Introduction to Computer Engineering

CS/ECE 252, Fall 2012
Prof. Guri Sohi
Computer Sciences Department
University of Wisconsin – Madison
Chapter 5
The LC-3
Instruction Set Architecture

ISA = All of the *programmer-visible* components and operations of the computer

- memory organization
 - address space -- how many locations can be addressed?
 - addressibility -- how many bits per location?

- register set
 - how many? what size? how are they used?

- instruction set
 - opcodes
 - data types
 - addressing modes

ISA provides all information needed for someone that wants to write a program in *machine language* (or translate from a high-level language to machine language).
LC-3 Overview: Memory and Registers

Memory

- address space: 2^{16} locations (16-bit addresses)
- addressability: 16 bits

Registers

- temporary storage, accessed in a single machine cycle
 - accessing memory generally takes longer than a single cycle
- eight general-purpose registers: R0 - R7
 - each 16 bits wide
 - how many bits to uniquely identify a register?
- other registers
 - not directly addressable, but used by (and affected by) instructions
 - PC (program counter), condition codes
LC-3 Overview: Instruction Set

Opcodes
• 15 opcodes
• *Operate* instructions: ADD, AND, NOT
• *Data movement* instructions: LD, LDI, LDR, LEA, ST, STR, STI
• *Control* instructions: BR, JSR/JSRR, JMP, RTI, TRAP
• some opcodes set/clear *condition codes*, based on result:
 ➢ N = negative, Z = zero, P = positive (> 0)

Data Types
• 16-bit 2’s complement integer

Addressing Modes
• How is the location of an operand specified?
• non-memory addresses: *immediate, register*
• memory addresses: *PC-relative, indirect, base+offset*
Operate Instructions

Only three operations: ADD, AND, NOT

Source and destination operands are registers

- These instructions do not reference memory.
- ADD and AND can use “immediate” mode, where one operand is hard-wired into the instruction.

Will show dataflow diagram with each instruction.

- illustrates when and where data moves to accomplish the desired operation
NOT (Register)

Note: Src and Dst could be the same register.
ADD/AND (Register)

ADD

```
15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0
0 0 0 1 Dst Src1 0 0 0 Src2
```

AND

```
15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0
0 1 0 1 Dst Src1 0 0 0 Src2
```

This zero means “register mode”
ADD/AND (Immediate)

ADD

```
15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0
0 0 0 1 | Dst | Src1 | 1 | Imm5
```

AND

```
15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0
0 1 0 1 | Dst | Src1 | 1 | Imm5
```

Note: Immediate field is sign-extended.
Using Operate Instructions

With only ADD, AND, NOT…

• How do we subtract?

• How do we OR?

• How do we copy from one register to another?

• How do we initialize a register to zero?
Data Movement Instructions

Load -- read data from memory to register
- **LD**: PC-relative mode
- **LDR**: base+offset mode
- **LDI**: indirect mode

Store -- write data from register to memory
- **ST**: PC-relative mode
- **STR**: base+offset mode
- **STI**: indirect mode

Load effective address -- compute address, save in register
- **LEA**: immediate mode
- *does not access memory*
PC-Relative Addressing Mode

Want to specify address directly in the instruction

• But an address is 16 bits, and so is an instruction!
• After subtracting 4 bits for opcode
 and 3 bits for register, we have 9 bits available for address.

Solution:

• Use the 9 bits as a signed offset from the current PC.

9 bits: $-256 \leq \text{offset} \leq +255$

Can form any address X, such that: $\text{PC} - 256 \leq X \leq \text{PC} + 255$

Remember that PC is incremented as part of the FETCH phase;
This is done before the EVALUATE ADDRESS stage.
LD (PC-Relative)

```
LD 0 0 1 0 Dst PCoffset9
```

Diagram:
- **PC**
- **Instruction Reg**
- **Register File**
- **Memory**
- **Sext**
- **IR[8:0]**
- **MAR**
- **MDR**

Arrows indicating the flow of data between these components.
ST (PC-Relative)

ST 0 0 1 1 Src PCoffset9

Diagram showing the flow of execution for the ST (PC-Relative) instruction, with connections to PC, Instruction Register, Sext, Register File, MAR, MDR, and Memory.
Indirect Addressing Mode

With PC-relative mode, can only address data within 256 words of the instruction.
 • What about the rest of memory?

