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Abstract

Dimension reduction of metric data has become a useful technique with numerous applications.
The celebrated Johnson-Lindenstrauss lemma states that anyn-point subset of Euclidean space can be
embedded inO(ε−2 log n) dimension with1 + ε distortion. This bound is known to be nearly tight.

In many applications the demand that all distances would be nearly observed is too strong. In this
paper we show that indeed under natural relaxations of the goal of the embedding, an improved dimen-
sion reduction is possible where the target dimension is independent ofn. Our main result can be viewed
as alocal dimension reduction. There are a variety of empirical situations in which small distances are
meaningful and reliable, but larger ones are not. Such situations arise in source coding, image process-
ing, computational biology, and other applications, and are the motivation for widely-used heuristics
such as Isomap and Locally Linear Embedding.

Pursuing a line of work begun by Whitney, Nash showed that everyC1 manifold of dimensiond
can be embedded inR2d+2 in such a manner that the local structure at each point is preserved isometri-
cally. Our work is an analog of Nash’s for discrete subsets of Euclidean space. For perfect preservation
of infinitesimal neighborhoods we substitute near-isometric embedding of neighborhoods of bounded
cardinality.

We provide a local(1 + ε)-distortion embedding (preserving short distances) for any finite subset
of Euclidean space in dimensionO(ε−2 log k), wherek is the cardinality of the neighborhoods within
which short distances are preserved. We also show that with some additional assumptions, a global
embedding that also keeps distant points well-separated may be obtained.

As an application of our result we obtain an (Assouad-style) dimension reduction for finite subsets of
Euclidean space where the metric is raised to some fractional power (the resulting metrics are known as
snowflakes). We show that any such metric can be embedded in dimensionÕ(ε−3 dim(X)) with 1 + ε
distortion, wheredim(X) is the doubling dimension, a measure of the intrinsic dimension of the set.
This result improves recent work by Gottlieb and Krauthgamer [20] to a nearly tight bound.

The new dimension reduction results are useful for applications such as clustering and distance la-
beling.
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1 Introduction

Dimension reduction for high dimensional metric data has been an extremely important paradigm in many
application areas. In particular, the celebrated Johnson-Lindenstrauss Lemma [25] has played a central
role in a plethora of applications. The lemma states that everyn-point subset of Euclidean space can be
embedded in dimensionO(ε−2 log n) with 1 + ε distortion. This bound is known to be nearly tight [5].
However, in many practical instances it is often the case that the high-dimensional data is inherently low
dimensional and it is therefore desirable to reduce its dimension close to its inherent dimensionality, which
is independent of the size of the data set. In this paper we offer a first theoretical study of such dimension
reduction methods.

In many large-scale data processing applications, local distances convey more useful information than
large distances and are sufficient for uncovering low-dimensional structure. Such situations would arise
if the large distances are inaccurate or do not reflect the intrinsic geometry of the application. Moreover,
there are a variety of situations that rely only on local distances, including nearest-neighbor search, the
computation of vector quantization rate-distortion curves [19], and popular data-segmentation and clustering
algorithms [39]. In all of these cases, it is often desirable to reduce the dimension of the data set for
reductions of storage requirements or algorithm running times. If the long distances are unimportant, we
may be able to reduce the dimensionality only preserving the local information, and such reduction can be
into a far lower dimension than what is possible when attempting to preserve distances between all pairs of
points.

Our main result is alocal dimension reductionlemma which replaces the dependency in the global size
of the datan in the Johnson-Lindenstrauss bound with a local parameter.

We then apply our lemma to provide dimension reduction for data with low “intrinsic dimension”, often
measured by the doubling dimension [6, 21] of the data set. We show that the snowflake version of the
data, where distances are raised to some fixed fractional power, can be embedded in dimension close to
the doubling dimension. This result provides a nearly tight bound to this problem, a variant of Assouad’s
problem [6], recently raised and studied by Gottlieb and Krauthgamer [20].

1.1 Local Dimension Reduction

Two influential papers posited that if a high-dimensional data set lies on the embedding of a low-dimensional
Riemannian manifold, the intrinsic dimensionality could then be found by examining only the nearest neigh-
bor distances of the graph. The first algorithm, known as Isomap [40], uses Dijkstra’s algorithm on the
nearest neighbors graph to compute the global distances and then applies multi-dimensional scaling to the
computed distances to find a low dimensional embedding of the data. The second, Local Linear Embedding
[36], computes the best linear approximation of each set of neighbors, and then stitches the neighborhoods
together by solving an eigenvalue problem constraining the mappings of overlapping neighborhoods. Based
on these initial results and their accompanying empirical examples, these two papers gave rise to an active
field, commonly referred to asmanifold learning, and the ensuing years have seen a multitude of appli-
cations of these algorithms in areas as diverse as protein folding [15], motion planning in robotics [24],
data-mining microarray assays [32], and face recognition [22]. All of these applications use theL2 distance,
even if it is not perfectly justified, because of its tractability and empirical power. Moreover, there have been
a variety of alternative algorithms proposed to reduce dimensionality nearest neighbor distances problems,
employing kernel methods [12], generative probabilistic models [14], semidefinite programming [42] or
neural networks [23].

Despite their wide appeal, all of these algorithms assume some sort of manifold model underlies the data,
and make implicit assumptions about intrinsic curvature, Riemannian metrics, or volume. More importantly,
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not one of these manifold learning algorithms come with any provable guarantees for discrete data sets, and
many authors have pointed out that the geometric assumptions of these algorithms are not reasonable in
practice. For example, the algorithms are quite sensitive to the determination of neighborhood structure [7],
have problems recovering non-convex domains or manifolds with nontrivial homology [17], and cannot
recover manifold structures that require more than one coordinate chart [33].

From a more theoretical perspective, the concept of a “local embedding” was first introduced in the
context of metric space embedding in [2]. Local embeddings share the same objective as manifold learn-
ing: to find a mapping of a metric space into a low-dimensional metric space where distances of close
neighbors are preserved more faithfully than those of distant neighbors. The field of metric embedding
has been an active field of research both in mathematics and computer science and has emerged as a pow-
erful tool in many algorithmic application areas. Two cornerstone theorems in this field are the theorem
of Bourgain [13] stating that that anyn-point metric space embeds inL2 with O(log n) distortion, and
the Johnson-Lindenstrauss [25] dimension reduction lemma. Both these theorems have many algorithmic
consequences.

Abraham, Bartal and Neiman [2] show that many of the known classic embedding results can be ex-
tended to the context of local embeddings. In particular, generalizing Bourgain’s theorem (and [1]) they
provide local embeddings requiring onlyO(log k) dimensions to achieve distortionO(log k) on the neigh-
borhoods with at mostk-points, assuming the the metric obeys a certainweak growth ratecondition, and
[4] remove this assumption at the cost of increasing the dimension toO(log2 k). This numberk could have
no relation ton, and in practice could be arbitrarily smaller thann. It should be emphasized that this type of
embedding is animmersion, that is it preserves well the short distances but may arbitrarily distort the long
ones. This is reasonable, for instance, if we desire a compactdistance oracle[41] for close neighbors.

In this paper, we provide a local version of the Johnson-Lindenstrauss lemma. Such a construction
is challenging to achieve because all of the previously discussed algorithms based on this lemma require a
globally consistent choice of random variables. For this reason, results extending the Johnson-Lindenstrauss
lemma to the projection of smooth manifolds end up depending on the dimension where the manifold is
embedded, and both the volume and curvature of the manifold [8]. Here, we present an embedding of
dimension that has no dependence on the volume. We show that for anyε > 0, onlyO(ε−2 log k) dimensions
are required embedding with distortion1 + ε on the neighborhoods with at mostk-points, assuming the the
metric obeys the weak growth rate condition defined by Abrahamet al. [2]. Another way to state our
result is that the1 + ε distortion is preserved inside a core neighborhood of diameter at leastΩ(ε1.5/ log k)
factor of the diameter of thek-neighborhood. Some assumption of this form is necessary, as follows from
a lower bound by Schechtman and Shraibman [37] showing that there are worst case examples where no
near-isometric local dimension reduction method can beat the Johnson-Lindenstrauss bound. Prior to our
work the only case where such a result was known is when the input set is isometric to an ultrametric [4].

For general metrics, this embedding is an immersion, but under the assumption that the metric has low
intrinsic dimensionality (i.e., small doubling dimension) we can transform our immersion into aglobal
embeddingsuch that distances between far points can be bounded below so they don’t intrude on the local
structure. This extension to a global embedding can be useful in applications of dimension reduction where
it is necessary to maintain the local neighborhoods, such as nearest neighbor search. Unlike the results in
manifold learning, we make no assumptions that our data lie on some compact manifold, and further assume
nothing about the volume or cardinality of our data set.

As an example application that our embedding is suited to, the principal computational problem in vector
quantization [19] is formally one of clustering (with̀2

2 costs), but the parameters are different than in the
clustering literature: primarily, one studies here the limit that the number of clusters,s, tends to∞, while the
distortion (the average distance to a codeword) tends to0. This means that only the small distances between
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data points are germane to the problem. Known algorithms for construction of near-optimal clusterings are
exponential in eithers or the dimension of the space. Our embedding is well-suited to taking advantage of
dimensionality reduction for vector quantization, since our target dimension depends only on the size of the
small regions in which theL2 distance needs to be preserved. Using our embedding, the vector quantization
algorithm can be run in a low-dimensional space, and the clustering (“codebook”) can then be lifted back to
the original space.

Our approach for local dimension reduction combines several metric embedding techniques. We first
employ probabilistic partitioning [9] of our metric space (Section2). These partitions, developed in [1, 2, 4],
decompose the metric space into clusters of bounded diameter and allow the coordinates of the embedding
to smoothly transition between neighborhoods. As opposed to the standard decompositions where cluster
diameters are similar, the partitions of [4] allow varying diameters to capture neighborhoods of similar
cardinality. The idea is to apply for each of the clusters of the partition separately a dimension reduction
method on the points within the cluster and then assemble these embedded neighborhoods into a global
immersion.

While this idea sounds simple it in fact fails if we attempt to directly apply the Johnson-Lindenstrauss
embedding method in each of the clusters. The reason is that the values the embedding takes may be as
large as the diameter of the cluster and that may temper the Lipschitz condition between points in separate
clusters (that is the ratio of the embedded distance to the original distance may be unbounded). To avoid that
we need to combine the dimension reduction method with a truncation mechanism. While there are several
ways in which this may be done we introduce a natural and elegant mechanism for this aim which we call
the randomized Nash device. To ensure the Lipschitz condition we finally apply a smoothing operator.

Our methods owe a substantial debt to seminal papers in several areas of mathematics. Pursuing a line
of work begun by Whitney [43, 44], Nash showed that every Riemannian manifold of dimensionD could
be embedded inR2D+2 by aC1 mapping such that the metric at each point is preserved isometrically [31].
Nash achieves this embedding using a device which locally perturbs a non-distance preserving embedding
provided by Whitney. The randomized trigonometric embedding of Section3.1 is adapted from Nash’s
deterministic embedding procedure, and we give a probabilistic analysis showing that with high probability
this yields an embedding of the local distances in each neighborhood. As observed in [34] in the context
of fast algorithms for pattern recognition, our random trigonometric functions form an embedding into a
Euclidean space where the inner product approximates a positive definite shift-invariant kernel function.
In our case, we sample frequencies from a Gaussian distribution and use the smoothness properties of the
gaussian kernelk(x, y) = exp(−γ‖x−y‖2) to ensure the quality of our randomized Nash device. Our Nash
device can also be viewed as a discretized version the the continuous truncation technique of Schoenberg
[38] which has appeared in the embedding literature (e.g. [29, 28, 20]). (These methods, combined with
the Johnson-Lindenstrauss dimension reduction, could have replaced the Nash device, but the latter is itself
elegant, computationally efficient and simple to use, and may be of independent interest).

