the water. To en-
force the boundary conditionsin the fluid solver, we must make the
normal component of the fluid velocity equal to the norma com-
ponent of the solid's velocity, so we cannot use the fluid velocity
on the boundary cell to compute the relative velocity as its normal
component will be approximately zero. Instead, we accumulate ve-
locities of the fluid in neighboring cells around the boundary cell in
which the skin triangle lies and employ the mean local fluid veloc-
ity to compute the relative velocity v.

The total buoyancy force acting on the floating body equals the
weight of water displaced by the body. For underwater motion with
the body wholly immersed, the buoyancy approximately cancels
out the gravity force, since the average density of the human body
approximately equals the density of water. However, thisis not the

case for swimming where the human body is often only partialy
immersed. It is therefore important to compute buoyancy correctly
in order to simulate realistic dynamic trunk motions, especially for
the butterfly swimming style. We can represent the buoyancy as
B = —pgV, where g isthe gravitational acceleration, and V' isthe
volume of water displaced by the body. We may rewrite this as

B =g [ hn-jaa @

where S istheimmersed surface of the body model, n isthe normal

of the area element, j is the upward unit vector, and h denotes the
distance from the water surface to the area element. Thus, the force
on each triangle is ph An, g, where n,, is the y component of the
normal.

The main problem is how to compute h. A simple way is using
h = yo —ya, assuming that the water surfaceis at aconstant height
Yo, Where y 4 is the y coordinate of the triangle center. Unfortu-
nately, this will cause problems in the simulation, since the error
can become very large when there are significant waves on the sur-
face of the water. Even worse, the error will propagate back and
forth in the interleaved two-way coupling causing an oscillation in
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the motion of the floating body model. We tackle this problem by
constructing a pseudo water surface (PWS) at each time step, from
which we derive h. The portion of the human body that is below
thisPWSistreated as the submerged part. Constructing the PWSis
aminimal surface problem: We set Dirichlet boundary conditions
on the human skin surface, assigning a negative Dirichlet value for
skin regions that are immersed, and a positive value for areas of
skin that are not in contact with water. We perform a harmonic in-
terpolation between these values to reconstruct a zero-isocontour
of the levelset function that will extend the water inside the swim-
mer body. Once this PWS has been reconstructed, we approximate
the immersion depth by projecting the closest-surface-point vector
(—@V ¢, derived from the reconstructed level set) along the vertical
direction.

Another benefit of the PWS isthat we can useit for the purposes
of rendering. Generally the fluid and solid surfaces are not tightly
coupled because of the limit in the fluid simulation resolution, so
there is a noticeable gap between the water and the human body.
However, since the PWS eliminates the part that is submerged, we
can exploit it for rendering. The rendering results shownin Figure 1
are obtained using the PWS.

4. CPG LOCOMOTION CONTROL

The control of biomechanically simulated human swimming is a
challenging problem. Swimming motions have several distinctive
styles, such as butterfly and crawl, each of which requires the coor-
dinated rhythmic movement of multiple body parts.

CPGs are hiological neural networks capable of generating co-
ordinated patterns of rhythmic activity. Applied to biomechanical
locomotion control problems, CPG models offer important advan-
tages. Each individual MA in our biomechanical model hasits own
activation input. A CPG controls the temporally-varying length of
each MA and a PD feedback loop synthesizes the associated mus-
cle activation signal. The CPG produces the desired rhythmic mo-
tor control signal, which remains stable and smoothly varying even
for abrupt changes in the control parameters. The CPG's inherent
stability readily restores the biomechanical system’s normal rhyth-
mic action even after perturbative transients. Furthermore, CPG
modelstypically involve only afew parameters that modulate their
rhythmic outputs. Hence, a properly implemented CPG-based ap-
proach reduces the dimensionality of the motor control problem
such that higher-level locomotion controllers need produce only
task-oriented control signals rather than an unwieldy set of low-
level MA activation signals.

Our high-level swimming controller, which functions by modu-
lating the CPG oscillators, can be simplified by grouping muscles.
Asillustrated in Figure 7, we divide the muscles into 10 groups—
left trunk, right trunk, medial trunk, left neck, right neck, medial
neck, left arm, right arm, left leg, right leg—with the muscles in
each group sharing the same frequency and initial phase. We de-
termined empirically that these 10 muscle groups afford adequate
control over the limbs, trunk, and head to produce the swimming
strokes demonstrated in Section 5, and turns can beinduced by sim-
ply decreasing the activation amplitudes on one side of the body
relative to their counterparts on the other. Using a larger number
of muscle groups would afford finer control over body movement,
albeit with increased high-level controller complexity.