Solution #1:
 • Read address from memory location, then load/store to that address.

First address is generated from PC and IR (just like PC-relative addressing), then content of that address is used as target for load/store.
LDI (Indirect)

LDI 1 0 1 0 Dst PC offset 9

1. Instruction Reg
2. Sext
3. IR[8:0]
4. MAR
5. MDR
6. Register File
7. Memory
8. PC
STI (Indirect)

STI 1 0 1 1 Src PCoffset9
Base + Offset Addressing Mode

With PC-relative mode, can only address data within 256 words of the instruction.

• What about the rest of memory?

Solution #2:

• Use a register to generate a full 16-bit address.

4 bits for opcode, 3 for src/dest register, 3 bits for base register -- remaining 6 bits are used as a **signed offset**.

• Offset is *sign-extended* before adding to base register.
LDR (Base+Offset)

\[
\begin{array}{c|c|c|c}
\text{LDR} & 0 & 1 & 1 & 0 & \text{Dst} & \text{Base} & \text{offset6}
\end{array}
\]

Diagram showing the process of LDR (Base+Offset) with the instruction register (IR[5:0]), Sext, register file, MAR, MDR, and memory.
STR (Base+Offset)

STR 0 1 1 1 Src Base offset6

Register File

Memory

Instruction Reg

IR[5:0]

Sext

Register File

Base

+ ②

MAR

MDR

Memory
Load Effective Address

Computes address like PC-relative (PC plus signed offset) and stores the result into a register.

Note: The address is stored in the register, not the contents of the memory location.
LEA (Immediate)

LEA | 1110 | Dst | PCoffset9
Example

<table>
<thead>
<tr>
<th>Address</th>
<th>Instruction</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>x30F6</td>
<td>1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1</td>
<td>$R1 \leftarrow PC - 3 = x30F4$</td>
</tr>
<tr>
<td>x30F7</td>
<td>0 0 0 1 0 1 0 0 0 1 1 0 1 1 1 0</td>
<td>$R2 \leftarrow R1 + 14 = x3102$</td>
</tr>
</tbody>
</table>
| x30F8 | 0 0 1 1 0 1 0 1 1 1 1 1 1 1 0 1 1 | $M[PC - 5] \leftarrow R2$
$M[x30F4] \leftarrow x3102$ |
| x30F9 | 0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 0 | $R2 \leftarrow 0$ |
| x30FA | 0 0 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 1 | $R2 \leftarrow R2 + 5 = 5$ |
| x30FB | 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 0 | $M[R1+14] \leftarrow R2$
$M[x3102] \leftarrow 5$ |
| x30FC | 1 0 1 0 0 1 1 1 1 1 1 1 0 1 1 1 | $R3 \leftarrow M[M[x30F4]]$
$R3 \leftarrow M[x3102]$
$R3 \leftarrow 5$ |

opcode
Control Instructions

Used to alter the sequence of instructions (by changing the Program Counter)

Conditional Branch
- branch is *taken* if a specified condition is true
 - signed offset is added to PC to yield new PC
- else, the branch is *not taken*
 - PC is not changed, points to the next sequential instruction

Unconditional Branch (or Jump)
- always changes the PC

TRAP
- changes PC to the address of an OS “service routine”
- routine will return control to the next instruction (after TRAP)
Condition Codes

LC-3 has three condition code registers:

- **N** -- negative
- **Z** -- zero
- **P** -- positive (greater than zero)

Set by any instruction that writes a value to a register (ADD, AND, NOT, LD, LDR, LDI, LEA)

Exactly **one** will be set at all times
- Based on the last instruction that altered a register
Branch Instruction

Branch specifies one or more condition codes. If the set bit is specified, the branch is taken.

- PC-relative addressing: target address is made by adding signed offset (IR[8:0]) to current PC.
- Note: PC has already been incremented by FETCH stage.
- Note: Target must be within 256 words of BR instruction.

If the branch is not taken, the next sequential instruction is executed.
What happens if bits [11:9] are all zero? All one?
Using Branch Instructions

Compute sum of 12 integers.
Numbers start at location x3100. Program starts at location x3000.

R1 ← x3100
R3 ← 0
R2 ← 12

R2=0?