The existence of our embedding is guaranteed using the Lovász Local Lemma[18], and we rely on
algorithmic implementation of the LLL by Moser and Tardos [30] to provide a randomized algorithm to
generate our embeddings.1.

Our main contribution is in the combination of these various ingredients to allow local dimension reduc-
tion. Following our work, this methodology has been applied in [20] in additional cases of dimensionality
reduction. We mainly focus on applying these tools to obtain anear optimallocal dimension reduction.
Most notably, obtaining the near optimal bound requires a delicate probabilistic argument. The embed-
ding must compose the coordinates associated with the probabilistic partitions and those associated with the
Nash-type dimension reduction in an interlacing manner. The analysis follows with carefully balancing the

1We note that the application of the LLL together with probabilistic partitions was first applied in [26].
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contributions of the different components through the dependencies of the relevant probabilistic events.
In some applications it may be important that the dimension reduction procedure will keep the embedded

distant pairs away from the local neighborhoods. In general, this is impossible if no further assumptions are
made. However, under the additional assumption that the metric space has low doubling dimension [6, 21]
we ensure that our mapping has this property.

1.2 Dimension Reduction for Snowflakes

Let X be a subset of Euclidean space. The doubling constant ofX is the minimumλ such that every
ball can be covered byλ balls of half the radius. Thedoubling dimensionof X is defined asdim(X) =
log2 λ. The question of whether the dimension bound in the Johnson-Lindensrauss lemma can be reduced
to O(ε−2dim(X)) has been posed by several researchers [27, 21, 3]. While this question remains open,
it has been recently asked by Gottlieb and Krauthgamer [20] if a result along this line is possible for the
“snowflake” version of the metric, i.e, if the distance functiond(x, y) = ‖x−y‖ is replaced withdα(x, y) =
‖x−y‖α for some0 < α < 1. Such an embedding may suffice for certain applications. From a mathematical
standpoint, this problem is motivated by Assouad’s theorem [6] which states that the snowflake version of
any metric space can be embedded in Euclidean space with dimension and distortion depending solely on
the doubling dimension. Gottlieb and Krauthgamer [20] use a similar approach to ours to prove that such
a dimension reduction is possible where the target dimension isÕ((1 − α)−3ε−4(dim(X))2). We observe
that the main ingredient needed in the solution for this problem is a local dimension reduction theorem.
Using a variant (in fact a simplified version) of our main local dimension reduction theorem (Theorem 1)
we improve their result to a nearly tight bound:Õ((1− α)−2ε−3dim(X)).

This theorem has applications for distance labeling schemes, problems such as nearest neighbor search
where only relative relation between distances need to be preserved, and optimization problems where the
objective function is composed of powers of distances, e.g., clustering problems.

1.3 Structure of the Paper

In Section 2we provide the and background on the probabilistic partitions that we use.Theorem 1is proved
in Section 3. The local Nash-device is described inSection 3.1. We first give the main component of the
embedding inSection 3.2which provides the guarantee for “close” pairs. Then inSection 3.3we provide
the complete definition of the embedding which now deals with farther pairs that are still within the range of
application of our main theorem (Theorem 1). In Section 4we show how to extend the embedding to deal
with all pairs and maintain separation of local and distant pairs (Theorem 2). Finally, inSection 5we prove
the dimension reduction for snowflakes (Theorem 3).

2 Preliminaries

We start with some basic definitions: Letk ∈ N. For a pointx ∈ X andr ≥ 0, the ball at radiusr aroundx
is defined asB(x, r) = {z ∈ X | ‖x− z‖ ≤ r}. For a pointx ∈ X let ∆k(x) be the smallest radiusr such
that|B(x, r)| ≥ k. For a pairx, y ∈ X, define:∆k(x, y) = max{∆k(x),∆k(y)}

For any pointx ∈ X and a subsetS ⊆ X let d(x, S) = mins∈S d(x, s). Thediameterof X is denoted
diam(X) = maxx,y∈X d(x, y).

One of the tools we use are local probabilistic partitions. In particular, the following constructions are
generalizations of the local probabilistic partitions of [2], and their analysis appears in [4]:
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Definition 1 (Probabilistic Partition). A partition P of X is a collection of disjoint set ofclustersC(P ) =
{C1, C2, . . . , Ct} such thatX = ∪jCj . A partition is called∆-boundedwhere∆ : P → R+ if for all j,
diam(Cj) ≤ ∆(Cj). Forx ∈ X we denote byP (x) the cluster containingx. A probabilistic partitionP̂ of
a finite metric space(X, d) is a distribution over a setP of partitions ofX. Such a partition is∆-bounded
if it is ∆-bounded for everyP ∈ P̂.

Definition 2 (Locally Padded Probabilistic Partition). Let P̂ be a∆-bounded probabilistic partition of
(X, d). LetL(x) denote the event thatB(x, η ·∆(P (x))) ⊆ P (x). Forδ ∈ (0, 1], P̂ is called(η, δ)-locally
paddedif for any x ∈ X andZ ⊆ X \B(x, 16∆(P (x))): Pr[L(x)|∧z∈Z L(z)] ≥ δ.

Lemma 3 (Locally Padded Cardinality-Based Probabilistic Partitions). Let (X, d) be a finite metric
space. Letk ∈ N. There exists a∆-bounded probabilistic partition̂P of (X, d) with the following proper-
ties:

• For anyP ∈ P and anyx ∈ X: |P (x)| ≤ k.

• For anyP ∈ P is and anyx ∈ X: 2−6 ≤ ∆(P (x))/∆k(x) ≤ 2−4.

• P̂ is (η(δ), δ)-locally padded forη(δ) = 2−11/ ln k · ln(1/δ), whereδ ∈ (1/k, 1].

Lemma 3is a reformulation of Lemma 5 from [4]. A simple application of the Lov́asz Local Lemma
implies:

Lemma 4. Let (X, d) be a finite metric space. Letk ∈ N andξ > 0. Let{P̂(t)}t∈T be a collection of size
|T | ≥ 8 log k/ξ of independent∆-bounded probabilistic partitions of(X, d) as in Lemma3. Letδ = 1− ξ

andL(δ)
t (x) denote the event thatB(x, η(δ) · ∆(P (t)(x))) ⊆ P (t)(x), whereη(δ) = 2−11/ ln k · ln(1/δ).

Then with positive probability for everyx ∈ X there exists a setT (δ)(x) ⊆ T of size|T (δ)(x)| ≥ (1−2ξ)|T |
such thatL(δ)

t (x) occurs for allt ∈ T .

3 Local Dimension Reduction

Given a discrete set of pointsX of cardinalityn in U -dimensional Euclidean space we construct a low
dimension local embedding, one that preserves distances to close neighbors with a1+ ε multiplicative error.
The main result of this paper is summarized by the following theorem.

Let k ∈ N. Recall that for a pointx ∈ X, ∆k(x) denotes the smallest radiusr such that|B(x, r)| ≥ k,
and for a pairx, y ∈ X: ∆k(x, y) = max{∆k(x), ∆k(y)}. Let ∆∗

k(x) = c1ε∆k(x)/ log k, wherec1 < 1 is
a universal constant, and∆∗

k(x, y) = max{∆∗
k(x), ∆∗

k(y)}.
Theorem 1. Let k ∈ N. GivenX a discrete subset ofRU , then for anyε > 0 there exists an embedding
Φ̂ : X → RD, whereD = O(log k/ε2) with the following properties:

a. For all x,y ∈ X, ‖Φ̂(x)− Φ̂(y)‖ ≤ (1 + ε)‖x− y‖
b. For all x, y ∈ X:

‖Φ̂(x)− Φ̂(y)‖ ≥





(1 + ε)−1‖x− y‖ if ‖x− y‖ ≤ √
ε∆∗

k(x, y)
(1 + ε′)−1‖x− y‖ if ‖x− y‖ =

√
ε′∆∗

k(x, y) s.t. ε < ε′ ≤ 1
1
8∆∗

k(x, y) if ∆∗
k(x, y) < ‖x− y‖ ≤ 1

2∆k(x, y)

(1)
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c. For all x ∈ X, ‖Φ̂(x)‖ ≤ ∆∗
k(x)

We comment that property(c) is not needed in general but is useful for the application in Section5.
We note that although Theorem1 maintains(1 + ε)-distortion only in a core neighborhood within the

k-neighborhood of a point, this implies(1 + ε)-distortion forall pairs within the entirek-neighborhood2 if
we demand thatX satisfies aweak growth ratecondition3 (defined by [2]), where there exists a constant
γ < 1 if for everyx ∈ X andr1, r2 > 0, |B(x, r2)| ≤ |B(x, r1)|(r2/r1)γ

, and further assumeγ < 0.2.
In the rest of this section we describe the embedding and analysis to prove Theorem14. The main

ingredients are a set of probabilistic partitions described in Section2, and a compact embedding, based on
a randomization of a device of Nash, provided in Section3.1. The core of the construction is presented in
Section 3.2where we prove the existence of an embeddingΦ satisfying all of the properties in Theorem1
for all x, y ∈ X which are “close neighbors” in the sense that‖x − y‖ ≤ ∆∗

k(x, y), as well as the upper
bound for all pairs. For farther neighbors, we use a simple additional construction in Section3.3.

3.1 The Randomized Nash Device

In this section we introduce a new construct we call the randomized Nash device.
For anyω ∈ RU andσ > 0, we define the functionϕ : RU → R2 as

ϕ(x; σ, ω) =
1
σ

[
cos(σω′x)
sin(σω′x)

]
(2)

whereω′x denotes the inner product betweenω andx. ϕ(x; σ, ω) maps onto a circle with radiusσ−1 in
R2. These functions were used by Nash in his construction ofC1-isometric embeddings of Riemannian
manifolds [31], with the parameters chosen to correct errors in the metric. Note that as the parameterσ
grows, the frequencies of the embedding function grow, but the amplitude becomes increasingly small.

In this section we present a sequence ofrandomparameter settings for these functionsϕ, first studied
in [34], that with high probability approximate small distances in discrete metrics and bound large distances
away from zero. Fixσ > 0 and letω be a sample from aU -dimensional GaussianN (0, IU ). For this
choice of parameters, one may interpret Equation (2) as a random projection wrapped onto the circle. Using
the intuition provided by the Johnson-Lindenstrauss lemma, one would expect nearby pointsx andy to be
mapped to nearby points on the circle since the sine and cosine are Lipschitz. This intuition can be further
reinforced by considering the expected distance between two points.

Claim 5. For anyx andy inRU , |ϕ(x;σ, ω)−ϕ(y; σ, ω)|2 = 2σ−2(1−cos(σω′(x−y))) andE[|ϕ(x; σ, ω)−
ϕ(y; σ, ω)|2] = 2σ−2(1− exp(−1

2σ2‖x− y‖2).

The main result of this section is to note that these random variables are very well concentrated about
their expected value and hence inherent their distance preserving property from this Gaussian kernel func-
tion. Hence, a concatenation of severalϕ corresponding to different samples ofω will provide a low-
dimensional embedding.

Letσ1, . . . , σD > 0 be given real numbers bounded above byσm, and letω1, . . . , ωD beD samples from
aU -dimensional GaussianN (0, IU ). Let ϕ(t)(x) := ϕ(x;σt, ωt) and, forx andy ∈ RU , let Θ : X → R2D

denote the mappingΘ = 1√
D

⊕
1≤t≤D ϕ(t). The main result of this section is the following lemma:

2The dimension can be bounded by:O(ε−2 log kd(ε−3/2 log k)logα βe) and so for instance ifβ = 2 andα = ε−3/2 log k we
get dimensionO(ε−2 log k). This bound is similar in flavor to bounds given in [2].