Our control architecture, whose details are presented in the fol-
lowing sections, resultsin an easy-to-use biomechanical swimming
controller with nontrivial functionality, such as changing speed,
turning, and transitioning between swimming styles.
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Fig. 7: Muscle grouping for CPG control. Each muscle group is shown in
adifferent color. The medial muscle groups of the trunk and neck are less
visible as they include deeper muscles.

4.1 Generating the Desired Muscle Lengths

We use [Virtua-swim 2007] as a reference for CPG learning. For
each swimming style, we manually select around 20 joint angle key
poses. As CPG learning needs to use both the first and second or-
der derivatives of the signals (see ([Gams et a. 2009])), we want
the muscle length data to be doubly differentiable. We first use cu-
bic B-splines to least-squares fit the joint angle training data. From
the desired kinematic skeleton motion, we determine the desired
muscle length over time between the two attachment points of each
muscle. We then fit B-splines to the desired muscle lengths, from
whose coefficients we can easily compute the first and second order
derivatives.

4.2 CPG Learning

Following [Gams et a. 2009], we use a group of nonlinear differ-
ential equationsto model each CPG unit. The following dynamical
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system specifies the attractor landscape of a 1-DOF signal trajec-
tory y oscillating around an attractor g:

N IR
z‘:Q(aZ(ﬂz(g*y)*Z)Jr%) ©

y=Qz, 4

where the U; = exp (h (cos (® — ¢;) — 1)) are N Gaussian-like
periodic kernel functions whose width is determined by 4 (in all
our smulations, weset N = 25 and h = 2.5N, and ¢; areequally
spaced between 0 and 27 in N steps). Here, y is the generated
signal, whose phase is @, and z is an intermediate variable that
describes the first order derivative of y. The fundamental (lowest
non-zero) frequency of the input signalsis 2. Since swimming is
a periodic motion, we can specify Q as 27 /T, where T is the pe-
riod of a swimming cycle. The positive constants «, and 3, are
setto o, = 8 and 3, = 2 for al our simulations. The amplitude
control parameter is r, which we set to » = 1. The above model
encapsulates several desirable properties in a single set of differ-
ential equations, such as the reproduction of the trajectories, easy
modulation, and robustness against perturbations.

We use Incremental Localy Weighted Regression (ILWR)
[Schaal and Atkeson 1997] to learn the weights w; in (3) asin
[Gamset al. 2009]. The CPG control model allows easy modulation
of the signals. Changing the parameter ¢ modulates the baseline of
the rhythmic movement. This smoothly shifts the oscillation with-
out modifying the signal shape. Madifying 2 and » changes the
frequency and the amplitude of the oscillations, respectively. Since
the dynamical system is of second order, even an abrupt change in
the parameters yields smooth variations in y. Although the length
trajectories of different muscles may share the same frequency, the
amplitudes and baseline may vary significantly. To enhance learn-
ability, we normalize and center each muscle length trgjectory to
bracket the signal between -0.5 and 0.5. For convenience, we aso
scale the period of the input signals to 1 sec, and then use r, g,
and €2 to modul ate the learned signals. In the learning process, we
smply setr =1, g =0, and Q = 2.

After learning the parameters, the desired muscle lengths can be
generated by numerically integrating (3) and (4) using the 4th-order
Runge-Kutta method. ® is updated as ® = ® + Q dt, where dt is
the time step.

Additional details about our CPG learning method are provided
in[Si 2013].

4.3 Muscle Control

After CPG synthesis of the desired muscle lengths, we use a first-
order damping approach to compute the activation level

a=K.(l—14)+Ka(l—la) 6)

for each muscle, where [ is the current muscle length, [, is the de-
sired muscle length, and K. and K, are elastic and damping coef-
ficients, respectively. In our experiments, wesimply set K. = 5/l
and K; = 0.005/ly, where [, is the rest length of the muscle.
The desired muscle length [,; is synthesized as y according to (4).
As muscle activation levels range between 0 and 1, we clamp the
computed activation a between 0 and 1. These generated activation
levels drive the Hill-type MAs that exert forces on the skeleton and
a so serve asinputs to the deformabl e flesh simulation.