NO

R4 ← M[R1]
R3 ← R3+R4
R1 ← R1+1
R2 ← R2-1

YES
Sample Program

<table>
<thead>
<tr>
<th>Address</th>
<th>Instruction</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>x3000</td>
<td>1 1 1 0 0 0 1 0 1 1 1 1 1 1 1 1</td>
<td>R1 ← x3100 (PC+0xFF)</td>
</tr>
<tr>
<td>x3001</td>
<td>0 1 0 1 0 1 1 0 1 1 1 0 0 0 0 0</td>
<td>R3 ← 0</td>
</tr>
<tr>
<td>x3002</td>
<td>0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0</td>
<td>R2 ← 0</td>
</tr>
<tr>
<td>x3003</td>
<td>0 0 0 1 0 1 0 0 1 0 1 0 1 1 1 1</td>
<td>R2 ← 12</td>
</tr>
<tr>
<td>x3004</td>
<td>0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1</td>
<td>If Z, goto x300A (PC+5)</td>
</tr>
<tr>
<td>x3005</td>
<td>0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0</td>
<td>Load next value to R4</td>
</tr>
<tr>
<td>x3006</td>
<td>0 0 0 1 0 1 1 0 1 1 0 0 0 0 0 1</td>
<td>Add to R3</td>
</tr>
<tr>
<td>x3007</td>
<td>0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1</td>
<td>Increment R1 (pointer)</td>
</tr>
<tr>
<td>X3008</td>
<td>0 0 0 1 0 1 0 0 1 0 1 1 1 1 1 1</td>
<td>Decrement R2 (counter)</td>
</tr>
<tr>
<td>x3009</td>
<td>0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 0</td>
<td>Goto x3004 (PC-6)</td>
</tr>
</tbody>
</table>
JMP (Register)

Jump is an unconditional branch -- *always* taken.
- Target address is the contents of a register.
- Allows any target address.
TRAP

Calls a service routine, identified by 8-bit “trap vector.”

<table>
<thead>
<tr>
<th>vector</th>
<th>routine</th>
</tr>
</thead>
<tbody>
<tr>
<td>x23</td>
<td>input a character from the keyboard</td>
</tr>
<tr>
<td>x21</td>
<td>output a character to the monitor</td>
</tr>
<tr>
<td>x25</td>
<td>halt the program</td>
</tr>
</tbody>
</table>

When routine is done, PC is set to the instruction following TRAP. (We’ll talk about how this works later.)
Another Example

Count the occurrences of a character in a file

- Program begins at location x3000
- Read character from keyboard
- Load each character from a “file”
 - File is a sequence of memory locations
 - Starting address of file is stored in the memory location immediately after the program
- If file character equals input character, increment counter
- End of file is indicated by a special ASCII value: EOT (x04)
- At the end, print the number of characters and halt
 (assume there will be less than 10 occurrences of the character)

A special character used to indicate the end of a sequence is often called a sentinel.

- Useful when you don’t know ahead of time how many times to execute a loop.
Flow Chart

Count = 0
(R2 = 0)

Ptr = 1st file character
(R3 = M[x3012])

Input char from keybd
(TRAP x23)

Load char from file
(R1 = M[R3])

Done?
(R1 ?= EOT)

Match?
(R1 ?= R0)

Incr Count
(R2 = R2 + 1)

Load next char from file
(R3 = R3 + 1, R1 = M[R3])

Convert count to ASCII character
(R0 = x30, R0 = R2 + R0)

Print count
(TRAP x21)

HALT
(TRAP x25)

NO

YES
Program (1 of 2)