3The reason this condition is called weak is that it does not exclude rapidly expanding metrics.
4We note that the constants may differ but a rescaling of the parameterε would yield this formulation of the theorem.
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Lemma 6. Let 1
2 > ε > 0 andx andy ∈ RU .

a. ‖Θ(x)−Θ(y)‖2 ≤ (1 + ε)‖x− y‖2 with probability exceeding1− exp(−D
2 ( ε2

2 − ε3

3 )).

b. If ‖x− y‖ ≤
√

ε
σm

, ‖Θ(x)−Θ(y)‖2 ≥ (1− ε)‖x− y‖2 with probability exceeding1− exp(−3Dε2

128 ).

c. If ‖x− y‖ ≥ 1√
2σm

, ‖Θ(x)−Θ(y)‖2 ≥ 1
4σ2

m
with probability exceeding1− exp(− D

128).

The randomized embeddingΘ maps onto a product of circles of varying radii, a subset of the2D-sphere.
The different values ofσ will be necessary in the following sections to stitch together regions of the metric
space with differing densities, but the important point is all of the concentration results are only a function
of the largest value of theσt. Intuitively, one can interpret this as saying the high frequency information is
the dominant source of error in the approximation. The analysis ofLemma 6appears inAppendix A.

3.2 Embedding Close Neighbors

We now turn to a recipe for combining multiple instances of these trigonometric embeddings into a global
map that preserves local distances using the probabilistic partitions discussed inSection 2. Specifically, we
concern ourselves with the “close neighbors,” pairsx andy satisfying‖x − y‖ ≤ ∆∗

k(x, y) (for the lower
bound, while the upper bound is proved for all pairs). LetD = C ′dlog k/ε2e, whereC ′ is some universal
constant to be determined later. We construct a locally padded cardinality-based probabilistic partitionP̄(t)

as in Lemma4, whereT = [D] andξ = ε. Now fix a partitionP (t) ∈ P(t). We define a trigonometric
embedding forevery clusterC ∈ P (t).

Let σC = 212 ln k/ε · ∆(C)−1, and let{ωC |C ∈ P (t), 1 ≤ t ≤ D} be i.i.d. samples from a
U -dimensional GaussianN (0, IU ). For x ∈ C defineσ(t)(x) = σC , ω(t)(x) = ωC , andA(t)(x) =
min

{
d(x, X \ C), σ(t)(x)−1

}
, and let

Φ(t)(x) = A(t)(x)ϕ̂(t)(x)

where,

ϕ̂(t)(x) = σ(t)(x)ϕ(t)(x) =
[

cos(σ(t)(x)ω(t)(x)′x)
sin(σ(t)(x)ω(t)(x)′x)

]
.

The functionA(t) serves as the amplitude of the embedding. For paddedx, this number is equal to the
amplitude defined in Section3.1, and the amplitude rolls off to zero near the boundary of each cluster.
In each cluster, we have a different trigonometric embedding, and continuity is maintained because the
amplitude is zero at the boundaries of the clusters.

We define our embeddingΦ : X → l2D
2 by concatenatingD instances ofΦ(t): Φ = 1√

D

⊕
1≤t≤D Φ(t).

Analysis Overview: Our goal is to show that the embeddingsΦ and the Nash-device based embeddings
of Section3.1 have similar distortion guarantees. The purpose of the padded probabilistic partitions and
the smoothing amplitude function is to allow a smooth transition between the different local embeddings in
different clusters. For a close pair the padded probabilistic partition guarantees that in≈ 1− ε of the coordi-
nates they fall in the same cluster and therefore their distortion is governed by the local Nash-device based
embedding, which still maintains its distortion guarantees over the random set of successful coordinates.
With probability≈ ε that this fails we rely on the Lipschitz property (that the smoothing amplitude function
provides) to make sure the distortion only deviates slightly and the overall distortion remains1 + O(ε). To
enable this probabilistic argument our proof utilizes the Lovász Local Lemma, showing that the necessary
constraints are satisfied everywhere with positive probability. The rest of this section is devoted to carrying
out this proof strategy.
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Embedding Analysis. We start with the following lemma which will be useful to bound the distance
between embedded points:

Lemma 7. Letx, y ∈ X. Then,

1. If P (t)(x) 6= P (t)(y), ‖Φ(t)(x)− Φ(t)(y)‖ ≤ 2‖x− y‖.
2. If P (t)(x) 6= P (t)(y), d(x,X \ P (t)(x)) ≥ 2σ(t)(x)−1 and d(y,X \ P (t)(y)) ≥ 2σ(t)(y)−1, then
‖Φ(t)(x)− Φ(t)(y)‖ ≤ ‖x− y‖.

3. If P (t)(x) = P (t)(y), ‖Φ(t)(x)− Φ(t)(y)‖2 ≤ ‖x− y‖2 + ‖ϕ(t)(x)− ϕ(t)(y)‖2.

4. If C := P (t)(x) = P (t)(y), σ−1
C ≤ d(x,X \ P (t)(x)) andσ−1

C ≤ d(y,X \ P (t)(y)), then‖Φ(t)(x)−
Φ(t)(y)‖ = ‖ϕ(t)(x)− ϕ(t)(y)‖.

Proof. First, we observe that for allx andy

‖Φ(t)(x)− Φ(t)(y)‖ = ‖A(t)(x)ϕ̂(t)(x)−A(t)(y)ϕ̂(t)(y)‖

We now proceed case by case.
For (1), note that since‖ϕ(t)(u)‖ = 1, we have

‖Φ(t)(x)− Φ(t)(y)‖ ≤ A(t)(x)‖ϕ̂(t)(x)‖+ A(t)(y)‖ϕ̂(t)(y)‖ ≤ A(t)(x) + A(t)(y)

For claim (2) we have thatA(t)(x) + A(t)(y) ≤ d(x,X \ P (t)(x)) + d(y, X \ P (t)(y)). Now if x andy
fall in different clusters,‖x− y‖ ≥ d(y, X \ P (t)(y)) and‖x− y‖ ≥ d(x,X \ P (t)(x)), and the assertion
follows. Claim (3) follows asA(t)(x)+A(t)(y) ≤ σ(t)(x)−1+σ(t)(y)−1 ≤ 2max{σ(t)(x)−1, σ(t)(y)−1} ≤
max{d(x,X \ P (t)(x)), d(y, X \ P (t)(y))} ≤ ‖x− y‖.

We now turn to claims (4). AssumeC := P (t)(x) = P (t)(y). Then

‖Φ(t)(x)− Φ(t)(y)‖2 = (A(t)(x)−A(t)(y))2 + A(t)(x)A(t)(y)‖ϕ̂(t)(x)− ϕ̂(t)(y)‖2,

using‖ϕ(t)(u)‖ = 1. In this case we have thatA(t)(x)A(t)(y) ≤ σ−2
C . We also need to show that|A(t)(x)−

A(t)(y)| ≤ ‖x − y‖ for all x, y ∈ P (t)(x). We show thatA(t)(x) − A(t)(y) ≤ ‖x − y‖ and the claim
holds by reversing the roles ofx andy. There are two cases: ifA(t)(y) = σ−1

C thenA(t)(x) ≤ σ−1
C and

A(t)(x)−A(t)(y) ≤ 0. OtherwiseA(t)(y) = d(y, X \ P (t)(y)) andA(t)(x) ≤ d(x,X \ P (t)(x)) implying
A(t)(x)−A(t)(y) ≤ d(x, X \ P (t)(x))− d(y, X \ P (t)(y)) ≤ ‖x− y‖ sinceP (t)(x) = P (t)(y).

Finally, for claim (5), we only need use the fact thatA(t)(x) = A(t)(y) = σ−1
C .

We now proceed to provingTheorem 1. For x, y ∈ X, let us now classify the different coordinatest
according to the cases of Lemma7. Define the sets

T6=(x, y) = {t|P (t)(x) 6= P (t)(y)} , T=(x, y) = {t|P (t)(x) = P (t)(y)}
T◦(x, y) = {t|d(x,X \ P (t)(x)) ≥ 2σ(t)(x)−1 ∧ d(y, X \ P (t)(y)) ≥ 2σ(t)(y)−1}

(3)

so that we have the upper and lower bounds for our embedded distances

‖Φ(x)− Φ(y)‖2 ≥ 1
D

∑

t∈T=(x,y)∩T◦(x,y)

‖ϕ(t)(x)− ϕ(t)(y)‖2, and (4)
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‖Φ(x)− Φ(y)‖2 ≤ 1
D


 ∑

t∈T=(x,y)

‖ϕ(t)(x)− ϕ(t)(y)‖2 +
∑

t∈T6=(x,y)

‖x− y‖2 +
∑

t∈T\T◦(x,y)

‖x− y‖2


 . (5)

We now turn to show that the properties of the embedding hold with positive probability. Fort ∈ T , let
σ(t)(x, y) = min{σ(t)(x), σ(t)(y)}. Recall that we have appliedLemma 4with ξ = ε, so thatδ = 1− ε.

Considert ∈ T (δ)(x) thenB(x, η(δ) · ∆(P (t)(x)) ⊆ P (t)(x), whereη(δ) = 2−11ε/ ln k. It follows
that d(x, X \ P (t)(x)) ≥ η(δ) · ∆(P (t)(x)) ≥ 2σ(t)(x)−1, by definition. Similarly, ift ∈ T (δ)(y) then
d(y, X \ P (t)(y)) ≥ 2σ(t)(y)−1. Hence,T (δ)(x) ∩ T (δ)(y) ⊆ T◦(x, y), implying that|T \ T◦(x, y)| ≤
|T \ (T (δ)(x)∩T (δ)(y))| ≤ |T \T (δ)(x)|+ |T \T (δ)(y)| ≤ 4εD, by Lemma 4. Plugging this bound into (5)
we conclude that:

‖Φ(x)− Φ(y)‖2 ≤ 1
D

[
|T=(x, y)| ·

∑
t∈T=(x,y) ‖ϕ(t)(x)− ϕ(t)(y)‖2

|T=(x, y)| + |T6=(x, y)| · ‖x− y‖2

]
+ 4ε‖x− y‖2. (6)

Now consider pairsx, y that are close neighbors, that is:‖x − y‖ ≤ ∆∗
k(x, y) where∆∗

k(x, y) =
c1
√

ε/ ln k · ∆k(x, y), and c1 = 2−19. Note thatc1 is chosen so that18σ(t)(x, y)−1 ≤ ∆∗
k(x, y) ≤

1
2σ(t)(x, y)−1 (this follows from Lemma 3). Assume w.l.o.g thatσ(t)(x, y) = σ(t)(x) (otherwise switch
the roles ofx andy). Considert ∈ T (δ)(x) then we’ve seen thatd(x,X \ P (x)) ≥ 2σ(t)(x)−1. Now
considery ∈ X such that‖x − y‖ ≤ ∆∗

k(x, y) ≤ 1
2σ(t)(x)−1 thenP (t)(y) = P (t)(x), implying that

T (δ)(x) ∩ T (δ)(y) ⊆ T=(x, y) ∩ T◦(x, y) implying that |T=(x, y) ∩ T◦(x, y)| ≥ |T (δ)(x) ∩ T (δ)(y)| ≥
(1− 4ε)D. Plugging this bound into4 yields:

‖Φ(x)− Φ(y)‖2 ≥ (1− 4ε) ·
∑

t∈T=(x,y)∩T◦(x,y) ‖ϕ(t)(x)− ϕ(t)(y)‖2

|T=(x, y) ∩ T◦(x, y)| , and (7)

We will next apply the Local Lemma again over events related to the Nash-type embeddings in Sec-
tion 3.1for the different clusters. Define:

L(x, y) =

∑
t∈T=(x,y)∩T◦(x,y) ‖ϕ(t)(x)− ϕ(t)(y)‖2

|T=(x, y) ∩ T◦(x, y)| and U(x, y) =

∑
t∈T=(x,y) ‖ϕ(t)(x)− ϕ(t)(y)‖2

|T=(x, y)|
We define the following events for pairs. LetAU (x, y) be the event thatU(x, y) > (1+ ε)‖x−y‖2. For

pairsx, y that are close neighbors, that is:‖x−y‖ ≤ ∆∗
k(x, y). Letε′(x, y) = max{ε,∆∗

k(x, y)−2‖x−y‖2},
and defineAL(x, y) be the event thatL(x, y) < (1−ε′(x, y))‖x−y‖2. LetA(x, y) = AL(x, y)∨AU (x, y).
If x, y are not close neighbors thenA(x, y) = AU (x, y). The rest of the argument utilizes the Lovász Local
Lemma to prove that there is positive probability that none of the eventsA(x, y) occurs; the details that
complete this argument can be found in AppendixB.