4.4 High-Level Motion Control

Our CPG-based motion controller is easy to use. After having
learned severa types of locomotion modes, it can easily perform

them in any desired frequency, switch among modes, or achieve
some desired pose. It can also control motions for different muscle
groups separately; for instance, one arm can maintain some desired
pose while the remaining body parts carry out alocomotion pattern.

The frequency of the movement is controlled by €2, its phase by
®, and its amplitude by r. A static pose can be achieved by setting
r = 0. Not updating & maintains the current pose. To transition
from one motion to another, we simply switch the parameters (w;,
r, and g) of the CPG units. We can do this abruptly since, per (3)
and (4), thiswill merely cause abrupt changesin the second deriva-
tive of the desired muscle length signa 2. Because €2 directly in-
fluences ¢, so long as €2 is continuous, the desired muscle length
signals will be C*-smooth. This nice property yields natural mo-
tion transitions, which can be seen in the accompanying video. See
Section 5.2 for more about motion modulation.

5. EXPERIMENTS AND RESULTS

In this section, we present experimental results produced using our
simulation and control framework for various swimming styles as
well as changing orientation in the water environment. We refer the
reader to the animations in our accompanying video.

On a2.8GHz Intel i7 CPU with 4GB of RAM, the running times
of our swimming simulator range from 3 to 10 minutes per frame
with a 192 fps frame rate, depending on how many steps the adap-
tive time-stepping fluid and deformable solid simulators execute
per frame. The overhead for stepping the controller is negligible
compared to the cost of the physics simulation.

For all the experiments presented, we set the water density to
1000 kg/m? and the Young's modulus of the human flesh to 5 -
105 N/m? based on the results reported in [Agache et al. 1980].
The average density of our human model! is 980 kg/m?3.

5.1 Swimming Styles

We trained our CPG control system on two different swimming
styles—butterfly and crawl—which Figures 8 and 9 illustrate. The
accompanying demo video shows the simulation results for these
two swimming styles and compares them with video footage of a
real human swimmer.

5.2 Swimming Motion Modulation

In addition to generating coordinated swimming motion, our CPG
controller can also achieve more complex tasks by modulating a
few high-level parameters. Swimming speed can be modulated by
scaling the fundamental frequency 2 of each muscle group by the
same amount. In order to generate a natura transition, we can
change the frequency gradualy to the desired frequency. In the
accompanying video, we show the simulation result of increasing
the speed of the butterfly stroke by doubling the fundamental fre-
quency.

Swimming style transitions are accomplished by switching the
parameters (w;, r, and g) of the CPG unitsfrom one motionto adif-
ferent motion. The accompanying video shows a simulation result
in which the swimmer transitions from butterfly to crawl strokes.

To produce a left turn, the g of left neck and left trunk muscles
are decreased, the g of the right neck and right trunk muscles are
increased, and the r for all the neck and trunk musclesis decreased.
Right turns are produced by doing the opposite. To execute sharp
turns, we can also keep one arm straight by switching the CPG
parameters of that arm muscle group to a static pose (r = 0). Fig-
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Fig. 8: Butterfly swimming sequence

Fig. 9: Crawl swimming sequence

Fig. 10: Making a 90-degree right turn

ure 10 shows an animation sequence of the virtual swimmer making
a90-degree right turn.?

5.3 Anatomically Detailed Simulation

As aresult of our comprehensive biomechanical human modeling,
we can a so demonstrate the detailed, anatomically accurate anima-
tion of the swimmer’s body. In Figure 1(a)—(b) and in the accompa-
nying video, we reveal the deformation of the swimmer’s muscles
by rendering the skin translucently. Figure 11 shows two closeup
frames from the butterfly swimming simulation shown in the video
to demonstrate the bulging of the thigh muscles as they contract to
rotate the bones meeting at the knee.