<table>
<thead>
<tr>
<th>Address</th>
<th>Instruction</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>x3000</td>
<td>0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0</td>
<td>$R2 \leftarrow 0$ (counter)</td>
</tr>
<tr>
<td>x3001</td>
<td>0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0</td>
<td>$R3 \leftarrow \text{M}[\text{x3102}]$ (ptr)</td>
</tr>
<tr>
<td>x3002</td>
<td>1 1 1 1 0 0 0 0 0 1 0 0 0 1 1</td>
<td>Input to R0 (TRAP x23)</td>
</tr>
<tr>
<td>x3003</td>
<td>0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0</td>
<td>$R1 \leftarrow \text{M}[R3]$</td>
</tr>
<tr>
<td>x3004</td>
<td>0 0 0 1 1 0 0 0 0 1 1 1 1 1 1 0 0</td>
<td>$R4 \leftarrow R1 - 4$ (EOT)</td>
</tr>
<tr>
<td>x3005</td>
<td>0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0</td>
<td>If Z, goto x300E</td>
</tr>
<tr>
<td>x3006</td>
<td>1 0 0 1 0 0 1 0 0 1 1 1 1 1 1 1</td>
<td>$R1 \leftarrow \text{NOT R1}$</td>
</tr>
<tr>
<td>x3007</td>
<td>0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1</td>
<td>$R1 \leftarrow R1 + 1$</td>
</tr>
<tr>
<td>X3008</td>
<td>0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0</td>
<td>$R1 \leftarrow R1 + R0$</td>
</tr>
<tr>
<td>x3009</td>
<td>0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1</td>
<td>If N or P, goto x300B</td>
</tr>
</tbody>
</table>
Program (2 of 2)

<table>
<thead>
<tr>
<th>Address</th>
<th>Instruction</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>x300A</td>
<td>0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 1</td>
<td>R2 ← R2 + 1</td>
</tr>
<tr>
<td>x300B</td>
<td>0 0 0 1 0 1 1 0 1 1 1 0 0 0 0 1</td>
<td>R3 ← R3 + 1</td>
</tr>
<tr>
<td>x300C</td>
<td>0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0</td>
<td>R1 ← M[R3]</td>
</tr>
<tr>
<td>x300D</td>
<td>0 0 0 0 1 1 1 1 1 1 1 0 1 1 0</td>
<td>Goto x3004</td>
</tr>
<tr>
<td>x300E</td>
<td>0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0</td>
<td>R0 ← M[x3013]</td>
</tr>
<tr>
<td>x300F</td>
<td>0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0</td>
<td>R0 ← R0 + R2</td>
</tr>
<tr>
<td>x3010</td>
<td>1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1</td>
<td>Print R0 (TRAP x21)</td>
</tr>
<tr>
<td>x3011</td>
<td>1 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1</td>
<td>HALT (TRAP x25)</td>
</tr>
<tr>
<td>X3012</td>
<td>Starting Address of File</td>
<td></td>
</tr>
<tr>
<td>x3013</td>
<td>0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0</td>
<td>ASCII x30 (‘0’)</td>
</tr>
</tbody>
</table>
LC-3
Data Path
Revisited

Filled arrow = info to be processed.
Unfilled arrow = control signal.
Data Path Components

Global bus

• special set of wires that carry a 16-bit signal to many components
• inputs to the bus are “tri-state devices,” that only place a signal on the bus when they are enabled
• only one (16-bit) signal should be enabled at any time
 ➢control unit decides which signal “drives” the bus
• any number of components can read the bus
 ➢register only captures bus data if it is write-enabled by the control unit

Memory

• Control and data registers for memory and I/O devices
• memory: MAR, MDR (also control signal for read/write)
Data Path Components

ALU

• Accepts inputs from register file and from sign-extended bits from IR (immediate field).
• Output goes to bus.
 ➢ used by condition code logic, register file, memory

Register File

• Two read addresses (SR1, SR2), one write address (DR)
• Input from bus
 ➢ result of ALU operation or memory read
• Two 16-bit outputs
 ➢ used by ALU, PC, memory address
 ➢ data for store instructions passes through ALU
Data Path Components

PC and PCMUX

- Three inputs to PC, controlled by PCMUX
 1. PC+1 – FETCH stage
 2. Address adder – BR, JMP
 3. bus – TRAP (discussed later)

MAR and MARMUX

- Two inputs to MAR, controlled by MARMUX
 1. Address adder – LD/ST, LDR/STR
 2. Zero-extended IR[7:0] -- TRAP (discussed later)
Data Path Components

Condition Code Logic

• Looks at value on bus and generates N, Z, P signals
• Registers set only when control unit enables them (LD.CC)
 ➢ only certain instructions set the codes
 (ADD, AND, NOT, LD, LDI, LDR, LEA)

Control Unit – Finite State Machine

• On each machine cycle, changes control signals for next phase of instruction processing
 ➢ who drives the bus? (GatePC, GateALU, …)
 ➢ which registers are write enabled? (LD.IR, LD.REG, …)
 ➢ which operation should ALU perform? (ALUK)
 ➢ …
• Logic includes decoder for opcode, etc.