For property (c) ofTheorem 1note that it follows directly from the definition ofΦ andLemma 3.

3.3 Embedding Farther Neighbors

In this section, we extend the embedding to cover all pairs such that‖x − y‖ ≤ 1
2∆k(x, y). To this end,

we add another component to the embeddingΨ : X → RD. The embeddingΨ is based on ideas similar to
those of [35, 1]. For each1 ≤ t ≤ D, define a functionΨ(t) : X → R2 and let{ν(t)(C)|C ∈ P (t), t ∈ T}
be i.i.d symmetric{0, 1}-valued Bernoulli random variables. The embedding is defined for eachx ∈ X as
Ψ(x) = 1√

D

⊕
1≤t≤D Ψ(t)(x) with

Ψ(t) =
√

ε · ν(t)(P (x)) · d(x,X \ P (t)(x)) .

Our final embedding will bêΦ = Φ⊕Ψ. The analysis appears inAppendix C.
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4 Maintaining Separation of Distant Pairs

In many applications it is desirable that not only our distortion for neighbors is small but also that the distant
pairs (non-neighbors) will not become too close in the embedding so that the local structure is preserved.
If we assume nothing about the metric spaceX there is no such low dimensional embedding that will give
good guarantees. However, in this section we show that under reasonable assumptions on the local growth
structure of the space there exists an embedding that provides reasonable bounds and in particular guarantees
that the local structure of the space would be preserved.

To obtain this type of property we can use any non-expansive embeddingΥ : X → `D
2 that provides

guarantees for the distortion of the distant pairs via a similar trick to the one in Section3.3, i.e., add a
component

√
εΥ to the embeddinĝΦ. Let Φ̄ = Φ̂⊕ (

√
εΥ) then:

‖Φ̄(x)−Φ̄(y)‖2 = ‖Φ̂(x)−Φ̂(y)‖2+ε‖Υ(x)−Υ(y)‖2 ≤ (1+ε)‖x−y‖2+ε‖x−y‖2 = (1+2ε)‖x−y‖2,

whereas the lower bound for neighbors given byΦ̂ still holds and the lower bound for far neighbors is given
by Υ with just an additional

√
ε factor loss.

In recent work [3] it is shown that every metric space embeds in`D
2 whereD = O(dim(X)/θ) with

distortionO(log1+θ n), wheredim(X) is the doubling dimension ofX. Hence a possible choice for the
componentΥ could be this embedding, and combining it withΦ̂ as described above, we obtain a global
embedding in dimensionO(ε−2 log k + θ−1dim(X)) that guarantees that the distance distant pairs do not
shrink below∆k(x, y)/ log1+θ n. However, as this bound depends on the global size of the set this still does
not promise full preservation of the local structure. To overcome this we give a refinement of this embedding
using ideas from [2].5

In Appendix Fwe give a local scaling embedding for doubling metrics satisfying the weak growth rate
condition6. By using this embedding for the componentΥ as explained above we obtain the following
theorem:

Theorem 2. Let k ∈ N, and X a discrete subset ofRU . Suppose thatX satisfies a weak growth rate
condition then for any0 < ε, θ ≤ 1 there exists an embeddinḡΦ : X → RD, whereD = O(log k/ε2 +
dim(X)/θ) such that Theorem1 holds, and additionally if‖x− y‖ ≥ 1

2∆k(x, y) then:

‖Φ̄(x)− Φ̄(y)‖ ≥ ∆k(x, y) · c2θ
√

ε/ log1+θ k, (8)

for some universal constantc2.

5 Dimension Reduction for Euclidean Snowflakes

In this section we provide a dimension reduction for snowflakes of finite subsets of Euclidean space.

Theorem 3. Given a subsetX of Euclidean space, for every0 < α < 1 there exists an embeddingΦ :
X → RD, whereD = O( log(1/ε)

1−α ε−3dim(X)(log(dim(X)) + log(1/ε)
1−α )) such that for allx, y ∈ X:

(1 + ε)−1‖x− y‖α ≤ ‖Φ(x)− Φ(y)‖ ≤ (1 + ε)‖x− y‖α

5Note that an alternate choice forΥ could be our snowflake embedding ofSection 5, which would provide lower bound on the
contraction of distant pairs which is a function of their distance. However, we prefer a bound as a function ofk.

6X satisfies aweak growth ratecondition [2] if for some constantsα > β ≥ 1 if for every x ∈ X andr > 0, |B(x, αr)| ≤
|B(x, r)|β , and further assumelogα β < 0.2.
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The proof proceeds in two steps: we first useTheorem 1to give an embedding of pairs of points whose
distances fall in a single scale in dimensionÕ(ε−2dim(X)) and then use it to obtain the embedding in
Theorem 3that preserves small distortion for snowflakes in all scales simultaneously.

We apply a variant ofTheorem 1(in fact we only use a special case of it where allk neighborhoods
are bounded below by a fixed parameter). We observe that the function∆k(x) can be replaced by any
Lipschitz function7 ∆̄k(x) bounded above by∆k(x), applying the same proof8. In particular, for our
application we need to introduce a parameter∆ > 0, and define:∆̄k(x) = min{∆k(x),∆} and let
∆∗

k(x) = c1ε∆̄k(x)/ log k. This provides the one scale embedding:

Lemma 8. Given a subsetX of Euclidean space, for everyr > 0 andε, δ > 0, there exists an embedding
Φ̄ : X → RD, whereD = O(ε−2dim(X)(log(dim(X)) + log((εδ)−1))), with the following properties:

1. ‖Φ̄(x)− Φ̄(y)‖ ≤ ‖x− y‖
2. For all x, y ∈ X such thatδr ≤ ‖x− y‖ ≤ r: ‖Φ̄(x)− Φ̄(y)‖ ≥ (1 + ε)−1‖x− y‖
3. For all x ∈ X, ‖Φ̄(x)‖ ≤ r/

√
ε

Proof. Let X̂ be anεδr-net ofX. We show the theorem holds for̂X. As in [20] claim (1) of the theorem
can be easily obtained by using Kirszbraun’s extension theorem9, and observing that ifx, y ∈ X are such
thatδr ≤ ‖x− y‖ ≤ r then there existx′, y′ ∈ X̂ such thatδ(1− 2ε)r ≤ ‖x′− y′‖ ≤ r(1+2ε) and a small
adaptation of the parameters provides the statement in the theorem.

Let k = 2c′ dim(X)(log(dim(X))+log((εδ)−1)), wherec′ is an appropriate constant to be determined, and let
∆ = log k/(c1ε) · r/

√
ε. Let x be an arbitrary pointx ∈ X̂ then |BX̂(x,∆)| ≤ 2dim(X) log(∆/(εδr)) ≤

2dim(X) log(log k/(c1ε3δ)) < k (for an appropriate choice ofc′) and therefore for allx ∈ X̂, ∆k(x) > ∆ and
so∆∗

k(x) = r/
√

ε. The lemma now follows from the variant ofTheorem 1described above.

Theorem 3follows from a delicate application of Assouad’s technique [6] (a similar somewhat more
involved argument was used in [20] and it may also be seen as inspired by [10]). The proof is deferred to
Appendix D.
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A Randomized Nash Device Analysis

In section we prove Lemma6
To prove part (a) of the lemma note that1− cos(α) ≤ α2/2 for all α. Let ` = ‖x− y‖. τi := ω′i(x− y)

is distributed as a one-dimensional Gaussian distributionN (0, `2) andτ1, . . . , τD are independent and we
have

‖Θ(x)−Θ(y)‖2 =
1
D

D∑

t=1

‖ϕ(t)(x)− ϕ(t)(y)‖2 =
1
D

D∑

t=1

2
σ2

t

(1− cos (σtτt)) ≤ 1
D

D∑

t=1

τ2
t . (9)

It therefore follows that

Pr
[‖Θ(x)−Θ(y)‖2 ≥ (1 + ε)`2

] ≤ Pr

[
1
D

D∑

t=1

τ2
t ≥ (1 + ε)`2

]
≤ e

−D
2

�
ε2

2 −
ε3

3

�

(10)

where the second inequality is a well known known concentration inequality aχ-squared random variable
(see, e.g., [16]).

Parts (b) and (c) require a more detailed verification, but follow from a Chernoff Bound type analysis. We
explicitly bound the moment generating function of the everywhere non-positive processcos(σω′(x−y))−1
by using the upper boundexp(α) ≤ 1 + α + α2 for all α ≤ 0. Using this upper bound allows us to bound
Eω[s(cos(σω′(x− y))− 1)] by employing Claim5.

Using the identity‖Θ(x)−Θ(y)‖2 = 1
D

∑D
t=1

2
σ2

t
(1− cos (σtτt)) we have for anyu > 0

P
[‖Θ(x)−Θ(y)‖2 ≤ u

]
(11)

=P

[
1
D

D∑

t=1

2
σ2

t

(1− cos (σtτt)) ≤ u

]
(12)

=P

[
D∑

t=1

2
σ2

t

(cos (σtτt)− 1) + uD ≥ 0

]
(13)

=P

[
exp

(
s

D∑

t=1

2
σ2

t

(cos (σtτt)− 1) + uDs

)
≥ 1

]
∀s > 0 (14)

≤E
[
exp

(
s

D∑

t=1

2
σ2

t

(cos (σtτt)− 1) + uDs

)]
(by Markov’s Inequality) (15)

=exp (uDs)E

[
D∏

t=1

exp
(

s
2
σ2

t

(cos (σtτt)− 1)
)]

(16)

=exp (uDs)
D∏

t=1

Eτt

[
exp

(
s

2
σ2

t

(cos (σtτt)− 1)
)]

. (17)

We first bound the expectations with respect toτt. Let τ be a zero-mean Gaussian random variable with
variancè 2. Sinceexp(t) ≤ 1 + t + t2/2 for all t ≤ 0, we have, for alls, σ > 0,

exp
(
s 2

σ2 (cos (στ)− 1)
) ≤ 1 + 2

σ2 (cos(στ)− 1)s + 2
σ4 [cos(στ)− 1]2s2 (18)

= 1 + 2
σ2 (cos(στ)− 1)s + 2

σ4 [1− 2 cos(στ) + cos2(στ)]s2 (19)

= 1 + 2
σ2 (cos(στ)− 1)s + 1

σ4 [3− 4 cos(στ) + cos(2στ)]s2 . (20)

14



Using the fact thatE[cos(zτ)] = exp(−`2z2/2) for all z ∈ R, we can compute the expectation of (20)

E
[
exp(s 2

σ2 [cos(στ)− 1])
] ≤ E [

1 + 2
σ2 (cos(στ)− 1)s + 1

σ4 [3− 4 cos(στ) + cos(2στ)]s2
]

(21)

= 1 + 2
σ2

(
exp(−1

2σ2`2)− 1
)
s (22)

+ 1
σ4

(
3− 4 exp(−1

2σ2`2) + exp(−2σ2`2)
)
s2 .