6. DISCUSSION

Our interleaved approach to coupling fluid, flesh and skeletal com-
ponents provides usflexibility and versatility in constructing asim-
ulation and control framework from different algorithmic building
blocks and simulation algorithms. However, this interleaved cou-
pling reflects a conscious compromise in traits such as stability,

2Thisis similar to the turn demonstrated by the (real) swimmer just after
1:22 in the YouTube video at the following url: https://www.youtube.
com/watch?v=YLT7YEwUCwI
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Fig. 11: Contraction and bulging of the thigh muscles (from the butterfly
swimming simulation).

accuracy and performance potential. A fully coupled system with
deformable, fluid and rigid components would, in theory, enable
implicit integration techniques that would achieve stable simula-
tion whiletolerating larger time steps. In contrast, we take the most
time step-restrictive of the phasesinvolved (generally the fluid) and
use it to dictate the time step for the interleaved simulation cycle.
As control techniques mature and the val ue of easy testing of modu-
lar ssimulation components becomes less pronounced, a closer look
at tightly-coupled multiphysics/control system would certainly be

appropriate.
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In our biomechanical body model, forces due to the musculo-
tendinous actuators (MAS) plus the volumetric flesh simulation af-
fect the mechanical response of the skeleton. As the body pose
causes stretching or compression of the flesh, reactive flesh forces
act on the bones, which serves asimilar purpose asthe passive com-
ponents of the MAs. Additionally, since our flesh smulation incor-
porates a contractile component controlled by the MAs, it will also
transmit active flesh forces to the bones. Ideally, our volumetric
simulation would capture the entirety of forces due to flesh elas-
ticity and muscle contraction; however, producing accurate muscle
forces exclusively from the flesh simulation would require a high
degree of modeling accuracy, including detailed geometric and ma-
terial descriptions for tendons and connective tissues. Fortunately,
thisis unnecessary for synthesizing natural looking flesh deforma-
tions, where deep muscle force accuracy is not a crucial factor.
Conversely, while the MAs cannot model volumetric flesh defor-
mation, they produce biomechanically faithful and stable muscle
forces and torques. Our synergistic approach includes both MA and
volumetric force simulations, enabling each to compensate for lim-
itations in the other. In particular, the MAs contribute their actua-
tion forces to anatomically accurate bone attachment points, which
compensates for the actively contractile flesh forces that are spread
broadly over the bones in the absence of tendon models in the vol-
umetric flesh simulation, whereas the transfer to the bones of ex-
ternal forces acting on the skin relies on the volumetric flesh simu-
lation. Overall, our combined simulation system serves as a hybrid
approximation whose parameters are adapted to produce arealistic
biomechanical simulation of the muscul otendinous soft tissues and
skeletal substructure of the human body.

Appendix B provides a comparative discussion, based on addi-
tional experiments reported therein, of more conventiona alterna-
tives to the main simulation and control components of our frame-
work.

7. CONCLUSION AND FUTURE WORK

The main contributions of our reported research are as follows:

—We have introduced a multiphysics simulation and control
framework, interleaving an articulated multibody simulator, a
Lagrangian deformable solid simulator, and an Eulerian fluid
simulator, within whose scope is the redistic animation of a
sophisticated autonomous human model that is capable of con-
trolled swimming.

—We have developed a comprehensive biomechanical model of
the human body, which includes 103 rigid bones (compris-
ing 163 articular degrees of freedom) simulated as an articu-
lated, multibody dynamical system that is driven by 823 contrac-
tile muscles, modeled using piecewise uniaxia Hill-type mus-
culotendinous units, plus a muscle and passive flesh simula-
tion via an efficient volumetric finite element model of quasi-
incompressible elastic material augmented with active (contrac-
tile) muscle terms, as well as the appropriate two-way coupling
between the articul ated skeleton and deformable flesh.

—With regard to the control of the biomechanical human model
such that it produces complex coordinated locomotion, we de-
veloped a Central Pattern Generator (CPG) based controller that
generates muscle activation signals to induce appropriately co-
ordinated muscle contractions, governed by aperceptive, higher-
level, task-oriented motion controller.

Contemplating how people learn to swim, we are inspired to fur-
ther investigate thistopic in our future work. Humanslearn to swim

by first learning the movement of the limbs, perhaps by mimick-
ing swimming demonstrations. This corresponds to the supervised
learning process of our CPG system. After attaining command of
the kinematic pattern of a swimming style, one can improve one's
swimming skill through practice. This can be treated as an opti-
mization process. Similarly, we can try to optimize the learned pa-
rameters of our CPG system in order to improve our biomechani-
cal swimmer’s efficiency. Generally speaking, CPG models offer a
good substrate for automated learning and optimization algorithms.
Studying how the swimmer responds to perturbations will be an-
other interesting research direction. In particular, we can potentially
simulate how a human should perform swimming in a torrential
flow.

In the aguatic environment, we do not deal with balance, and
losing balance does not cause serious problems for underwater mo-
tion control in a calm water environment, since buoyancy approx-
imately cancels gravity and humans can efficiently control their
limbs to generate proper drag forces, thus making their motions
controllable. Under large perturbations, however, we are forced to
confront balance in order to produce controllable motion. Balance
is aso a very troublesome issue when controlling terrestrial mo-
tion. It will not suffice to simply apply our CPG controller to walk-
ing and running motions as we would need to develop a more so-
phisticated feedback scheme to handle the balance problem. Thisis
another interesting avenue for future work. Real world motion may
be a superimposition of locomotion and voluntary movements; e.g.,
waving hands while walking. Combining our CPG controller with
other controllers, such as the neuromuscular controller developed
in [Lee and Terzopoulos 2006], may be a viable approach to deal-
ing with abroader variety of motor tasks.

Energy efficiency, which is an important principle for human
motion, is not considered in our swimming controller. Since global
spatiotemporal optimization would be very computationally expen-
sive for our complex simulation, it is challenging to apply the en-
ergy efficiency principle directly. A possible solution and avenue
for future work would be to compute an energy-efficient controller
for asimplified system and then refine it for use in our simulation
framework.

APPENDIX

A. DEFORMABLE FLESH MODEL

The elastic flesh and musculature serves as an intermediary be-
tween the fluid environment and the articul ated skeleton. The shape
and deformation of the flesh volume is determined by the dynam-
ics of the articulated skeleton and the hydrodynamic forces act-
ing on the flesh surface. Naturally, the exact tissue behavior is aso
dependent on the geometric layout and material properties of the
heterogeneous array of tissue components that constitute the flesh.
Some of these material traits are encoded as static distributions of
scalar (e.g., €lastic moduli) or vector (e.g., muscle fiber orienta
tions) quantities; other material properties, such as the muscle ac-
tivations, are time-varying signals that are provided as input to the
flesh simulation along with the skeletal dynamics.

We capture the physical behavior of the human swimmer’s soft
tissue and muscul ature via numerical simulation of a discrete volu-
metric model. In designing this discrete representation, we commit
to certain simplifying assuptions and modeling approximations to
strike a reasonabl e balance between computational complexity, ge-
ometric resolution, biomechanical accuracy and robustness of sim-
ulation. First, we do not seperately model the skin asadistinct sim-
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ulation component; for the purposes of fluid-flesh interaction, the
contact surface is simply the boundary of the flesh volume and not
aseparate two-dimensional skin layer. The entirety of the space be-
tween the skin and bones is modeled as an elastic continuum; no
air-filled cavities or fluid volumes are explicitly simulated as such,
although we are free to modulate the elastic properties (e.g., stiff-
ness or compressibility) of such areas to reflect their macroscopic
behavior. In addition, the entire flesh volume is assumed to deform
as a connected continuum; that is, we do not alow dlip or separa-
tion in the interior of the flesh volume. Note that connective tissue
typicaly limits the extent of such motions, but there are parts of
anatomy where true sliding or separation is possible in the real hu-
man body.

A.1 Lattice Representation

We use a lattice-based representation (in essence, a lattice de-
former) to capture the shape of the deforming flesh volume. This
discrete model is simply created by superimposing a cubic lattice
(we use a lattice size of 10 mm) on a three-dimensional model of
the human body, and we discard al cells that do not intersect the
flesh volume (i.e., cells that are outside the body, or wholly within
solid bones). Of course, the |attice representation thus created does
not accurately capture the geometry of the flesh volume, but pro-
videsonly a“cubed” approximation. Despite this, we construct the
discrete governing equations so as to compensate for this geomet-
ric discrepancy. We discretize the elaticity equations following the
methodology of [Patterson et al. 2012], which captures the fact that
|attice elements on the boundary of the flesh volume are only frac-
tionally covered by elastic material. The jagged boundary of the
|attice-derived simulation volume aso differs from the actual skin
surface wherefluid forces are to be applied; we compensate for that
by embedding a high-resolution skin surface mesh within the cubic
lattice and distributing the forces acting on the skin surface into
the volumetric lattice by scaling with the appropriate embedding
weights as discussed in [Zhu et al. 2010]. Finally, since the contact
surface between the flesh and bones is not resolved in the lattice-
derived mesh, we use stiff zero rest-length springsto elastically at-
tach points sampled on bone surfaces to embedded locations in the
flesh simulation lattice, as detailed by [Lee et a. 2009; McAdams
et a. 2011].