The negative of the term linear ins is equal

b(σ) := 2
σ2

(
1− exp(−1

2σ2`2)
)

(23)

and that the term quadratic ins is equal to

a(σ) := 1
4b(σ)2

(
(1 + exp(−1

2σ2`2))2 + 2
)

. (24)

Both b(σ) anda(σ) are positive decreasing functions ofσ > 0.
To complete the proof, suppose we can find ans0 > 0 such that

b(σt)s0 − a(σt)s2
0 < 1 for all 1 ≤ t ≤ D (25)

b(σt)s0 − a(σt)s2
0 ≥ γ + us0 for all 1 ≤ t ≤ D . (26)

for some constantγ > 0. Then, using the inequalitylog(1 − t) ≤ −t for all t < 1 and the preceding
analysis, we would have the probability of‖Θ(x)−Θ(y)‖2 < u being at most

exp(uDs0)
D∏

t=1

(1− b(σt)s0 + a(σt)s2
0) = exp

(
uDs0 +

D∑

t=1

log(1− b(σt)s0 + a(σt)s2
0)

)
(27)

≤ exp

(
D∑

t=1

us0 − b(σt)s0 + a(σt)s2
0

)
(28)

≤ exp(−γD) . (29)

Part (b) would be proven if we find ans0 for which (25) and (26) hold wheǹ < σm
−1√ε with u = (1−ε)`2

andγ = 3
128ε2. For part (c), we need to find ans0 to show that wheǹ > (

√
2σ)−1, (25) and (26) hold with

u = (4σ2)−1 andγ = 1
128 .

The strategy for both parts (b) and (c)is the same. We show that choosings0 such that the equality is
attained in (26) whenσ = σm suffices. That is, we set

s0 =
b(σm)− u−

√
(b(σm)− u)2 − 4a(σm)γ
2a(σm)

. (30)

If this choice ofs0 is positive, then (25) and (26) are automatically satisfied. For (25), note that for allσ > 0,

b(σ)s0 − a(σ)s2
0 = b(σ)s0(1− 1

4

(
(1 + exp(−1

2σ2`2))2 + 2
)
b(σ)s0) ≤ b(σ)s0(1− 3

4b(σ)s0) ≤ 1
3 . (31)

For (26), a andb are both decreasing functions ofσ so we have

(b(σt)− u)s0 − a(σt)s2
0 ≥ (b(σm)− u)s0 − a(σt)s2

0 = γ + a(σm)s2
0 − a(σt)s2

0 ≥ γ (32)

All that remains is to verify thats0 is positive for the values ofu andγ in parts (b) and (c) respectively.
Note thats0 is positive if b(σm) > u andb(σm) − u ≥ 2

√
γa(σm). Certainly, if the latter inequality is

strict, it implies the first, so we focus on the latter in the remainder of the argument.
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For Lemma6 (b), we setu = (1 − ε)`2 andγ = 3
128ε2. Rearranging terms, we must showb(σm) −

ε
√

3
128a(σm) ≥ (1 − ε)`2 whenever̀ ≤ σm

−1√ε. That is, plugging in our definitions fora(σm), and

b(σm), we must show

(1− exp(−1
2σ2

m`2))
(

1− 2ε
√

3
128

√
(1 + exp(−1

2σ2
m`2))2 + 2

)
≥ (1− ε)

σ2
m`2

2
(33)

for all ` ≤ σm
−1√ε. Using the bounds1−exp(−t) ≥ −t+t2/2 for t ≥ 0 and(1+exp(−1

2σ2
m`2))2+2 ≤ 6,

we can compute

(
1− exp

(
−σ2

m`2

2

)) 
1− 2ε

√
3

128

√(
1 + exp

(
−σ2

m`2

2

))2

+ 2


 (34)

≥
(

σ2
m`2

2
− σ4

m`4

8

) (
1− 3

4ε
)

(35)

=
(

1− σ2
m`2

4
− 3

4ε

)
σ2
m`2

2
+

3σ4
m`4

32
(36)

≥ (1− ε)
σ2
m`2

2
+

3σ4
m`4

32
(37)

≥ (1− ε)
σ2
m`2

2
(38)

Where (37) used the fact that̀≤ √
ε/σm.

The argument for part (c) is more or less the same, now withu = (4σ2)−1 andγ = 1
128 . We must show

(1− exp(−1
2σ2

m`2))
(

1− 2
√

1
128

√
(1 + exp(−1

2σ2
m`2))2 + 2

)
≥ 1

8
(39)

for all ` ≥ (
√

2σm)−1. Sinceσ2
m`2 > 2, it follows that

(1− exp(−1
2σ2

m`2))
(

1− 2
√

1
128

√
(1 + exp(−1

2σ2
m`2))2 + 2

)

≥ (
1− exp(−1

4)
)(

1−
√

3
16

)
≈ 0.1254 >

1
8

. (40)

B Close Neighbors Analysis

In this section we provide the Local Lemma argument which complete the proof ofTheorem 1in Section 3.2.
We create a dependency graphGA whose vertices are the eventsA(x, y). Let dGA

denote its maximum
degree. Note that the eventA(x, y) depends only on the random variables associated with clustersC ∈ P (t)

whereP (t)(x) = P (t)(y). We place an edge between two eventsA(x, y) and A(x′, y′) if P (t)(x) =
P (t)(x′) for somet ∈ T=(x, y) ∩ T=(x′, y′). Note that if there is no edge between the two events then
they are independent. On the other hand assume if there is an edge then for somet, P (t)(x) = P (t)(y) =
P (t)(x′) = P (t)(y′). Thenmax{‖x− x′‖, ‖x− y′‖} ≤ ∆(P (t)(x)) ≤ ∆k(x)/16, by Lemma3, and hence
x′, y′ ∈ B(x,∆k(x)). This implies that the number of such pairs is bounded bydGA

≤ (
k
2

)
.

Now, by part (a) of Lemma6 the probability thatU(x, y) > (1+ε)‖x−y‖2 is at moste−D(ε2/4+ε3/6) ≤
k−2/4. For pairsx, y that are not close neighbors this implies that the probability that eventA(x, y) occurs
is at most1/(e(

(
k
2

)
+ 1)) ≤ 1/(e · dGA

+ 1).
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For pairx, y that are close neighbors we have that‖x − y‖ ≤ ∆∗
k(x, y) ≤ 1

2σ(t)(x, y)−1, we have by

Lemma6(b) that the probability thatL(x, y) < (1−max{ε, σ2
m‖x−y‖2})‖x−y‖2 is at moste−3Dε2/128 ≤

k−2/4, whereσm ≤ maxt∈T σ(t)(x, y) ≤ ∆∗
k(x, y)−1/2. Hence the probability the eventA(x, y) occurs is

at mostk−2/2 < 1/(e · dGA
+ 1). This complete the proof that the eventsA(x, y) satisfy the conditions of

the Local Lemma, implying that there is positive probability that none of these events occur. Therefore we
have for any pairx, y ∈ X:

‖Φ(x)− Φ(y)‖2 ≤ |T=(x, y)|
D

· U(x, y) +
|T6=(x, y)|

D
· ‖x− y‖2 + 4ε‖x− y‖2 ≤ (1 + 5ε)‖x− y‖,(41)

and for all close neighborsx, y such that‖x− y‖ ≤ ∆∗
k(x, y) we have:

‖Φ(x)− Φ(y)‖2 ≥ (1− 4ε)L(x, y) ≥ (1− 4ε−max{ε,∆∗
k(x, y)−2‖x− y‖2})‖x− y‖2

≥ (1− 5max{ε, ε′(x, y)})‖x− y‖2. (42)

C Embedding Farther Pairs Analysis

In this section we complete the proof of the embedding fromSection 3.3.
For the analysis of̂Φ, first observe that the upper bound on the distance in the embedding is maintained

with only small loss. This follows since‖Ψ(x)−Ψ(y)‖ ≤ √
ε‖x− y‖, as follows by a standard argument

(see, e.g., [1]), and we have

‖Φ̂(x)−Φ̂(y)‖2 = ‖Φ(x)−Φ(y)‖2+‖Ψ(x)−Ψ(y)‖2 ≤ (1+5ε)‖x−y‖2+ε‖x−y‖2 = (1+6ε)‖x−y‖2.

We now turn to show that the embedding provides a lower bound on the distance between images of
neighbors which are not “close”. We can partition the pairsx, y such that∆∗

k(x, y) ≤ ‖x−y‖ ≤ 1
2∆k(x, y)

into two sets as follows:W= = {{x, y} | |T=(x, y)| ≥ D/2} andW6= = {{x, y} | |T 6=(x, y)| > D/2}.
For pairs inW= we show that theΦ component of the embedding gives a good lower bound on the distance,
whereas for pairs inW6= such a contribution is obtain from theΨ component of the embedding.

Consider first a pair inW=. Recall that

‖Φ(x)− Φ(y)‖2 ≥
∑

t∈T=(x,y) ‖ϕ(t)(x)− ϕ(t)(y)‖2

D
≥ 1

2
·
∑

t∈T=(x,y) ‖ϕ(t)(x)− ϕ(t)(y)‖2

|T=(x, y)| . (43)

Let LB(x, y) =
P

t∈T=(x,y) ‖ϕ(t)(x)−ϕ(t)(x)‖2
|T=(x,y)| and define the eventB(x, y) thatLB(x, y) < 2−5∆∗

k(x, y)2.
As before we create a dependency graphGB whose vertices are these events and place an edge between two
eventsB(x, y) andB(x′, y′) if P (t)(x) = P (t)(x′) for somet ∈ T=(x, y) ∩ T=(x′, y′). Note that if there
is no edge between the two events then they are independent. By the same argument made before we can
bound the degree ofGB asdGB

≤ (
k
2

)
.

We have that‖x − y‖ ≥ ∆∗
k(x, y) ≥ 1

8(maxt∈T σ(t)(x, y))−1 ≥ 1
8σ−1

m . Now, by Lemma6, the

probability thatLB(x, y) < 2−7σ−2
m is at moste−Dε2/128 < k−2/2, whereσm ≤ maxt∈T σ(t)(x, y) ≤

∆∗
k(x, y)−1/2. Hence, the probability that eventB(x, y) occurs is at mostk−2/2 < 1/(e(

(
k
2

)
+ 1)) ≤

1/(e(dGB
+ 1)), which satisfies the conditions of the Local Lemma, implying that there is positive proba-

bility that none of these event occur. We conclude that for every pairx, y in W=,

‖Φ̂(x)− Φ̂(y)‖2 ≥ ‖Φ(x)− Φ(y)‖2 ≥ 1
2
LB(x, y) ≥ 2−6∆∗

k(x, y)2, (44)

that is:‖Φ̂(x)− Φ̂(y)‖ ≥ 1
8∆∗

k(x, y).
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Next we deal with pairs inW6=. Here we will make use of theΨ component of the embedding. By
applying Lemma4 with ξ = 1/4 we infer that with positive probability for everyx ∈ X there exists a set
T ′(x) = T (7/8)(x) such that|T ′(x)| ≥ (1− 2

8)D = 3
4D and for eacht ∈ T ′(x), B(x, η(3/4)∆(P (t)(x))) ⊆

P (t)(x), and therefored(x,X \ P (t)(x)) ≥ σ(t)(x)−1/(4ε), by definition. We note that this event is pos-
itively correlated with the former application of the lemma and so this assertion holds in conjunction with
our analysis ofΦ. Assume w.l.o.g thatσ(t)(x, y) = σ(t)(x) (otherwise switch the roles ofx andy), then we
have that:ε · d(x,X \ P (t)(x)) ≥ ∆∗

k(x, y).
For such a pairx, y defineB′(x, y) to be the event that‖Ψ(x) − Ψ(y)‖ < 1

8∆∗
k(x, y). Define a de-

pendency graphGB′ whose vertices are these events. We place an edge between two eventsB′(x, y) and
B′(x′, y′) if one of {x, y} is in the same cluster as{x′, y′} for somet ∈ T . Note that if there is no edge
between two events then they are independent. On the other hand assume there existst ∈ T such that
P (t)(x) = P (t)(x′). As before we have that‖x− x′‖ ≤ ∆(P (t)(x)) ≤ ∆k(x)/16, by Lemma3, and hence
x′ ∈ B(x,∆k(x)) and therefore there are at mostk such pointsx′. Now consider all such pairs including
x′. Denote the other points in these pairsy′1, . . . , y

′
s. Let z be the point which maximizes∆k(z) over all

y′js andx′. Since‖x′ − y′j‖ < 1
2∆k(x′, y′j) = 1

2 max{∆k(x′), ∆k(y′j)} ≤ 1
2∆k(z). We conclude that

‖z− y′j‖ ≤ ‖z−x′‖+ ‖x′− y′j‖ < ∆k(z) and therefore ally′js are in a ball aroundz containing fewer than
k points so thats < k. We conclude that there are at mostk2 such pairs. The same calculation can be for
the case thatP (t)(y) = P (t)(x′), giving a total bound of2k2 pairs, which provides an upper bound on the
degreedGB′ of the dependency graphGB′ .