We shall further discussthese modeling traits after presenting the
material model for the elastic flesh volume.

A.2 Flesh Constitutive Model

Dueto thelattice-based nature of our discretization, the exact shape
of the active muscles is not fully captured in our elastic flesh de-
former. Although it is possible to replicate the approach of [Patter-
son et al. 2012] and adapt a quadrature scheme to capture the lo-
calized presence of an active muscle within alattice cell, we found
it adequate to average the effect of the muscle with respect to each
lattice cell that it intersects, an approach similar to what [Lee et al.
2009] employed in their tetrahedral discretization. Specificaly, for
agiven cell of our lattice deformer, we compute the fractional cov-
erage d,,, € (0, 1] by the volume of muscle m that it contains; that
is, a cell that is fully inside the volume of muscle m would have
d,, = 1, while amuscle that covers only 25% of the cell in ques-
tion would yield d,,, = 0.25. We refer to these volume fractions as
muscle densities, which are used to modul ate the mechanical effect
that a given muscle has within each cell. We similarly define the
muscle fiber orientations f,,, on a per-cell basis to be the averaged
orientation of the muscle fiber field within the lattice element frac-
tion covered by muscle m. In practice, we compute both d,,, and
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f,, by Monte-Carlo integration, and the cost of this preprocessing
step is sustained only at the time of model creation.

We model the material response of the elastic flesh as a back-
ground isotropic substrate augmented by an additional response
due to the presence of muscles. Thus, our constitutive model is
defined as a weighted average of the constitutive models for pas-
sive flesh (¥,,) and contractile muscles (¥,,,), using the previously
computed muscle densities d,,,, asfollows:

\I/(F) = \I/p(F) + deqjm(F) + \IJU(F), (6)

which also includes a volume conservation term W, that forces the
flesh volume to remain near-incompressible.

The passive flesh is modeled as an isotropic, quasi-
incompressible Mooney-Rivlin  material [Bonet and Wood
1997], leading to the following formula for its strain energy
density ¥, in (6):

~ 1 - ~ ~
¥, = u1o(tr € = 3) + S pon [trQC —_¢. 06— 6] )

where C = FTF is the deviatoric Cauchy strain tensor, F =
J~1/3F is the deviatoric component of the deformation gradient,
and J = det F isthelocal volume change ratio.? We use the values
o1 = 0.06 MPaand 1119 = 0.02 MPafor the moduli of elasticity.
Each muscle that intersects a given lattice cell supplements
the cell’s strain energy density in (6) by the scaled contribution
dm ¥, (F). The term ¥, (F) is in fact only dependent on the
aong-fiber elongation or contraction, which is computed as

Am = HFfm H (8)

Following the formulation in [Blemker and Delp 2005], we define
¥, (A, ) indirectly, viaits derivative:

8\Ifm ()\m) o Omax
)\m )\opt

where omax = 0.3 MPa is the peak isometric stress of skeletal
muscle, Aopt = 1.4 is the optimal fiber contraction ratio for force
generation, and fiot is the normalized force-length function for the
passive and active components. We define fiot in accordance with
a standard Hill-type muscle model [Zajac 1988].

Both active (muscles) and passive (tendon, collagen, fat) compo-
nents of flesh are primarily composed of water and, consequently,
tissue deformation is largely incompressible. This is of particular
importance in our model for reproducing muscle bulging behav-
iors.* Specifically, the volume-conservation term in (6) is

Jiot(Am), 9)

W, (F) = S(J - 1), (10
with the bulk modulus « set to 100 MPain our model. As discussed

by Patterson et al. [2012], this stiff energy term, which exceeds the

3The operators ‘det’, ‘tr'’, and ‘-’ denote the determinant, trace (tr A =
> Aii), and double contraction (A : B = 37, ; A;; B;j;), respectively.
4Volume preservation in real human tissue is arather “global” effect, since
the displacement of blood volume and intercellular water is very much pos-
sible due to both pathological factors (e.g., swelling, circulatory anomalies)
as well as mechanical means (external pressure, body posture, etc). In our
approach we do not aim to resolve such complex, often viscoelastic effects,
and settle for ahyper-elastic quasi-incompressible material response, where
local volume preservation is enforced by means of a penalty term that dis-
courages volume change.
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stiffness of the non-volumetric elastic tissue response by more than

2 orders of magnitude, could severely hinder efficient numerical

solution by slowing down the convergence of iterative equilibrium

solvers. We follow the mixed formulation proposed in their work,

rewriting the constitutive model (6) as

a2p2
2k’

where Uy (F) = ¥, (F)+>",, d, ¥, (F) isthedeviatoric compo-
nent of the strain energy excluding response due to volume change.
This new strain energy introduces an auxiliary “pressure” variable
p, which in the limit of true incompressibility (x — oc) becomes a
Lagrange multiplier for the volume preservation constraint J = 1.
The strain energy (11) has the remarkable property that a saddle
point of U can occur at a configuration (x*, p*) iff x* is acritical
point (typically, a stable minimum) of the strain energy (6). How-
ever, (11) can remain extremely well conditioned, even for highly
incompressible materials, by tuning the free parameter o (whose
user-specified value does not affect the location of its saddle point
or the respective critical point of (6)). We found that a value of
a =~ \/k(uo1 + 110)/h leadsto convergence behavior comparable
to compressible materials, even when « is set to the high value of
100 MPa. Of course, we must employ an iterative method capable
of solving indefinite systems (we use MINRES in our implemen-
tation), since the strain energy (11) is nonconvex by design (i.e., it
has an indefinite Hessian). We refer the reader to [Patterson et al.
2012] for the discretization and numerical solution details.

U(F,p) = Uo(F) +ap(J — 1) — (12)

A.3 Skeletal Attachment Constraints

Similar to the approach of Lee et al. [2009], we employ elastic,
zero rest-length springs to anchor the deformable flesh to attach-
ment locations that are uniformly sampled on the surface of every
bone; in this way, the regular lattice need not strictly conform to
the exact surface shape of the skeletal bones. The soft nature of
these constraints also provides a degree of tolerance against mod-
eling or articulation inaccuracies that might lead to (limited) bone
intersection during motion, or extreme nonphysical compression
of flesh around jointsin tight contact. Additionally, the attachment
springs provide the mechanism by which external forces acting on
the skin surface propagate to the underlying skeletal bones. Techni-
cally, each discrete attachment location contributes a term () to
the (deviatoric) strain energy ¥y in (11), defined as follows:

O = WO — )3, (12)

where 3 isthe stiffness of the spring constraint (set proportional
to the contact area attributed to this attachment point), W) is a
weighted embedding (typicaly atrilinear interpolation map from
the lattice degrees of freedom) of aflesh anchor inside the deform-
ing lattice, and ¢(V) is the respective kinematic target on the bone
surface.

B. COMPARING ALTERNATIVE APPROACHES

Guided by biological and physical first principles, our framework
has embraced

(1) CPG-based locomotion control, sincethe CPG isabiologically
principled low-level motor control mechanism,

(2) muscle-based actuation, as contractile muscles are the biol ogi-
cally principled skeletal actuation mechanism,

(3) volumetric soft-tissue simulation as the biologically principled
fleshing approach, and

(4) detailed physical ssmulation of the environment, particularly
Navier-Stokes simulation of water, and its interaction with the
swimmer’s body.

In this appendix, we report on experiments aimed at assessing the
importance of these simulation/control components of our frame-
work relative to more conventional approachesin computer anima-
tion.

B.1 CPG Control vs. Splines

Spline-based animation methods have traditionally been more fa-
miliar to graphics practitioners than CPG-based animation control.
Infact, asdiscussed in Section 4.1, weinitially use cubic B-splines
to approximate the CPG training data. Asasimple aternative to the
CPG dynamical model, our continuous spline approximations may
be repeated in time to produce periodic muscle signalsto drive our
virtual swimmer. The accompanying video includes a comparison
of our CPG-controlled swimming against spline-controlled swim-
ming. Although the resultslook qualitatively similar for any partic-
ular swimming stroke in steady state, the spline techniqueis notice-
ably choppier than the CPG technique due to discontinuitiesin the
derivatives of the periodic spline functions across cycles, whereas
the muscle control signals generated by our CPGs are always C'*
smooth. Moreover, to switch from one swimming stroke to another,
the spline-based controller would have to transition carefully be-
tween numerous periodic spline functions, one per muscle. By con-
trast, our CPG muscle controllers can effect smooth transitions and
control swimming speed by simply switching and/or modifying the
values of afew parameters.