Now, let T ′′(x) = T ′(x) ∩ W6= then |T ′′(x)| ≥ D/4. Then for eacht ∈ T ′′(x) with probability
at least1/4, ν(P (t)(x)) = 1 andν(P (t)(y)) = 0, asP (t)(x) 6= P (t)(y). Applying a Chernoff bound
we have that the probability that there are less than1/8 fraction of the coordinatest ∈ T ′′(x) such that
|Ψ(t)(x) − Ψ(t)(y)| ≥ √

ε · d(x,X \ P (t)(x)) ≥ ∆∗
k(x, y) is at moste−D/16. But this means that with

probability1− e−D/16, ‖Ψ(x)−Ψ(y)‖ ≥ 1√
8·4∆∗

k(x, y) > 1
8∆∗

k(x, y). Therefore the probability that event

B′(x, y) occurs is at moste−D/16 ≤ k−2/4 < 1/(e(k2 + 1)) ≤ 1/(e(dGB′ + 1), satisfying the condition
for the Local Lemma. We can therefore conclude that with positive probability none of the eventsB′(x, y)
occur. Therefore for everyx, y ∈ W6= we have:‖Φ̂(x)−Φ̂(y)‖ ≥ ‖Ψ(x)−Ψ(y)‖ ≥ 1

8∆∗
k(x, y), completing

the proof of Theorem1.

D Proof of Dimension Reduction for Snowflakes

of Theorem 3. We may assumeα ≥ 1/2, otherwise we can apply the embedding for this case to imply the

conclusion for smallerα as well. LetpA = dlog1+ε ε−
4

1−α e, pB = blog1+ε ε−2c andp = 1 + pA + pB.
Define∆i = diam(X)(1 + ε)−i, wherei ∈ I, I = {i ∈ Z| − pA ≤ i ≤ log1+ε(diam(X)) + 1 + pB}. Let

Φ̄i be the embedding ofLemma 8with r = ε−2∆i andδ = (1 + ε)−1ε
4

1−α
+2. Let Ψi = Φ̄i/∆1−α

i .

For j ∈ [p] let Φj =
∑

i∈I;i≡pj Ψi andΦ =
⊕

j∈[p] Φj . The final embedding isΦ/M : X → lpD′
2 ,

whereM is a parameter to be determined later andD′ is the dimension of the embedding ofLemma 8.
Fix some pairx, y ∈ X. Let i∗ be such that(1 + ε)−1∆i∗ ≤ ‖x− y‖ ≤ ∆i∗ .

Let A = {i∗ − pA, . . . , i∗, . . . , i∗ + pB}, then for eachi ∈ A: ε
4

1−α ≤ ∆i∗/∆i ≤ ε−2 and therefore

(1 + ε)−1ε
4

1−α ∆i ≤ ‖x− y‖ ≤ ε−2∆i. Then it follows fromLemma 8that fori ∈ A:

(1 + ε)−1 ‖x− y‖
∆1−α

i

≤ ‖Ψi(x)−Ψi(y)‖ ≤ ‖x− y‖
∆1−α

i
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We also have

∑

i′<i,i′≡pi

‖Ψi′(x)−Ψi′(y)‖
∑

i′<i,i′≡pi

‖x− y‖
∆1−α

i′
≤ ‖x− y‖

∆1−α
i

∞∑

j=1

(1 + ε)−(1−α)p·j ≤ (1 + ε)ε4
‖x− y‖
∆1−α

i

Using the bound‖Φ̄i(z)‖ ≤ ε−2∆i/
√

ε = ε−2.5∆i from Lemma 8and assumingα ≥ 1/2 we have

∑

i′>i,i′≡pi

‖Ψi′(x)−Ψi′(y)‖ ≤
∑

i′>i,i′≡pi

2ε−2.5∆i′

∆1−α
i′

≤ 2ε−2.5
∑

i′>i,i′≡pi

∆α
i′

≤ 2ε−2.5∆α
i

∞∑

j=1

(1 + ε)−αp·j ≤ 2(1 + ε)2ε1.5 ‖x− y‖
∆1−α

i

Hence we get forε < 1/8:

‖
∑

i′≡pi

(Ψi′(x)−Ψi′(y))‖2 ≤

‖Ψi(x)−Ψi(y)‖+

∑

i′ 6=i,i′≡pi

‖Ψi′(x)−Ψi′(y)‖



2

≤ (1 + ε)2
(‖x− y‖

∆1−α
i

)2

‖
∑

i′≡pi

(Ψi′(x)−Ψi′(y))‖2 ≥

‖Ψi(x)−Ψi(y)‖ −

∑

i′ 6=i,i′≡pi

‖Ψi′(x)−Ψi′(y)‖



2

≥ (1− ε)2
(‖x− y‖

∆1−α
i

)2

Summing over alli ∈ A we get

(1− ε)2
∑

i∈A

(‖x− y‖
∆1−α

i

)2

≤ ‖Φ(x)− Φ(y)‖2 ≤ (1 + ε)2
∑

i∈A

(‖x− y‖
∆1−α

i

)2

Finally,

∑

i∈A

(‖x− y‖
∆1−α

i

)2

=
(‖x− y‖

∆1−α
i∗

)2 ∑

i∈A

(1 + ε)2(1−α)(i∗−i) =
(‖x− y‖

∆1−α
i∗

)2 pB∑

j=−pA

(1 + ε)2(1−α)j

ChoosingM =
∑pB

j=−pA
(1 + ε)(1−α)j and observing that‖x − y‖α ≤ ‖x−y‖

∆1−α
i∗

≤ (1 + ε)α‖x − y‖α

completes the proof.

E Probabilistic Partitions Preliminaries

E.1 Preliminaries

Consider a finite metric space(X, d) and letn = |X|. The diameterof X is denoteddiam(X) =
maxx,y∈X d(x, y). For a pointx andr ≥ 0, the ball at radiusr aroundx is defined asBX(x, r) = {z ∈
X|d(x, z) ≤ r}. We omit the subscriptX when it is clear form the context.

The following definitions are used in the context of partition-based embeddings intoLp:

Definition 9. The local growth rate ofx ∈ X at radiusr > 0 for a given scaleγ > 0 is defined as

ρ(x, r, γ) = |B(x, rγ)|/|B(x, r/γ)|.
Given a subspaceZ ⊆ X, the minimum local growth rate ofZ at radiusr > 0 and scaleγ > 0 is

defined asρ(Z, r, γ) = minx∈Z ρ(x, r, γ). The minimum local growth rate at radiusr > 0 and scaleγ > 0
is defined as̄ρ(x, r, γ) = ρ(B(x, r), r, γ).
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The following simple fact about minimum local growth rate is useful:

Claim 10. Letx, y ∈ X, let γ > 0 and letr be such that2(1 + 1/γ)r < d(x, y) ≤ (γ − 2− 1/γ)r, then

max{ρ̄(x, r, γ), ρ̄(y, r, γ)} ≥ 2.

E.2 Uniformly Padded Probabilistic Partitions

We start with describing the basic definition that captures the properties needed for the application for
embeddings:

Definition 11 (Partition). Let (X, d) be a finite metric space. A partitionP of X is a collection of disjoint
set of clustersC(P ) = {C1, C2, . . . , Ct} such thatX = ∪jCj . The setsCj are called clusters. Forx ∈ X
we denote byP (x) the cluster containingx. Given∆ > 0, a partition is∆-boundedif for all 1 ≤ j ≤ t,
diam(Cj) ≤ ∆.

Definition 12 (Uniform Function). Given a partitionP of a metric space(X, d), a functionf defined on
X is calleduniformwith respect toP if for any x, y ∈ X such thatP (x) = P (y) we havef(x) = f(y).

Definition 13 (Probabilistic Partition). A probabilistic partition P̂ of a finite metric space(X, d) is a
distribution over a setP of partitions ofX. Given∆ > 0, P̂ is ∆-bounded if eachP ∈ P is ∆-bounded.

Definition 14 (Uniformly Padded Local PP). Given ∆ > 0 and 0 < δ ≤ 1, let P̂ be a∆-bounded
probabilistic partition of(X, d). Given collection of functionsη = {ηP : X → [0, 1]|P ∈ P} such that
ηP is a uniform function with respect toP . We say thatP̂ is a(η, δ)-uniformly padded local probabilistic
partition if the eventB(x, ηP (x)∆) ⊆ P (x) occurs with probability at leastδ and is independent of the
structure of the partition outsideB(x, 2∆).

Formally for allC ⊆ X \B(x, 2∆) and all partitionsP ′ of C,

Pr[B(x, ηP (x)∆) ⊆ P (x) | P|C = P ′] ≥ δ

E.3 Local Uniform Padding Lemma for Doubling Metrics

Lemma 15 (Local Uniform Padding Lemma). Let (X, d) be aλ-doubling finite metric space. Let0 <
∆ ≤ diam(X). Let δ̂ ∈ (λ−2, 1/2], and letΓ = 64. There exists a∆-bounded probabilistic partition̂P of
(X, d) and a collection of uniform functions{ξP : X → {0, 1} | P ∈ P} and{ηP : X → (0, 1/ ln(1/δ̂)] |
P ∈ P} such that for anŷδ ≤ δ ≤ 1, and η(δ) defined byη(δ)

P (x) = ηP (x) ln(1/δ), the probabilistic
partition P̂ is a (η(δ), δ)-uniformly padded local probabilistic partition; and the following conditions hold
for anyP ∈ P and anyx ∈ X:

• ηP (x) ≥ 2−9/(lnλ).

• If ξP (x) = 1 then:2−7/ ln ρ(x, 4∆, Γ) ≤ ηP (x) ≤ 2−7/ ln(1/δ̂).

• If ξP (x) = 0 then:ηP (x) = 2−7/ ln(1/δ̂) and ρ̄(x, 4∆, Γ) < 1/δ̂.
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F Embedding Distant Pairs

Theorem 2follows from the following theorem on local scaling embedding for doubling metrics.
Recall thatX satisfies aweak growth ratecondition (cf. [2]): WGR(γ) for some constantsγ < 1 if for

everyx ∈ X andr1, r2 > 0, |B(x, r2)| ≤ |B(x, r1)|(r2/r1)γ
, and further assumeγ < 0.2.

Theorem 4. Given a metric space(X, d) satisfyingWGR(γ). For any 1 ≤ p ≤ ∞, and 0 < θ ≤ 1,
there exists an embedding ofX into `D

p in dimensionD = O(dim(X)/θ) and scaling distortion where the

distortion for pairsx, y ∈ X and k̂ s.t.d(x, y) ≤ ∆k̂(x) is O(log1+θ k̂/θ).

The lower bound on the distortion guaranteed byTheorem 4is a monotonic function of the distance
from any particular point. This is stated in the following corollary:

Corollary 16. Given a metric space(X, d) satisfyingWGR(γ). For any1 ≤ p ≤ ∞, and0 < θ ≤ 1, there
exists an embeddingf of X into `D

p in dimensionD = O(dim(X)/θ) such that for anyx, y ∈ X and k̂ s.t.

d(x, y) ≥ ∆k̂(x) then‖f(x)− f(y)‖p ≥ ∆k̂(x) · Ω(θ/ log1+θ k̂).

In the rest of this section we proveTheorem 4.

F.1 Proof of Theorem 4

The Embedding.
Let θ > 0. Let D = d c log λ

θ e, wherec is a constant to be determined later. We will define an embedding
f : X → lDp with scaling distortion where the distortion for pairsx, y ∈ X and k̂ s.t. d(x, y) ≤ ∆k̂(x)
is O(log1+θ k̂/θ). We definef by defining for each1 ≤ t ≤ D, a functionf (t) : X → R+ and let
f = D−1/p

⊕
1≤t≤D f (t).

In what follows we define the functionsf (t). Let ∆0 = diam(X), I = {i ∈ Z | 1 ≤ i ≤ log ∆0}.
For i ∈ Z let ∆i = ∆0/4i. For each0 < i ∈ I construct a∆i-bounded uniformly padded probabilistic
partition P̂i, as inLemma 15with parameterΓ = 64, δ̂ = 1/2. Fix somePi ∈ Pi for all i ∈ I. In the
usual embedding via partitions scheme we obtain a lower bound for every pairx, y ∈ X from only one
”critical” scale (which is approximatelyd(x, y)). Here, we use the same idea, but since the cluster in the
critical scale may contain too many points, we get contribution from two scales lower than the critical one,
which is guaranteed to be small enough. For this reason we define a new functionξ̄ as follows, for each
i ∈ I, P ∈ H:

ξ̄P,i(x) =
{

1 ρ(υ(Pi(x)), 4∆i, Γ4) ≥ 2
ξP,i(x) otherwise

whereυ(C) is the center of clusterC ∈ Pi. It can be seen that the function̄ξ is uniform as well.
Let ε(k̄) = ln−θ k̄, δ(k̄) = 1− ε(k̄), and letζ(k̄) = ln1+2θ k̄. We define the embedding by defining the

coordinates for eachx ∈ X. Define forx ∈ X, 0 < i ∈ I, k̂i(x) = |B(υ(Pi(x)), (4Γ + 1)∆i)|. Define

φ
(t)
i : X → R+, as:

φ
(t)
i (x) =

ξ̄Pi(x)

η
(δ(k̂i(x)))
Pi

(x) · ζ(k̂i(x))
.

Let {σ(t)
i (C)|C ∈ Pi, 0 < i ∈ I} be i.i.d random variables uniformly distributed in[0, 1].

For each0 < i ∈ I we define a functionf (t)
i : X → R+ and forx ∈ X, let f (t)(x) =

∑
i∈I f

(t)
i (x).

The embedding is defined as follows: for eachx ∈ X:
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• For each0 < i ∈ I, let f
(t)
i (x) = σ

(t)
i (P (t)

i (x)) · g(t)
i (x), whereg

(t)
i : X → R+ is defined as:

g
(t)
i (x) = min{φ(t)

i (x) · d(x,X \ P
(t)
i (x)), ∆i}.

We have the following claims:

Claim 17. For anyx, y ∈ X andi ∈ I if Pi(x) = Pi(y) thenφ
(t)
i (x) = φ

(t)
i (y).

Claim 18. There exists universal constantC1 such that for anyx ∈ X, 1 ≤ t ≤ D we have
∑

j∈I φ
(t)
j (x) ≤

C1/θ.

Proof. Let bi = bln |B(x, 4∆i)|c. Asd(υ(Pi(x)), x) ≤ ∆i we have thatlog k̂i(x) = log |B(υ(Pi(x)), (4Γ+
1)∆i)| ≥ log |B(x, 4Γ∆i)| ≥ bi−3.

∑

j∈I

φj(x) =
∑

j∈I:ξ̄j(x)=1

η
(δ(k̂j(x)))
j (x)−1

ζ(k̂j(x))

≤
∑

j∈I:ξj(x)=1

27 ln ρ(x, 4∆j ,Γ)

ζ(k̂j(x)) · ln( 1
1−ε(k̂j(x))

)
+

∑

j∈I:ξ̄j(x)=1,ξj(x)=0

27

ζ(k̂j(x)) · ln( 1
1−ε(k̂j(x))

)

≤ 28
∑

j∈I:ξ̄j(x)=1

ρ(x, 4∆j ,Γ)

ln1+θ k̂j(x)
+ 27

∑

j∈I

1

ln1+θ k̂j(x)
≤ 29

∑

j∈I:ξ̄j(x)=1

bj−3 − bj+2

(bj−3)
1+θ

+ 27
∞∑

h=1

1
h1+θ

≤ 29
∑

j∈I

bj−3∑

h=bj+2

1
h1+θ

+ O(1/θ) ≤ 212
∞∑

h=1

1
h1+θ

+ O(1/θ) = O(1/θ).

Defineḡ
(t)
i : X ×X → R+ as follows:ḡ(t)

i (x, y) = min{φ(t)
i (x) · d(x, y), ∆i}. We have the following

claim:

Claim 19. For any0 < i ∈ I andx, y ∈ X: f
(t)
i (x)− f

(t)
i (y) ≤ ḡ

(t)
i (x, y).

Lemma 20. There exists a universal constantC1 > 0 such that for anyx, y ∈ X:

‖f(x)− f(y)‖p ≤ (C1/θ) · d(x, y).

Proof. FromClaim 19andClaim 18we get

∑

0<i∈I

(f (t)
i (x)− f

(t)
i (y)) ≤

∑

0<i∈I

ḡ
(t)
i (x, y) ≤

∑

0<i∈I

φ
(t)
i (x) · d(x, y)

≤ (C1/θ) · d(x, y).

It follows that|f (t)(x)− f (t)(y)| = |∑0<i∈I(f
(t)
i (x)− f

(t)
i (y))| ≤ (C1/θ) · d(x, y),and therefore

‖f(x)− f(y)‖p
p = D−1

∑

1≤t≤D

|f (t)(x)− f (t)(y)|p ≤ (C1/θ)p d(x, y)p.
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Lemma 21. There exists a universal constantC2 > 0 such that with constant probability for anyx, y ∈ X
s.t.d(x, y) ≤ ∆k̂(x):

‖f(x)− f(y)‖p ≥ C2 ln−1−3θ k̂ · d(x, y).

Proof. We will prove that with constant probability for everyx, y ∈ X s.t. d(x, y) ≤ ∆k̂(x), there exists a
setT (x, y) ⊆ {1, . . . , D} of size at leastD/2 such that for anyt ∈ T (x, y):

|f (t)(x)− f (t)(y)| ≥ 2−6 ln−1−3θ k̂ · d(x, y). (45)

The theorem follows directly:

‖f(x)− f(y)‖p
p = D−1

∑

1≤t≤D

|f (t)(x)− f (t)(y)|p ≥ D−1
∑

t∈T (x,y)

|f (t)(x)− f (t)(y)|p

≥ D−1|T (x, y)| ·
(
2−6 ln−1−3θ k̂ · d(x, y)

)p
≥ 1

2

(
2−6 ln−1−3θ k̂ · d(x, y)

)p
.

The proof of (45) uses a set of nets of the space. For any0 < i ∈ I, and1 ≤ k = 2j ≤ n, let Nk
i be a

θ·ε(k)∆i

16C1ζ(4k) -net ofX. Let

M =
{

(i, k, u, v) | i ∈ I, u, v ∈ Nk
i , 3∆i−4 ≤ d(u, v) ≤ 17∆i−4, k ≤ min{k̂i(u), k̂i(v)} < 2k

}
.

Given an embeddingf define a functionT : M → 2[D] such that fort ∈ [D] :

t ∈ T (i, k, u, v) ⇔
∣∣∣f (t)(u)− f (t)(v)

∣∣∣ ≥ 1
2

ε(k)
ζ(4k)

∆i.

For all (i, k, u, v) ∈ M , let E(i,k,u,v) be the event|T (i, k, u, v)| ≥ D/2.
Define the eventE =

⋂
(i,k,u,v)∈M E(i,k,u,v) that captures the case that all triplets inM have the desired

property. The main technical lemma is thatE occurs with non-zero probability:

Lemma 22. Pr[E ] > 0.

Let us first show that if the eventE took place, then the lower bound follows. Letx, y ∈ X, and let
0 < i ∈ I be such that4∆i−4 ≤ d(x, y) < 16∆i−4.

Consideru, v ∈ Ni satisfyingd(x, u) = d(x,Nk
i ) andd(y, v) = d(y, Nk

i ), thend(u, v) ≤ d(x, y) +
d(u, x)+d(y, v) ≤ 16∆i−4 +2∆i

C1
≤ 17∆i−4 andd(u, v) ≥ d(x, y)−d(x, u)−d(y, v) ≥ 4∆i−4−2∆i

C1
≥

3∆i−4.
Let k be such thatk ≤ min{k̂i(u), k̂i(v)} < 2k. By the definition ofM it follows that(i, k, u, v) ∈ M .

It also holds thatk ≤ |B(υ(Pi(u)), (4Γ + 1)∆i)| ≤ |B(x, 4∆i−4)| ≤ |B(x, d(x, y))| ≤ k̂.
The next lemma shows that sincex, y are very close tou, v respectively, then by the triangle inequality

the embeddingf of x, y cannot differ by much from that ofu, v (respectively).

Lemma 23. Let x, y ∈ X, let i be such that4∆i−4 ≤ d(x, y) ≤ 16∆i−4, and u, v ∈ Nk
i satisfying

d(x, u) = d(x,Nk
i ) andd(y, v) = d(y, Nk

i ).
GivenE , for anyt ∈ T (i, k, u, v):

∣∣∣f (t)(x)− f (t)(y)
∣∣∣ ≥ 1

4
ε(k̂)

ζ(4k̂)
∆i.
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Proof. SinceNk
i is θ·ε(k)∆i

16C1ζ(4k) -net, thend(x, u) ≤ θ·ε(k)∆i

16C1ζ(4k) . By Lemma 20|f (t)(x) − f (t)(u)| ≤ (C1/θ) ·
d(x, u) ≤ 1

16
ε(k)
ζ(4k)∆i, and similarly|f (t)(y)− f (t)(v)| ≤ 1

16
ε(k)
ζ(4k)∆i. Then

|f (t)(x)− f (t)(y)|
= |f (t)(x)−f (t)(u) + f (t)(u)−f (t)(v) + f (t)(v)−f (t)(y)|
≥ |f (t)(u)−f (t)(v)|−|f (t)(x)−f (t)(u)|−|f (t)(y)−f (t)(v)|

≥ 1
2

ε(k)
ζ(4k)

∆i − 2
1
16

ε(k)
ζ(4k)

∆i ≥ 1
4

ε(k)
ζ(4k)

∆i ≥ 1
4

ε(k̂)

ζ(k̂)
∆i.

Let κ(k) = dlog log(4k)e. Let (i, k, u, v) ∈ M andt ∈ [D]. DefineF(i,k,u,v,t) be the event that:

|
∑

0<j≤i+κ(k)

(f (t)
j (u)− f

(t)
j (v))| ≥ ε(k)

ζ(4k)
∆i.

Let Ê(i,k,u,v) be the event that|{t|F(i,k,u,v,t)}| ≥ D/2.

Claim 24. For all (i, k, u, v) ∈ M , Ê(i,k,u,v) impliesE(i,u,v).