B.2 Muscle Actuation vs. Joint Torques

In human animation, joint-torque actuation methods have tradi-
tionally been more familiar to graphics practitioners than muscle-
based actuation. Since skeletal muscle forces, through (bone) mo-
ment arms, eventually produce torques at rotational joints in the
skeleton (but see [Lee and Terzopoul os 2008]), we can in principle
achieve similar animation results through equivalent joint-torque-
driven simulation. The accompanying video includes a comparison
of our muscle-actuated simulation against both inverse-dynamic
(ID) and PD joint-torque actuated simulation. In the case of swim-
ming, we obtained plausible results using joint-torque actuation,
but it was necessary to set high gains for the PD joint-torque con-
trollers accompanied with an order-of-magnitude smaller numeri-
cal time-step compared to the muscle-based approach. Moreover,
a further advantage of the latter is that modifying the parameters
of contractile muscles situated in anatomically accurate positions
isthe natural way to create nuanced biological motion patterns, in-
cluding pathological ones[Wang et a. 2012], aswell as of naturally
effecting realistic flesh deformations [Lee et al. 2009].

B.3 Flesh Simulation vs. Procedural Skinning

For fleshing human bodies, procedural skinning techniques have
traditionally been more familiar to graphics practitioners than vol-
umetric soft-tissue simulation. The accompanying video includes a
comparison of our deformable flesh simulation against a state-of -
the-art dual-quaternion skinning method [Kavan et a. 2008] with
bounded biharmonic weights [Jacobson et al. 2011]. The volumet-
ric flesh simulation and procedural skinning result in similar swim-
ming performances. From some but not al viewpoints, the skin de-
formation appears plausible as the body articulates, but it cannot
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Fig. 12: Swimming performance in the experimental scenarios.

[ Experiment | Average Swimming Speed (m/s) |
CPG muscle control 0.973
Spline muscle control 0.956
ID joint control 0.954
PD joint control 0.889
Simple skinning 0.916
Simple fluid model 0.614

Fig. 13: Thevirtual swimmer's average speed in the experimental scenarios.

adequately synthesize anatomically detailed deformations, such as
the muscle bulging effects demonstrated in Figure 11.

B.4 Fluid Simulation vs. Velocity Fields

Procedural velocity field techniques have traditionally been easier
for graphics practitioners to use than detailed physics-based fluid
simulation (e.g. [Tu and Terzopoulos 1994]). The accompanying
video includes a comparison of our Navier-Stokes water simula-
tion approach against the use of a static, zero-velocity water field,
employing the same flesh-water force coupling method for both.
With the same amount of muscle effort, the virtual swimmer swims
significantly faster in the simulated fluid environment compared to
the zero-velocity field. Moreover, fluid simulation provides realis-
tic wave, splash, and other effects that are entirely absent with the
|atter.

B.5 A Comparison of Swimming Performances

Figure 12 presents a quantitative comparison of the performance of
our virtual swimmer in the experimental scenarios described in the
previous sections of this appendix, by plotting the distance traveled
by the swimmer’s pelvis over time. Thetablein Figure 13 indicates
the associated average swimming speeds. In the figure and table,
CPG muscle control refers to our experimental setting developed
in the main text of this paper—i.e. using CPG locomotion control
to synthesize muscle-length signals for the muscle-driven biome-
chanical body simulation with simulated flesh situated in simulated
water. Under this same simulation scenario, spline muscle control
refers to the use of B-splines to synthesize the muscle-length sig-
nals (Section B.1), ID joint control refers to inverse-dynamics con-
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trolled joint-torque driven simulation (Section B.2), and PD joint
control refersto PD-controlled joint-torque driven simulation (Sec-
tion B.2). Smple skinning refers to using the dual quaternion skin-
ning approach (Section B.3). Smple fluid model refers to using a
zero-velocity field (Section B.4).

The figure and table reveal that the virtual swimmer swims most
efficiently in our original experimental scenario. The swimmer can
achieve similar swimming performances in the other experimental
settings, except when the simulated fluid model is replaced by a
zero-velocity field, which result in significantly lower efficiency.
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