Proof. Let S = {t|F(i,k,u,v,t)}. Then for t ∈ S:
∣∣ ∑

0<j≤i+κ(k) f
(t)
j (u) − f

(t)
j (v)

∣∣ ≥ ε(k)
ζ(4k)∆i , from

Claim 19it follows that
∣∣∑

j>i+κ(k) f
(t)
j (u) − f

(t)
j (v)

∣∣ ≤ ∑
j>i+κ(k) ∆j ≤ 1

2
ε(k)
ζ(4k)∆i , which implies that

|f (t)(u)− f (t)(v)| = ∣∣ ∑
j∈I f

(t)
j (u)− f

(t)
j (v)

∣∣ ≥ 1
2

ε(k)
ζ(4k)∆i.

Lemma 25 (Lovasz Local Lemma - General Case).Let A1,A2, . . .An be events in some probability
space. LetG(V, E) be a directed graph onn vertices, each vertex corresponds to an event. Letc : V → [m]
be a rating function of events, such that if(Ai,Aj) ∈ E thenc(Ai) ≤ c(Aj). Assume that for alli =
1, . . . , n there existsxi ∈ [0, 1) such that

Pr


Ai |

∧

j∈Q

¬Aj


 ≤ xi

∏

j:(i,j)∈E

(1− xj),

for all Q ⊆ {j : (Ai,Aj) /∈ E ∧ c(Ai) ≥ c(Aj)}, then

Pr

[
n∧

i=1

¬Ai

]
> 0

Define a graphG = (V, E), whereV = {Ê(i,k,u,v) | (i, k, u, v) ∈ M}, and the rating of a vertex

c(Ê(i,k,u,v)) = i. Let x(i,k,u,v) = λ−60 ln( 2 ln k
θ

).

Define that(Ê(i,k,u,v), Ê(i′,k′,u′,v′)) ∈ E iff d({u, v}, {u′, v′}) ≤ 4∆i, and i′ ≤ i + κ(k), and 1
3 ≤

log log(4k′)
log log(4k) ≤ 3.

Claim 26. Let Ê(i,k,u,v) ∈ V , then the number of edges(Ê(i,k,u,v), Ê(i′,k′,u′,v′)) ∈ E is at mostλ20 ln( 2 ln k
θ

).
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Proof. We bound the number of pairsu′, v′ ∈ Nk
i′ such that(Ê(i,k,u,v), Ê(i′,k′,u′,v′)) ∈ E for i ≤ i′ ≤ i+κ(k)

and 1
3 ≤ log log(4k′)

log log(4k) ≤ 3.

Assume w.l.o.gd(u, u′) ≤ 4∆i, sinced(u′, v′) ≤ 17∆i−4 we haveu′, v′ ∈ B = B(u, 40∆i−4). The
number of pairs can be bounded by|Nk

i′ ∩ B|2. There is at most point from the netNk′
i′ in every ball of

radiusr = θ·ε(k)3

16C1(ζ(4k))3
∆i+κ(k). Since(X, d) is λ-doubling, the ballB can be covered byλlog(40∆i−4/r)

balls of radiusr. Now, log(40∆i−4/r) ≤ 8 ln ln k + 18 + log(1/θ). It conclude that the number of possible

pairs is bounded above byλ20 ln( 2 ln k
θ

).

The construction of the graph is based on the proposition that vertices that do not have an edge are either
farther than≈ ∆i apart or have different scales and hence do not change each other’s bound on their success
probability.

Lemma 27.

Pr


¬Ê(i,k,u,v) |

∧

(i′,k′,u′,v′)∈Q

Ê(i′,k′,u′,v′)


 ≤ λ−61 ln( 2 ln k

θ
),

for all Q ⊆
{

(i′, k′, u′, v′) | i ≥ i′ ∧
(
Ê(i,k,u,v), Ê(i′,k′,u′,v′)

)
/∈ E

}
.

Before we prove this lemma, let us see that it impliesLemma 22.
Apply Lemma 25to the graphG we defined. UsingClaim 26 we can bound the number of edges(

Ê(i,k,u,v), Ê(i′,k′,u′,v′)

)
∈ E is at mostd = λ20 ln( 2 ln k

θ
). Recall thatx(i,k,u,v) = λ−60 ln( 2 ln k

θ
). Also it

follows thatx(i′,k′,u′,v′) = λ−60 ln( 2 ln k′
θ

) ≤ λ−20 ln( 2 ln k
θ

). Therefore the probability bound inLemma 27

satisfies the first condition ofLemma 25λ−61 ln( 2 ln k
θ

) ≤ λ−60 ln( 2 ln k
θ

)(1 − λ−20 ln( 2 ln k
θ

))d. Therefore
Pr[E ] = Pr[

∧
(i,k,u,v)∈M Ê(i,k,u,v)] > 0, which concludes the proof ofLemma 22.

F.1.1 Proof ofLemma 27

In what follows we use of the following simple technical claim.

Claim 28. Let A,B ∈ R+ and letα, β be i.i.d random variables uniformly distributed in[0, 1]. Then for
anyC ∈ R andε > 0:

Pr[|C + Aα−Bβ| < ε ·max{A,B}] < 2ε.

Proof. Assume wlogA ≥ B. Consider the condition|C+Aα−Bβ| < ε·max{A,B} = εA. If C−Bβ ≥ 0
then it impliesα < ε. Otherwise|α− Bβ−C

A | < ε.

Claim 29. Let (i, k, u, v) ∈ M , t ∈ [D], thenPr
[F(i,k,u,v,t)

] ≥ 1− 3ε(k).

Proof. Setε = ε(k) andδ = 1− ε. Consider some(i, k, u, v) ∈ M . Then3∆i−4 ≤ d(u, v) ≤ 17∆i−4. By
Claim 10 we have that
max{ρ̄(u,∆i−4,Γ), ρ̄(v, ∆i−4, Γ)} ≥ 2. Assume w.l.o.g that̄ρ(u,∆i−4,Γ) ≥ 2. It follows that also

ρ(υ(Pi(u)), 4∆i, Γ4) ≥ 2 from Lemma15 that ξ̄P (t),i(u) = 1 which implies thatφ(t)
i (u) =

η
(δ(ki(u)))

P (t),i
(u)−1

ζ(k̂i(u))
.

As ki(u) ≥ k we have thatφ(t)
i (u) ≥

η
(δ)

P (t),i
(u)−1

ζ(k̂i(u))
. As Ĥ(t) is (η(δ), 1 − ε)-padded we have the following

bound

Pr[B(u, η
(δ)

P (t),i
(u)∆i) ⊆ P

(t)
i (u)] ≥ 1− ε.
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Therefore with probability at least1− ε:

g
(t)
i (u) ≥ φ

(t)
i (u) · d(u,X \ P

(t)
i (u)) ≥ ∆i

ζ(k̂i(u))
. (46)

If k̂i(u) ≤ 4k theng
(t)
i (u) ≥ ∆i

ζ(4k) . Otherwise it must be the case thatk̂i(v) ≤ 2k. It follows that

ρ(υ(Pi(u)), 4∆i, Γ4) ≥ 2 and thusξ̄P (t),i(v) = 1, and hence by analogues argument to the one above we

get thatg(t)
i (v) ≥ ∆i

ζ(4k) . We conclude thatmax{g(t)
i (u), g(t)

i (v)} ≥ ∆i
ζ(4k) .

LetA denote the event that (46) occurs.
Recall that we are interested in the expression:|∑0<j≤i+κ(k)(f

(t)
j (u)− f

(t)
j (v))| and

f
(t)
i (u)− f

(t)
i (v) = σ

(t)
i (P (t)

i (u)) · g(t)
i (u)− σ

(t)
i (P (t)

i (v)) · g(t)
i (v).

DefineA = g
(t)
i (u), B = g

(t)
i (u), α = σ

(t)
i (P (t)

i (u)), β = σ
(t)
i (P (t)

i (v)) andC =
∑

i6=j≤i+κ(k)(f
(t)
j (u)−

f
(t)
j (v)). Sincediam(P (t)

i (u)) ≤ ∆i < d(u, v) we have thatP (t)
i (v) 6= P

(t)
i (u). Thusα andβ are inde-

pendent random variables uniformly distributed in[0, 1], hence we can apply claim28 and using (46) we
have:

Pr[|
∑

0<j≤i+κ(k)

(f (t)
j (u)− f

(t)
j (v))| < ε

∆i

ζ(4k)
|A] = Pr[|C + Aα−Bβ|] < ε ·max{A,B}|A] < 2ε.

Therefore with probability at least1− 3ε(k):

|f (t)(u)− f (t)(v)| ≥ ε(k)
ζ(4k)

∆i. (47)

Claim 30. Let (i, k, u, v) ∈ M , t ∈ [D], then

Pr


¬F(i,k,u,v,t) |

∧

(i′,k′,u′,v′)∈Q

Ê(i′,k′,u′,v′)


 ≤ 3ε(k),

for all Q ⊆ {(i′, k′, u′, v′) ∈ M | i ≥ i′ ∧
(
Ê(i,k,u,v), Ê(i′,k′,u′,v′)

)
/∈ E}.

Proof. If i′ + κ(k′) < i, then eventÊ(i′,k′,u′,v′) depend on eventsF(i′,k′,u′,v′,t′), and these events depend
only on the choice of partition for scales at mosti. Hence the padding probability foru, v in scalei and the
choice ofσi is independent of these events.

Otherwise, ifi − κ(k′) ≤ i′ ≤ i, let (i′, k′, u′, v′) ∈ M such that
(
Ê(i,k,u,v), Ê(i′,k′,u′,v′)

)
/∈ E. By

the construction ofG there are two cases. Ifu′, v′ /∈ B(u, 4∆i′) andu′, v′ /∈ B(v, 4∆i′) thenu′, v′ are
far from u, v and they fall into different clusters in every possible partition of scalei. From Lemma 15,
the padding ofu, v in scalei depends only on the local neighborhoods,B(u, 2∆i) ∪ B(v, 2∆i), which
are disjoint from those ofu′, v′. The second case is thatd({u, v}, {u′, v′}) ≤ 4∆i. Recall thatk′ ≤
ki′(u′) = |B(υ(Pi′(u′)), (4Γ + 1)∆i′)| and k ≥ 1

2ki(u) = 1
2 |B(υ(Pi(u)), (4Γ + 1)∆i)|. We have

d(υ(Pi′(u′), υ(Pi(u))) ≤ d(υ(Pi′(u′), u′) + d(u′, u) + d(u, υ(Pi(u)) ≤ ∆i′ + 4∆i + ∆i ≤ 6∆i′ and
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thereforek′ ≤ |B(υ(Pi(u)), 2(4Γ + 1)∆i′)|. It follows from the WGR(γ) assumption thatk′ ≤ 2k4γκ(k′)

implying log log(4k′) ≤ log log(4k)+2γκ(k′) ≤ log log(4k)+3γ log log(4k′), and thereforelog log(4k′)
log log(4k) ≤

1/(1 − 3γ) ≤ 3 assumingγ < 0.2. A similar bound can be derived in the reverse direction which yields a
contradiction.

By Claim 29there is probability≥ 1− 3ε(k) to succeed, no matter what happened in scales6= i or “far
away” in scalei.

We now proveLemma 27. By Claim 30the probability a single coordinatet fails is at most3ε(k). It
follows from Chernoff bounds that the probability that more thanD/2 coordinates fail is bounded above by:

Pr


¬Ê(i,k,u,v) |

∧

(i′,k′,u′,v′)∈Q

Ê(i′,k′,u′,v′)


 ≤ (6e(3ε(k)))D/2 ≤ λ−

c
8

ln( 2 ln k
θ

). (48)

Settingc large enough implies that (48) is at mostλ−61 ln( 2 ln k
θ

), as required.
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